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Abstract

Dysregulated lipid metabolism contributes to cancer progression. Our previous study indi-
cates that long-chain fatty acyl-Co A synthetase (ACSL) 3 is essential for lipid upregulation
induced by endoplasmic reticulum stress. In this report, we aimed to identify the role of ACSL
family in cancer with systematic analysis and in vitro experiment. We explored the ACSL
expression using Oncomine database to determine the gene alteration during carcinogenesis
and identified the association between ACSL expression and the survival of cancer patient
using PrognoScan database. ACSL1 may play a potential oncogenic role in colorectal and
breast cancer and play a potential tumor suppressor role in lung cancer. Co-expression analy-
sis revealed that ACSL1 was coexpressed with MYBPH, PTPRE, PFKFB3, SOCS3 in colon
cancer and with LRRFIP1, TSC22D1 in lung cancer. In accordance with PrognoScan analy-
sis, downregulation of ACSL1 in colon and breast cancer cell line inhibited proliferation, migra-
tion, and anchorage-independent growth. In contrast, increase of oncogenic property was
observed in lung cancer cell line by attenuating ACSL1. High ACSL3 expression predicted a
better prognosis in ovarian cancer; in contrast, high ACSL3 predicted a worse prognosis in
melanoma. ACSL3 was coexpressed with SNUPN, TRIP13, and SEMA5A in melanoma.
High expression of ACSL4 predicted a worse prognosis in colorectal cancer, but predicted
better prognosis in breast, brain and lung cancer. ACSL4 was coexpressed with SERPIN2,
HNRNPCLA1, ITIH2, PROCR, LRRFIP1. High expression of ACSLS5 predicted good prognosis
in breast, ovarian, and lung cancers. ACSL5 was coexpressed with TMEM140, TAPBPL,
BIRC3, PTPRE, and SERPINB1. Low ACSLS6 predicted a worse prognosis in acute myeloid
leukemia. ACSL6 was coexpressed with SOX6 and DARC. Altogether, different members of
ACSLs are implicated in diverse types of cancer development. ACSL-coexpressed molecules
may be used to further investigate the role of ACSL family in individual type of cancers.
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Introduction

Cancer is a leading cause of death worldwide. Many physiological conditions, such as hypoxia,
reactive oxygen species (ROS) and metabolic dysfunction, contribute to the cancer progression
[1-3]. Fatty acids are important fuel for cell growth and are essential components of cell mem-
branes. Altered fatty acid has been observed in varieties of cancers and is recognized as a
marker of cancer. Cancer cell with altered lipid metabolism exhibits the increase of prolifera-
tion, progression and metastasis [4]. The elevated de novo fatty acid synthesis is used to meet
the energy demand and sustains additional cellular process. Overexpression of fatty acid
synthase (FASN) in breast and prostate cancer is associated with the poor prognosis and inhi-
bition of FASN attenuates the lipogenesis and serves as the therapeutic approach [5]. Tran-
scriptomic analysis of metabolite reveals the expression pattern of lipid-associated gene in
cancers [6,7].

