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Abstract

Heat shock proteins are chaperonic proteins, which are present in every domain of life.
They play a crucial role in folding/unfolding of proteins, their sorting and assembly into multi-
protein complex, cell cycle control and also protect the cell during stress. Considering the
fact that no web-based predictor is available for simultaneous prediction and classification
of HSPs, it is imperative to develop a method, which can predict and classify them effi-
ciently. In this study, we have developed coupled amino acid composition and support vec-
tor machine based two-tier method, PredHSP that identifies heat shock proteins (1% tier)
and classifies it to different families (at 2" tier). At 15 tier, we achieved maximum accuracy
76.66% with MCC 0.43, while at 2" tier we achieved maximum accuracy 96.36% with MCC
0.87 for HSP20, 91.91% with MCC 0.83 for HSP40, 95.96% with MCC 0.72 for HSP60,
91.87% with MCC 0.71 for HSP70, 98.43% with MCC 0.70 for HSP90 and 97.48% with
MCC 0.71 for HSP100. We have also developed a webserver, as well as standalone pack-
age for the use of scientific community, which can be accessed at http://14.139.227.92/
mkumar/predhsp/index.html.

Introduction

Heat shock proteins (HSPs) are stress-induced proteins, ubiquitously found in all organisms,
ranging from bacteria to human. They are one of the largest groups of molecular chaperones
that assist in correct folding of partially folded or denatured proteins. Depending on the molec-
ular weight and core functions, six major families of HSPs have been reported: (i) HSP20 or
small heat shock proteins (sHsp), (ii) Hsp40 or J-class proteins, (iii) Hsp60 or chaperonins, (iv)
Hsp70, (v) Hsp90, and (vi) Hsp100/ClpB protein [1, 2]. HSPs play a vital role in cellular stress
response against unfavourable environmental condition like physical (temperature elevation)
or chemical (increase or decrease in pH, salinity, or oxygen concentration). To protect the cell
from the destructive effects of stress, HSPs promote attainment of functional conformation

of partially denatured proteins [3]. The activities of stress proteins are not limited to the
chaperoning of other proteins but also includes other functions, like, modulation of their own
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synthesis [4], regulation of the stress kinase JNK [5], participation in signal transduction path-
ways [6] and in rRNA processing [7]. Due to the wide range of functional activities, malfunc-
tioning of HSPs leads to a number of life-threatening diseases that includes Parkinson’s disease
[8], Alzheimer’s disease [9], cardiovascular diseases [10] and cancer [11].

Due to availability of rapid and relatively inexpensive genome sequencing technologies, a
large number of protein sequences are continuously added into the databases. A major fraction
of these sequences are not annotated. Considering the time and resources involved in experi-
mental annotations, these sequences are very unlikely to be annotated in the near future. This
makes computational pipelines an ideal choice for annotation due to their inexpensive and
high throughput nature. Considering the importance of HSPs in cellular metabolism and num-
ber of un-annotated sequences in the databases that might be HSPs, development of computa-
tional method to identify HSPs and classify their family only on the basis of primary protein
sequence will have a far reaching effect. Two attempts have already been made by (i) Feng et al.
[1] and (ii) Ahmad et al. [12] regarding HSP protein annotation but only for their classification
into different HSP families. But methods have following shortcomings; (i) they do not have
provision for classifying HSP family without first verifying that query proteins is HSP or not,
(ii) method developed by Ahmad et al. [12], does not provide any web based tool or standalone
software for the prediction purpose.

Here, we describe PredHSP to address the shortcomings of existing methods. PredHSP is
capable to predict HSP and also its different families. It is based on coupled amino acid compo-
sition (CAA) based sequence encapsulation as input and support vector machine (SVM) as the
prediction machine.

Materials and Methods
Data Source

Training Dataset. To develop PredHSP, we used the same dataset recently reported to
develop iHSP-PseRAAAC [1]. The dataset was originally derived from HSPIR database [2].
Further they removed the sequences having >40% sequence similarity within the same subset
by using CD-HIT [13], and obtained 2225 sequences from different HSP families (Table 1).
10000 non-HSP sequences were also randomly picked from SwissProt keeping in mind that no
two sequences are homologous. During training HSP sequences were used as positive dataset
while non-HSP sequences were used as negative dataset.

