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Abstract

Powassan virus (POWV) is a tick-borne flavivirus that can result in a severe neuroinvasive
disease with 50% of survivors displaying long-term neurological sequelae. Human POWV
cases have been documented in Canada, the United States, and Russia. Although the num-
ber of reported POWYV human cases has increased in the past fifteen years, POWV remains
one of the less studied human pathogenic flaviviruses. Ixodes ticks are the vectors for
POWYV, and the virus is transmitted to a host’s skin very early during the tick feeding pro-
cess. Central to the successful transmission of a tick-borne pathogen are complex interac-
tions between the host immune response and early tick-mediated immunomodulation, all of
which initially occur at the skin interface. In our prior work, we examined the cutaneous
immune gene expression during the early stages of POWV-infected Ixodes scapularis feed-
ing. The present study serves to further investigate the skin interface by identifying early cell
targets of infection at the POWV-infected tick feeding site. An in vivo infection model con-
sisting of POWV-infected ticks feeding on mice for short durations was used in this study.
Skin biopsies from the tick feeding sites were harvested at various early time points,
enabling us to examine the skin histopathology and detect POWYV viral antigen in immune
cells present at the tick feeding site. The histopathology from the present study demon-
strates that neutrophil and mononuclear cell infiltrates are recruited earlier to the feeding
site of a POWV-infected tick versus an uninfected tick. This is the first report demonstrating
that macrophages and fibroblasts contain POWYV antigens, which suggests that they are
early cellular targets of infection at the tick feeding site. These data provide key insights
towards defining the complex interactions between the hostimmune response and early
tick-mediated immunomodulation.
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Introduction

Powassan virus (POWYV) is a neuroinvasive flavivirus that is transmitted to humans from the
bite of an infected tick. In 1958 POWYV was first isolated from the brain tissue of a five-year-
old boy who died of encephalitis in Powassan, Ontario [1]. Since then, human POWYV cases
have been documented in Canada, the United States, and Russia. POWYV is the only North
American member of the Tick-borne encephalitis serological complex of flaviviruses [2]. The
most common clinical presentations of disease caused by POWYV are encephalitis, meningoen-
cephalitis, and aseptic meningitis, with an incubation period ranging from 8 to 34 days. The
case fatality rate is approximately 10%, yet severe and long-lasting neurological sequelae are
present in over 50% individuals who survive POW encephalitis [2]. In survivors with perma-
nent neurological damage, recurring headaches, wasting, hemiplegia, and memory impair-
ments are the major disease manifestations [3-6]. Although the number of reported POWV
human cases has increased in the past fifteen years, POWYV is one of the less studied human
pathogenic flaviviruses [2]. In recent years a heightened interest in POWYV has developed,
likely prompted by the apparent increase in human cases and by the discovery that two sepa-
rate genetic lineages of POWYV exist: Lineage I which is the POWYV prototype lineage and Line-
age II which is the Deer tick virus lineage [7-10].

POWYV is maintained in nature by an enzootic transmission cycle whereby Ixodes species
ticks transmit POWYV between small- to medium-sized rodents. In order for POWYV to persist
in nature, the ixodid tick vector must transmit the virus to a mammalian host during the tick
feeding process. To successfully attach to a host and acquire a blood meal, ticks have evolved
mechanisms to evade the host’s innate and adaptive immune responses. Successful tick feeding
and host immune evasion is facilitated by a collection of bioactive tick salivary factors which
are secreted into the feeding pool on the mammalian host’s skin. These pharmacologically
active salivary components include inhibitors of the pain/itch response, anticoagulants, anti-
platelet components, vasodilators, and immunomodulators [11-13]. Furthermore, the reper-
toire of tick salivary factors co-inoculated with a tick-borne virus can enhance viral
transmission and dissemination [14-16]. When tick saliva is co-inoculated with a low dose of
POWYV, all mice succumb to disease and display enhanced virus dissemination and accelerated
disease progression; however, mice that receive the same dose of POWYV in the absence of
saliva survive the infection [16]. Such findings suggest that tick saliva does more than simply
serve as a vehicle for POWYV transmission from the tick to a host, but instead creates a micro-
environment more suitable for POWYV establishment and disease development.

Although Ixodes species ticks will attach to a host and feed for several days, POWYV is trans-
mitted to the host very early during the tick feeding process. When a POWV-infected tick atta-
ches to a host and initiates feeding, the virus is transmitted via tick saliva to the host’s skin
within 3 hours of tick attachment [17-18]. Thus, during tick-borne virus transmission studies
it is crucial to design experiments that include very early time points post tick attachment. In
nature all tick-pathogen-host interactions initially occur at the cutaneous interface as the
infected tick attaches to the host’s skin and begins to blood feed [12]. Skin serves as a physical
barrier meant to protect the host from injury and infection. The array of skin cell populations
and the many molecular mediators of inflammation are together recognized as the “skin
immune system” [12,19]. As the primary line of defense between the body and environment,
the skin is the first mammalian organ that POWYV and tick saliva encounter on their journey
from the tick salivary glands to the host’s body.

Central to the successful transmission of a tick-borne pathogen are complex interactions
between the host immune response and early tick-mediated immunomodulation, all of which
initially occur at the skin interface. In our recent work, we examined the cutaneous immune

PLOS ONE | DOI:10.1371/journal.pone.0155889 May 20, 2016 2/11



@’PLOS ‘ ONE

POWYV Positive Cells at Tick-Skin Interface

gene expression during the early stages of POWV-infected Ixodes scapularis feeding [17]. After
three hours of POWV-infected tick attachment and feeding, cutaneous gene expression analy-
sis revealed a complex pro-inflammatory environment, which included significant upregula-
tion of genes related to granulocyte recruitment, migration, and accumulation [17]. The
present study serves to further investigate the cutaneous interface during early stages of
POWV-infected tick feeding. It utilizes an in vivo POWYV infection model and provides the
first report of what cell types are infected with POWYV at the feeding site of a POWV-infected
tick.

Materials and Methods
Ethics Statement

All experiments involving mice and infected ticks were conducted in arthropod containment
level 3 (ACL-3) facilities in strict accordance with an animal use protocol approved by the Uni-
versity of Texas Medical Branch (UTMB) Institutional Animal Care and Use Committee
(IACUC: # 0907054B).

Animals

The female BALB/c mice used in this study were obtained from The Jackson Laboratory (Bar
Harbor, ME). Mice were allowed to acclimate to the local environment before being incorpo-
rated into the experiments, at which point the mice were six weeks of age.

Tick infection and infestation on mice

I. scapularis nymphal ticks were synchronously infected with POWYV-LB strain as described in
our previous work [17]. The infected ticks were stored inside a desiccator at 26°C to allow repli-
cation of POWV. Uninfected ticks were synchronously mock-infected with DMEM media and
stored in the same manner. Four weeks post-synchronous infection the ticks were infested on
mice.

Capsules for containment of tick infestation were prepared as described previously [17].
One day prior to the tick infestation, the capsules were adhered to the dorsum of mice. On the
second day a single POWV-infected I. scapularis nymph was placed inside each mouse capsule
and allowed to feed for 3, 6, 12, or 24 hours (N = 4 mice per time point). Uninfected I. scapu-
laris nymphs were fed in the same manner to generate control samples. At 3, 6, 12, or 24 hours
after tick attachment (hours post infection, hpi) mice were euthanized with a 350 pL intraperi-
toneal injection containing 10 mg/mL ketamine (Fort Dodge Animal Health, Fort Dodge, IA)
and 1 mg/mL xylazine (Phoenix Pharmaceutical, St. Joseph, MO) in PBS followed by cervical
dislocation. Immediately following euthanasia, 4 mm punch skin biopsies were harvested
including the attached feeding tick.

Histopathology

The skin plus attached tick biopsies were formalin-fixed for a minimum of 48 hours in 10%
neutral buffered formalin. The samples were then treated with decal (Decal Chemical Corp,
Tallman, NY) for approximately 2 hours and paraffin embedded. The biopsy samples were par-
affin-embedded with an orientation that, upon sectioning, yielded a longitudinal section of the
tick mouthpart and a cross-section of the mouse skin [20].

5-um sections were cut from each paraffin-embedded sample, adhered to glass slides, and
then deparaffinized in xylenes. Decreasing concentrations of ethanol were used to rehydrate
the slides. For each paraffin-embedded skin plus tick biopsy, several sections underwent
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immunofluorescence (IF) staining in addition to hematoxylin-eosin (H&E) staining. H&E
staining was performed following standard protocols [21], and the sections were observed
under a light microscope. H&E stained tissue sections were evaluated in a randomized, blinded
manner by a board-certified dermatopathologist.