Independent Dataset. We built two independent datasets having sequences of different
HSP families (Table 2): i) an HGNC dataset [14] having 95 human HSPs (collected from
HUGO Gene Nomenclature Committee (HGNC) database), ii) a mixed dataset of 55 rice
HSPs. For mixed dataset HSPs reported in two different research papers were used: 31 HSPs

Table 1. Protein distribution in training dataset.

HSP Family Description Number of proteins
HSP20 sHSP/Small HSP 357
HSP40 DnaJ-class proteins 1279
HSP60 GroEL/ES or chaperonins 163
HSP70 DnaK/chaperones 283
HSP90 Chaperonines 58
HSP100 High Molecular Weight HSP 85
Total 2225
Non-HSP — 10,000

doi:10.1371/journal.pone.0155872.1001
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were obtained from Wang et al [15] and 24 HSPs of single family, namely HSP70, were
obtained from Sarkar et al [16].

Genome Wide Prediction of HSPs

We downloaded nine different proteomes from Uniprot, one was from archaea (Methanother-
mobacter thermautotrophicus), two were from prokaryotes (Escherichia coli, Mycobacterium
tuberculosis) and six were from eukaryotes that included common baker yeast (Saccharomyces
cerevisiae), plants (Arabidopsis thaliana, Oryza sativa), and animals (Caenorhabditis elegans,
Drosophila melanogaster, Homo sapiens). Using PredHSP annotation pipeline we predicted the
HSPs and annotated their family at proteome level. The total number of proteins were 1868,
4305, 3993, 6721, 31480, 37386, 26612, 22006, 70076 in Methanothermobacter thermautotro-
phicus, Escherichia coli, Mycobacterium tuberculosis, Saccharomyces cerevisiae, Arabidopsis
thaliana, Oryza sativa, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens
respectively.

Prediction Schema

Considering the heterogeneous nature of HSPs, generally multi-class classification approach is
being used to predict various HSP families. Multi-class classification-based predictors assume
that the input/query sequence(s) belong(s) to the same class whose sub-class is to be predicted.
This assumption might work during training, which is being done on a curated data but in reality
or during blind prediction, a non-class member may be used as a query protein, which may
cause the wrong prediction as a class member to which it did not belong. To reduce the likelihood
of wrong classification, we adopted a two-tier approach. At 1* tier, non-HSPs were filtered out
and only HSP sequences were passed to the 2" tier where the family was predicted (Fig 1).

Support Vector Machine

Support vector machine is one of the popular classifiers [17] used for development of many
bioinformatics prediction methods [18-20]. We used SVM_light package [21] in this work.

SVM Model Generation

In order to develop 1*' tier of predictor, which can discriminate HSPs from non-HSPs, we
developed the SVM model from 10,000 non-HSPs and 2,225 HSPs, which was labelled as nega-
tive and positive dataset respectively. For 2" tier, which is a multi-class classification problem, a

Table 2. Distribution of HSPs across different families in independent datasets. HGNC dataset con-
tains human HSPs obtained from HGNC [14] and mixed dataset contains rice HSPs obtained from Wang et al
[15] and Sarkar et al [16].

HSP family Number of Proteins
HGNC Dataset Mixed Dataset
Wang et al Sarkar et al

HSP20 11 14 —
HSP40 49 — —
HSP60 14 4 —
HSP70 17 7 24
HSP90 4 3 —
HSP100 — 3

Total 95 31 24

doi:10.1371/journal.pone.0155872.t002
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Fig 1. Flow chart to show the prediction schema of HSPs and its families.

doi:10.1371/journal.pone.0155872.g001

series of binary classifiers were developed. Each classifier was capable to predict heat shock pro-
teins of a particular family. Classifiers used for HSP class prediction were actually SVM models,
trained on the HSPs only (Table 1). During training all proteins of the family, for whose predic-
tion the SVM model was being generated, were labelled positive and proteins of remaining fami-
lies were labelled negative. Same approach has been used in a number of earlier studies like
prediction of sub-cellular localization [18, 22, 23], B-lactamase and its class prediction [19], G-
protein coupled receptors [24], nuclear receptor protein sub-family prediction [20, 25-27].