The tissue sections that underwent IF staining were subjected to antigen retrieval with a cit-
rate buffer target retrieval solution (DAKO, Carpinteria, CA) for 20 minutes with microwave
heating. After returning to room temperature the sections were treated for endogenous peroxi-
dase using BLOXALL (Vector Laboratories Inc., Burlingame, CA) for 10 minutes at room tem-
perature. Sections were photobleached inside a UV chamber for one hour followed by a 30
minute treatment with 0.5M glycine. Antigen blocking was performed for one hour at room
temperature with 5% goat serum (Sigma-Aldrich, St. Louis, MO). The following primary anti-
bodies were incubated for 30 minutes at room temperature: rabbit anti-POWYV pAb (provided
by Dr. David Beasley, UTMB), chicken IgY anti-F4/80 was used for macrophage staining (anti-
bodies-online, Atlanta, GA), and chicken IgY anti-vimentin was used for fibroblast staining
(ThermoFisher Scientific, Waltham, MA). Sections were then washed and the following sec-
ondary antibodies were incubated for 30 minutes at room temperature: goat anti-rabbit IgG
Alexa Fluor 647 conjugate (Life Technologies, Carlsbad, CA), goat anti-chicken IgY Alexa
Fluor 546 (Life Technologies, Carlsbad, CA). All serum and antibodies were diluted in PBS
with 1% BSA (ThermoFisher Scientific, Waltham, MA) and 0.1% Triton X100 (Sigma-Aldrich,
St. Louis, MO), pH 7.4. Sections were counterstained with DAPI (4’,6-diamidino-2-phenylin-
dole) (ThermoFisher Scientific, Waltham, MA) and Sudan Black B (Harleco, Gibbstown, NJ),
each for 10 minutes at room temperature. The mounted and sealed slides were imaged on an
Olympus BX61 fluorescence microscope using SlideBook software. To reduce natural and fixa-
tive-induced autofluorescence, the UV photobleaching and Sudan Black B steps were included
[22]. The uninfected sections generated from uninfected tick feeding sites were used as negative
controls to verify the specificity of the anti-POWYV primary antibody. To confirm that the sec-
ondary antibodies did not bind non-specifically to cellular components, secondary antibody
only (no primary antibody) controls were included.

Results and Discussion

To understand histopathological changes induced by the POWV-infected and uninfected tick
feeding, H&E staining was performed on sections from each biopsy that most clearly showed
entry of the tick hypostome into the skin. As the I. scapularis hypostome is relatively long com-
pared to that of other tick species it was not surprising to see it penetrate through the subder-
mal fat cells, sometimes reaching the skeletal muscle layer (Figs 1 and 2). Human skin has a
much thicker epidermis than mouse skin [23]; therefore, tick mouthparts, especially those of
immature ticks, are not likely to penetrate to the subdermal muscle layer in humans. One study
has compared mouse and human histology at the I. scapularis tick-skin interface [24].
Although there were a limited number of human skin biopsies in the study, the authors did not
detect a significant difference between the mouse and human skin biopsies. This suggests that
the immune response detected in our study is dependent on the skin immune system, not the
muscle.

Near the tick mouthpart longitudinal collagen fibers appeared disrupted, demonstrating the
mechanical damage caused by insertion of the serrated tick hypostome (Fig 1D). Although vas-
cular congestion was evident, no fibrin deposition or vasculitis was observed at any time point
(Figs 1 and 2).

The most distinct difference between the uninfected versus POWV-infected tick feeding
sites was observed at 3 hpi. The 3 hpi POWV-infected feeding sites had higher levels of cellular
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Fig 1. Histopathology of POWV-infected and uninfected Ixodes scapularis feeding sites, 3 and 6 hpi. Biopsies from tick
feeding sites were sectioned and stained with H&E as described in Materials and Methods section. (A). POWV-infected section
at 3 hpi. (B). Uninfected section at 3 hpi. (C). POWV-infected section at 6 hpi. (D). Uninfected section at 6 hpi. In panel A, the red
oval indicates the area with high levels of cellular infiltrates. In panels A, B, and D, the arrow is pointing to the tick hypostome. In
panel C, the arrow indicates where the tick hypostome was located prior to being dislodged during sectioning. Scale bars
represent 100 pm.