Cross-Validation and Performance Evaluation

Cross-validation is a way to estimate the performance of a prediction model during training. It
is done on a dataset, which is not used during training. It involves partitioning of data into
multiple sub-sets, performing the analysis on one sub-set (called training set), and validating
the analysis on other sub-set (called testing set). The former process is called as training while
the later as testing. To reduce variability in performance due to sample partition, multiple
rounds of cross-validations were performed using different data partitions and the final result
was obtained after averaging the results of all partitions. In the present work five-fold cross val-
idation (FFCV) and leave-one-out cross validation (LOOCV), also named as jack-knife
approach was used during 1*' and 2™ tier respectively.

PLOS ONE | DOI:10.1371/journal.pone.0155872 May 19, 2016 4/13
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FFCV divides whole dataset into five sub-sets. Each sub-set consists of one-fifth of HSP and
one-fifth of non-HSP. In each cycle of training four sub-sets were combined to make training
set and the remaining one sub-set was used for testing. This process was repeated five times so
that each sub-set was used once for testing. LOOCV partitions entire data into multiple train-
ing and test set pairs, whose number is equal to the number of sequences in dataset. In each
pair, training set contains all except one sequence, while testing set contains the remaining one.
During 1* tier, since we had to train a large data with 12,225 sequences, FFCV approach was
used. Using LOOCV on a dataset composed of a large number of sequences is time consuming
as total number of training-test pairs generated during LOOCYV is equal to the total number of
sequences used. For the 2™ tier of prediction where we had relatively small data from each
HSP family, LOOCV approach of training was used. At a selected parameter, SVM model was
generated using the training set and performance was evaluated on corresponding test set. On
the basis of actual and predicted state, each prediction was classified into four distinct catego-
ries: true positive (TP), true negative (TN), false positive (FP), and false negative (FN). For bet-
ter explanation, we describe them in context of prediction schema.

At tier 1, TP represents the number of proteins, which are actually HSPs and also predicted
as HSPs. TN represents the number of proteins which are actually non-HSPs and also pre-
dicted as non-HSPs. FP is number of non-HSPs, predicted as HSPs while FN is number of pro-
teins which are actually HSPs but predicted as non-HSPs (Fig 2). In tier 2, since the
classification was done to predict the family of a known HSP, the meaning of TP, TN, FP and
EN have also changed accordingly. For a hypothetical family X, TP is the number of correctly
predicted sequence that belongs to family X; TN is the number of non-family member also pre-
dicted as not a member of family X; FP is the number of sequences wrongly predicted to belong
to family X while FN is the number of sequences which actually belongs to family X but pre-
dicted as non-family protein (Fig 2).

Above-mentioned four prediction indices were used to calculate three additional parameters
namely, sensitivity, specificity and accuracy. A sensitivity of 100% implies that the classifier
identifies all HSPs and their family correctly. Specificity of 100% means all non-HSPs and non-
family members were correctly predicted. Accuracy presents overall picture and shows how
well the classifier distinguishes true positives and true negatives in entire prediction. 100%
accuracy denotes a perfect prediction.

Sonsitivit ™ . 100 (1)

ensivity = —————

’TTPYEN

TN

Specificity — — N 5 100 2
pecificily = N Fp ?

TP+ TN
4 _ x 100 3
ccuracy TP+ FP + TN + FN ©)

HS;RED'CTE“ A:on-HSP Class ;REDICTEnn::-class X

Fig 2. Schematic illustration of categorization of prediction into different categories.

doi:10.1371/journal.pone.0155872.9002
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Another criterion used for the prediction evaluation was Matthew’s correlation coefficient
(MCCQ), which takes over- and under-predictions into account [28]. MCC = 1 denotes a perfect
prediction, MCC = 0 indicates a completely random assignment, and MCC = -1 means a
completely reverse prediction. MCC is defined as follows:

(TP x TN) — (FP x FN)

MCC =
\/(TP + FP) x (TP + FN) x (TN + FP) x (TN + FN)

Input Feature Encoding

Any SVM based prediction method requires a fixed length input. In order to extract

fixed length vector from the protein sequences of different lengths, a number of encoding
methods have been used to represent different forms of amino acid compositions viz., dis-
crete amino acid composition (AA) [20, 29], pseudo amino acid composition (PseAA) [19,
30], coupled amino acid composition [20, 31] and split amino acid composition (SAA) [18,
32]. In this work, we used discrete amino acid composition and coupled amino acid composi-
tion to encode variable length protein sequence information into fixed length input to train
SVM.

Discrete Amino Acid Composition. Discrete amino acid composition is the most popular
and simplest way to represent a protein sequence. It is the fraction of each amino acid present
in a protein sequence. Hence it encapsulates a protein sequence in a vector of 20 dimensions. It
is calculated using the expression:

comp(i) = % x 100 (5)

Where, comp(i) is the amino acid composition of residue type Ri and N is the total number of
amino acids.

Coupled Amino Acids Composition. One of the main drawbacks of discrete amino acid
composition is that it only uses total amino acid information but ignores the local order infor-
mation of amino acids in the protein. In order to incorporate the local sequence order informa-
tion along with amino acid compositions, coupled amino acid composition was also used as
input. The coupled amino acid composition provides a fixed pattern length of 400. It is calcu-
lated using following expression:

M,
Coupled AA(j) = —— x 100 (6)

coupled AA

Where, Coupled AA(j) = coupled amino acid composition of residue type Mj; j = 1 to 400 and
Neoupled a4 is the total number of possible coupled amino acid composition.

Results and Discussion
Amino Acid Composition Analysis

In order to analyse the general trend of amino acids in heat shock proteins and in their families,
we performed amino acid composition analysis using Composition Profiler [33]. Statistical sig-
nificance of analysis was estimated at P-value < 0.05. Composition Profiler calculates the frac-
tional difference between the distributions of a particular amino acid (say aa) in two different
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Fig 3. Relative enrichment and depletion of amino acids in HSP and their families with reference to non-HSP and other HSP families respectively.
(3a) HSPs vs. Non-HSPs; (3b) HSP20 vs. remaining HSP family; (3c) HSP40 vs. remaining HSP family; (3d) HSP60 vs. remaining HSP family; (3e) HSP70
vs. remaining HSP family; (3f) HSP90 vs. remaining HSP family; (3g) HSP100 vs. remaining HSP family.

doi:10.1371/journal.pone.0155872.g003

samples (X and Y) as follows:

Xaa — Yaa
Yaa

(7)

Fractional difference =

The fractional difference determines the relative enrichment/depletion of aa in query sam-
ple X, against the aa in background sample Y.

To analyse the behaviour of amino acids in heat shock proteins, we used all HSPs of the
training dataset as query while all non-HSPs were used as background sample. The result
shows that the HSPs were enriched with charged (both positive and negative) and polar resi-
dues but depleted of hydrophobic and aromatic residues (Fig 3A).

At 2™ level i.e. at family level, one family of HSPs was used as query group and remaining
all families were together used as background. For example, to analyse the amino acid enrich-
ment and depletion pattern of HSP20, sequences belonging to HSP20 were used as query
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sample and remaining sequences (belonging to the HSP40, HSP60, HSP70, HSP90 and
HSP100) were used as background.

In HSP20 family (Fig 3B), the distribution of negative charged residues were high while aro-
matic as well as hydrophobic amino acid residues was low. In HSP40 family (Fig 3C), distribu-
tion of aromatic, polar and positively charged residues were high while hydrophobic amino
acid residues were low. In HSP60 family (Fig 3D), the distribution of aromatic, charged (both
positive and negative charged) and polar residues were low. In HSP70 (Fig 3E), aromatic resi-
dues, positively charged residues and polar residues were depleted while negatively charged res-
idues and hydrophobic residues were enriched. In HSP90 (Fig 3F), aromatic content,
negatively charged residues and polar residues were enriched while positively charged residues
were not significant. In HSP100 family (Fig 3G), hydrophobic residues were enriched, aromatic
content and polar residues were depleted and charged residues (positively as well as negatively
charged) were not significant.