doi:10.1371/journal.pone.0155889.g001

infiltrates than the uninfected sites (mostly neutrophils and some mononuclear cells, Fig 1A),
particularly in the deep subdermal region and extending into the skeletal muscle. This observa-
tion correlates with data from our previous study where we performed a comparative gene
expression analysis between POWV-infected versus uninfected tick feeding sites at 3 and 6 hpi.
The previous study demonstrated that at 3 hpi in POWV-infected tick feeding sites, several
pro-inflammatory cytokines (IL1B, IL6, and IL36A) that influence the quantity of phagocytes
and neutrophils during the inflammatory response were significantly upregulated [17]. The tis-
sue sections in the present study support this finding, where the POWV-infected tick feeding
sites had numerous mononuclear cell and neutrophil infiltrates at 3 hpi (Fig 1). Furthermore,
at 6 hpi, both the uninfected and the POWV-infected sections had scattered neutrophil and
mononuclear cell infiltrates which were less than the cellular infiltrates observed in the 3 hpi
POWV-infected sections (Fig 1). This 6 hpi finding also correlates with the gene expression
analysis which showed the majority of significantly modulated genes at 6 hpi to be
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Fig 2. Histopathology of POWV-infected and uninfected Ixodes scapularis feeding sites, 12 and 24 hpi. Biopsies from tick
feeding sites were sectioned and stained with H&E as described in Materials and Methods section. (A). POWV-infected section
at 12 hpi. (B). Uninfected section at 12 hpi. (C). POWV-infected section at 24 hpi. (D). Uninfected section at 24 hpi. In panels A,
B, C, and D, the arrow is pointing to the tick hypostome. Scale bars represent 100 um.

doi:10.1371/journal.pone.0155889.9002

downregulated including several proinflammatory cytokines associated with the inflammatory
response reaction [17].

Our prior cutaneous gene expression analysis focused on the 3 and 6 hpi time points at the
POWYV-skin-tick interface; however, the present study extended the timeline to 24 hpi. At 12
hpi and 24 hpi, both the uninfected and the POWV-infected sections had mononuclear cells,
neutrophils, and fibroblasts present in the sub-muscular layer (Fig 2). Lymphocytes were also
present at 24 hpi in both infection conditions, but plasma cells were not found at any time
point. The main difference between the early time points versus the 12 and 24 hpi time points
was that enlarged fibroblasts were detected in the sub-muscular region, indicating that at 12
and 24 hpi the wound healing process was underway. Across all four time points the greatest
level of cellular infiltrates was observed at the POW V-infected tick feeding site at 3 hpi.

In parallel with the H&E analysis, we also pursued IF detection of POWYV positive cells at
the tick feeding site. POWV-infected cells were detected at the tick feeding site using a poly-
clonal antibody specific to the POWV E glycoprotein. Anti-F4/80 and anti-vimentin antibodies
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were used to detect macrophages and fibroblasts, respectively [25-27]. At 3 and 6 hpi, POWV
was detected near the tick feeding site in macrophages and fibroblasts (Fig 3). At 12 and 24 hpi
POWYV-infected macrophages and fibroblasts were also detected with IF (Fig 4). As shown in
Figs 3 and 4 by the closed arrowheads, other cell types that were not macrophages or fibroblasts

Merged / DAPI POWV Macrophages

POWV-infected section-3 hpi Q)

POWV-infected section - 6 hpi

. Merged / DAPI POWV Fibroblasts

POWV-infected section - 3 hpi U

POWV-infected section - 6 hpi

Fig 3. Inmune cells detected at the POWV-infected Ixodes scapularis feeding sites, 3 and 6 hpi. (A). Images of skin at the
POWV-infected tick feeding site where macrophages are shown in orange and POWV-infected cells are shown in red. The F4/80
marker was used for macrophage detection. (B). Images of skin at the POWV-infected tick feeding site where fibroblasts are shown
in orange and POWV-infected cells are shown in red. The vimentin marker was used for fibroblast detection. Scale bars represent
10 ym. DAPI (4’,6-diamidino-2-phenylindole) was used for nuclear counterstaining. Open arrowheads indicate POWV-infected
macrophages or POWV-infected fibroblasts. Closed arrowheads indicate other cells that are POWV-infected but that are not
macrophages or fibroblasts.