Performance of SVM during Cross Validation

1* tier of Prediction
Using FFCV and discrete amino acid composition as SVM input, we were able to achieve
72.98% overall accuracy with MCC 0.34. When coupled amino acid composition was used as
input, the overall accuracy increased to 76.66% while MCC rose to 0.43 (Table 3). The result
clearly shows that coupled amino acid composition based model performed better than discrete
amino acid composition based model.

2" tier of Prediction
At 2™ tier, the prediction was done to identify the family to which an HSP (predicted as 1°
tier) might belong. Similar to the 1* tier, coupled amino acid composition based SVM model
achieved higher accuracy than discrete amino acid composition in each family (Table 4).

Receiver Operating Characteristics Curve Analysis. Receiver operating characteristics
(ROC) curve is a plot between sensitivity and false positive rate [34]. It shows the trade-off
between sensitivity and specificity and can be used as a measure to assess the performance of a
classifier. The area under the ROC curve is called AUC value [35], which quantifies the perfor-
mance of the classifier. Higher AUC value shows better prediction. If AUC value reaches 1, it
shows perfect prediction. We used ROCR package [36] to plot ROC curves and to calculate
AUC values. ROC curve and AUC values of tier 1 and tier 2 SVM models also suggested that
coupled amino acid composition was a better choice over the discrete amino acid composition
(Fig 4, Table 4). Hence in further work, we used coupled amino acid composition based SVM
models for the prediction of HSP and its families and termed it as pred HSP.

Comparative Performance vis-a-vis Existing Methods

It is important to compare the performance of a newly developed prediction method vis-a-vis
the existing one. The method developed by Ahmad et al. [12] does not provide any family wise

Table 3. Performance of discrete amino acid and coupled amino acid composition based SVM models during FFCV at 15t tier.

Discrete Amino Acid Composition Coupled Amino Acid Composition
Sens Spec Accu MCC AUC Para Sens Spec Accu MCC AUC Para
66.69 74.39 72.98 0.34 0.77 -zc-j5-t2-g0.01 74.45 7717 76.66 0.43 0.84 -zc-j7-t1-d2

Sens, Spec, Accu, MCC, AUC and Para represents sensitivity, specificity, accuracy, Matthew’s correlation coefficient, area under ROC curve and
SVM_light learning parameters on which performance was achieved respectively. All values except MCC and AUC are expressed in percentage.

doi:10.1371/journal.pone.0155872.1003
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Table 4. Performance of discrete amino acid and coupled amino acid composition based SVM models during LOOCV at 2" tier.

HSP Family Discrete Amino Acid Composition Coupled Amino Acid Composition
Sens Spec Accu MCC AUC Para Sens Spec Accu MCC AUC Para

HSP20 84.87 86.24 86.02 0.60 0.96 -zc—j7t2—-g0.005 92.16 97.16 96.36 0.87 1.00 -zc-j4-t2-g0.005
HSP40 86.55 84.88 8584 0.71 0.94 -zc-j1t1-d4 96.09 86.26 9191 0.83 0.99 -zc-j1-t2-g0.0005
HSP60 84.05 8565 8553 046 0.95 -zc-j9t1-d5 79.75 9724 9596 0.72 1.00 -zc-j10-t1-d3
HSP70 84.81 8373 8387 053 0.92 -zc-j5t1-d5 9117 9197 9187 0.71 1.00 -zc-j6-t1-d2
HSP90 8276 8325 8324 027 092 -zc-j22t2-g0.0005 7241 99.12 9843 0.70 1.00 -zc-j20-t2-g0.0005
HSP100 88.24 89.02 8899 043 0.97 -zc-j37t1-d5 82.35 98.08 97.48 0.71 1.00 -zc-j19-t2-g0.0005

Sens, Spec, Accu, MCC, AUC and Para stand for sensitivity, specificity, accuracy, Matthew’s correlation coefficient, area under ROC curve and SVM_light
parameter respectively. All values except MCC and AUC are expressed in percentage.

doi:10.1371/journal.pone.0155872.t004

performance of HSP class prediction. So we compared the performance of PredHSP only with
the method developed by Feng et al. and which was named as iHSP-PseRAAAC [1]. It was
developed by using the 2,225 HSPs and the reduced amino acid composition as the input to
classify a query protein into one of the six families of HSPs. In their paper, Feng et al. [1]
described performance of five different types of reduced amino acid compositions namely (CP
(13), CP(11), CP(9), CP(8) and CP(5)). Among all five modes, CP(11) was reported to have
maximum performance. Hence we have compared performance of PredHSP with the perfor-
mance of model developed using CP(11). We were able to compare our results for 2" tier
SVM models only because iHSP-PseRAAAC only reported classification performance of six
families as it was not intended to differentiate between HSP and non-HSP sequences.

Table 5 shows the jackknife success rate of identification in iHSP-PseRAAAC and PredHSP.
The comparison clearly shows that the performance of PredHSP is better than iHSP-PseR-
AAAC both in terms of sensitivity and specificity. The higher success rate of PredHSP also

SE o _| — ;
© o)
= e — HSP20 AA
L o — HSP40 AA
N £ —— HSP60 AA
o 24 o 3 HSP70 AA
= = HSP90 AA
8 < | g < | HSP100 AA
s s <y HSP20 CAA
= o I HSP40 CAA
N L T I | HSP60 CAA
e —_ e HSP70 CAA
_____ HSP CAA 5 HSP90 CAA
2 34 HSP100 CAA
I I I I | | I | | [ I I
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate

Fig4. ROC curve of SVM models based on amino acid and coupled amino acid composition for prediction of (4a) HSPs and (4b) different families
of HSPs. Solid line represents discrete amino acid composition (AA) while broken represents coupled amino acid composition (CAA) based SVM model.

doi:10.1371/journal.pone.0155872.9004
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Table 5. Comparison of performance of PredHSP with iHSP-PseRAAAC at 2" tier.

HSP Family iHSP-PseRAAAC/PredHSP
Sensitivity Specificity MCC
HSP20 87.68/92.16 96.36/97.16 0.82/0.87
HSP40 95.31/96.09 84.87/86.26 0.99/0.83
HSP60 66.87/79.75 98.93/97.24 0.69/0.72
HSP70 79.15/91.17 86.54/91.97 0.54/0.71
HSP90 51.72/72.41 99.89/99.12 0.30/0.70
HSP100 69.41/82.35 99.84/98.08 0.83/0.71

doi:10.1371/journal.pone.0155872.t005

shows that coupled amino acid composition encapsulates protein sequence attributes better
than the simple/discrete as well as reduced amino acid composition.

There are two additional advantages of PredHSP over iHSP-PseRAAAC (i) unlike iHSP-P-
seRAAAC, PredHSP does not necessarily require only known HSP as query as it is capable to dis-
criminate between HSPs and non-HSPs with very high accuracy and (ii) PredHSP has shown
better performance than iHSP-PseRAAAC. It is anticipated that PredHSP become a useful high
throughput tool in speeding up identification and classification of heat shock proteins.

Performance of PredHSP on Independent Datasets

We also benchmarked the performance of PredHSP on two different datasets belonging to
human (HGNC dataset) and rice (mixed dataset) respectively. In human HSPs, among 11 pro-
teins of HSP20, PredHSP predicted only 2 as non-HSP and 1 HSP20 protein was classified to a
wrong family (HSP40). Out of 49 proteins of HSP40 belonging to human, PredHSP predicted
only 4 as non-HSP hence there were no misclassification. Among 14 HSP60 proteins, PredHSP
predicted 4 HSPs as non-HSPs while 1 was predicted in wrong family (HSP70). For other two
HSPs i.e., HSP70 and HSP90, there was no wrong prediction.