doi:10.1371/journal.pone.0155889.9003
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Fig 4. Inmune cells detected at the POWV-infected Ixodes scapularis feeding sites, 12 and 24 hpi. (A). Images of skin at the
POWV-infected tick feeding site where macrophages are shown in orange and POWV-infected cells are shown in red. The F4/80
marker was used for macrophage detection. (B). Images of skin at the POWV-infected tick feeding site where fibroblasts are shown
in orange and POWV-infected cells are shown in red. The vimentin marker was used for fibroblast detection. Scale bars represent
10 uym. DAPI (4',6-diamidino-2-phenylindole) was used for nuclear counterstaining. Open arrowheads indicate POWV-infected
macrophages or POWV-infected fibroblasts. Closed arrowheads indicate immune cells that are POWV-infected but not
macrophages or fibroblasts.

doi:10.1371/journal.pone.0155889.g004
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stained positive for POWYV, suggesting that POWYV is capable of infecting additional cell types
that were not screened for in this study.

The majority of our knowledge of arthropod-borne flavivirus transmission and pathogene-
sis is based on the results of needle-inoculated, relatively high doses of virus into laboratory
strain animals, followed by viral load detection in various tissues. The present study is unique
in that it employs a natural route of POWYV delivery to the host by using infected I. scapularis
ticks, a competent vector species for POWV [28]. Compared to research on POWYV, more
work has been conducted with other tick-borne flaviviruses such as Langat virus (LGTV) and
Tick-borne encephalitis virus (TBEV). Specifically, molecular virology studies have examined
the TBEV replication cycle and molecular determinants of neurovirulence and neuroinvasive-
ness [29]. In recent years research has begun to investigate the host immune response during
TBEV and LGTV infection [30]. Prior to our gene expression analysis at the POWV-infected
tick feeding site [17], no research had examined the early cutaneous immune response during
tick-borne flavivirus transmission in vivo. The present study expands our previous work by
identifying cell types that are infected with POWV at the feeding site of a POWV-infected tick,
allowing us to generate a more detailed picture of the early stages of POWYV transmission.

It is generally accepted that the skin is the initial infection site for arthropod-borne flavivi-
ruses. For flaviviruses such as TBEV, LGTV and Dengue virus, resident dendritic cells have
been shown to be among the first immune cells to express viral antigen in the skin [31-32].
Infected dendritic cells are believed to transport the flavivirus to nearby draining lymph nodes,
and viral replication in these tissues leads to viremia and systemic infection [31]. Our study
demonstrated that macrophages present at the tick feeding site are an early target cell for
POWYV infection. Although identifying dendritic cells was beyond the scope of this work, it
will be an aim in our future studies as it will enable us to make further comparisons to the pre-
ceding work conducted with other arthropod-borne flaviviruses.

Conclusions

In conclusion, this is the first report demonstrating that macrophages and fibroblasts contain
POWYV antigens, which suggests that they are early targets of infection at the tick feeding site.
These data provide key insights towards defining the complex interactions between the host
immune response and early tick-mediated immunomodulation. In our prior work, we exam-
ined the cutaneous immune gene expression during the early stages of POWV-infected tick
feeding by conducting a comparative analysis between POWV-infected and uninfected tick
feeding sites. In the presence of POWV-infected tick feeding, IL1B, IL6, IL36A, TLR4, and
CCR3 were all significantly upregulated at 3 hpi [17]. Each of these genes helps establish the
proinflammatory environment, which is generated by the increased recruitment, migration,
and accumulation of immune cells. Thus, we postulated that immune cells are recruited earlier
to the feeding site of a POWV-infected tick versus an uninfected tick [17]. The present study
substantiates this assertion, where histopathology demonstrates that neutrophil and mononu-
clear cell infiltrates were recruited earlier to the feeding site of a POWV-infected tick versus an
uninfected tick. Further research must be conducted to define what role, if any, macrophages
and fibroblasts play in the early establishment of POWYV infection. Future work will aim to
determine which component of the tick-virus-host triad triggers such a rapid and early host
immune response, or whether this is a cuamulative effect of all components.
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