The proteins of different families of rice HSPs were obtained from [15] and [16]. Out of 14
HSP20, PredHSP predicted only 2 proteins as non-HSPs, while for HSP60, HSP70, HSP90 and
HSP100, PredHSP did not give any false prediction (Table 6). PredHSP gave 23 true prediction
as HSP70 while only one protein was misclassified as HSP20 from the proteins obtained from
Sarkar et al [16].

Table 6. Performance of PredHSP on human HSPs obtained from HGNC [14] and rice HSPs obtained from Wang et al. [15] and Sarkar et al. [16].
TP represents true prediction and FP represents false prediction.

Source—

HSP

Class

HSP20
HSP40
HSP60
HSP70
HSP90
HSP100
Total

Total

11
49
14
17
4

95

Rice
HGNC Database Wang et al. Sarkar et al.

TP FP Total TP FP Total TP FP

8 3 (2-non-HSP, 1-HSP40) 14 12 2 (non-HSP) — — —

45 4 (non-HSP) = = = = = =

9 5 (4 non-HSP, 1-HSP70) 4 4 0 = = =

17 0 7 7 0 24 23 1 (HSP20)
4 0 3 3 0 = = =

— — 3 3 0 — —

83 12 31 29 2 24 23 1

doi:10.1371/journal.pone.0155872.1006
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Table 7. Genome wide annotation of heat shock proteins in different organisms.

Organism

M. thermautotrophicus (1868)
E. coli (4305)
M. tuberculosis (3993)
S. cerevisiae (6721)
A. thaliana (31480)
O. sativa (37386)
C. elegans (26612)
D. melanogaster (22006)
H. sapiens (70076)

doi:10.1371/journal.pone.0155872.t007

Total number of HSP HSP20 HSP40 HSP60 HSP70 HSP90 HSP100

43 8 9 5 13 1 7
51 8 22 3 15 2 1
123 15 42 5 42 2 17
145 12 82 9 30 6 6
814 137 406 70 149 19 33

2192 324 1212 158 403 11 84
556 94 252 54 125 13 18
331 62 172 24 61 4 8
979 225 539 57 113 16 29

Genome Wide Identification of HSPs

Since HSPs are present in all the three domains of life, thus we selected nine different proteome
from archaea, prokaryotes and eukaryotes for annotation. We found 43 HSPs in M. thermauto-
trophicus, 51 in E. coli, 123 in M. tuberculosis, 145 in S. cerevisiae, 814 in A. thaliana, 2192 in
O. sativa, 556 in C. elegans, 331 in D. melanogaster and 979 in H. sapiens (Table 7). The results
clearly show that both plant species included in our study i.e., Arabidopsis and Oryza contains
higher percentage of HSPs than other organisms which might be due the fact that plants toler-
ate extra abiotic stresses such as heat, drought, salinity, chemical toxicity, extreme temperature,
oxidative stress and biotic stresses such as pathogen infection, insect attacks and other human
activities [37, 38] etc. due to their immobile nature.

Webserver

We have also established a webserver for the use of PredHSP by scientific community. It is
freely available at http://14.139.227.92/mkumar/predhsp/index.html. A standalone version of
PredHSP is also available at the above-mentioned link, which can be used to handle large data.

Conclusions

HSPs are one of the largest groups of chaperones, which play a key role in protein folding and
unfolding. In this work, we reported a SVM based two-tier prediction method, PredHSP, to
identify HSPs and their families namely HSP20, HSP40, HSP60, HSP70, HSP90, and HSP100.
Discrete amino acid composition and coupled amino acid composition were used as SVM
input, however the later (check spelling) performed better at both levels. This may be due to
the fact that discrete amino acid composition does not have the sequence order information.
Performance results show that PredHSP is more efficient than the existing HSP classifier,
iHSP-PseRAAAC. It is anticipated that PredHSP would be useful for high throughput predic-
tion of HSPs prediction and would aid in basic research as well as in drug development.
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