Fatty acid synthesis starts with the carboxylation of acetyl-CoA to malonyl-CoA via acetyl-
CoA carboxylase. The formation of malonyl-CoA provides the 2-carbon donor for fatty acid
chain synthesis. Free fatty acid is converted to fatty acyl-CoA by acyl coenzyme A synthetase in
an ATP-dependent manner and the unit of fatty acyl-CoA leads to multiple physiological
responses and metabolic processes, such as membrane phospholipid biosynthesis, energy usage
and storage, and signal lipids [8]. There are five members of acyl coenzyme A synthetase fam-
ily, including short-chain acyl-CoA synthetases, medium-chain acyl-CoA synthetases, long-
chain acyl-CoA synthetases (ACSL), bubblegum acyl-CoA synthetases, and very long-chain
acyl-CoA synthetases. Each of the members has unique substrate preference and enzyme activ-
ity in different cellular locations. The long-chain acyl-CoA synthetase (ACSL) prefers to the
specific substrate of fatty acid with the chain lengths of 12 to 20 carbon atoms [9]. The five iso-
forms of ACSLs in mammalian are identified as the ACSL1, 3, 4, 5, and 6 [10]. The ACSL1 is
abundantly expressed in lipid droplet, microsome and mitochondria and responsible for the
elevated levels of the unsaturated fatty acids oleate and linoleate [11]. ACSL3 is present in
brain and shows preference for myristate, arachidonate and eicosapentaenoate. ACSL4 favor-
ably utilizes arachidonate as substrate. ACSL5 has a marked preference for palmitic acid, pal-
mitoleic acid, oleic acid and linoleic acid. ACSL6 is found in plasma membrane and displays a
high activity with fatty acid with C16-C20 saturated and polyunsaturated [12]. ACSL is the
response gene for PPARy which mediates the lipid metabolism and regulates the caloric
absorption [13]. Oncostatin-mediated reduction of plasma LDL-C and total cholesterol is regu-
lated by ACSL3 and ACSL5 [14]. In our previous study, ACSL3 is involved in the endoplasmic
reticulum stress-induced lipid accumulation via GSK-3-p. The inhibition of ACSL3 by ACSL
inhibitor or GSK-3-p inhibitor reduces the lipid accumulation in liver cell [15]. The increased
ACSL3 in U87 human glioblastoma cell drives the tumorigenesis, whereas ACSL3 knockdown
reduces lung cancer cell growth [16,17]. In contrast, ACSL3 is decreased in high-grade and
metastatic prostate cancer [18]. ACSLs may function in diverse roles in different cancers, indi-
cating the importance of having a comprehensive analysis of ACSL in cancers. Nevertheless,
there is no holistic investigation to explore ACSL expression in various types of cancer.

Several databases assessing the gene expression signature of clinical cancer tissue by micro-
array analysis were established. Oncomine platform includes more than 700 independent data-
sets with nearly 90,000 microarray experiments. The database identifies the gene expression
signature in nearly every pathology-based subtype of cancers [19,20]. The differential expres-
sion pattern implies the potential oncogenic role or tumor suppressor role in cancer and leads
to a reliable hypothesis for cancer research [21]. We have previously performed a meta-analysis
on public microarray datasets and demonstrate voltage-gated calcium gene signatures in clini-
cal cancer patients [22]. Therefore, we aimed to systematically analyze the ACSL expression
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and identify the survival of cancer patients with high or low ACSL expression from the Onco-
mine and PrognoScan database, respectively. The co-expression analysis reveals the biological
function and provides the information for the possible underlying mechanism. The gene ontol-
ogy enrichment is performed to predict the gene function and regulation pattern [23]. In this
report, we identified the co-expression profiles of each ACSL isoform from the Oncomine data-
base and performed GeneGo Metacore analysis to unveil the biological function. The analyses
demonstrate the significance of each ACSL isoform in tumor formation of various kinds of
cancer and the association of expression level with survival of cancer patient. Furthermore, the
in vitro data supports the experimental evidence for a set of accurate prediction from online
database, having a better understanding of ACSL in cancers. To our best knowledge, this is the
first systematic analysis indicating the role of ACSL family in cancer progression.

Material and Method
Oncomine database analysis

The expression of ACSL family members in various types of cancers was identified from Onco-
mine database using the analysis of “Gene summary view” and “Dataset view” (https://www.
oncomine.org/resource/login.html) [19,20]. The mRNA expression fold in cancer tissue com-
pared to the normal tissue was obtained as the parameters of p-value<1E-4, fold change>2,
and gene ranking in the top 10% and the analyses were summarized in S1, S3, S5, S7 and S9
Tables. Co-expression analysis in Oncomine was used to identify sets of genes with synchro-
nous expression patterns. The co-expression profiles of ACSL isoforms in different types of
cancers were identified and presented as the pattern of heat map.

Prognoscan database analysis

PrognoScan includes public microarray datasets with clinical annotation of gene expression
and prognosis from Gene Expression Omnibus (GEO), ArrayExpress and individual labora-
tory web sites. The correlation between ACSL expression and survival in various types of can-
cers was analyzed by PrognoScan database (http://www.abren.net/PrognoScan/) [24]. The
threshold was adjusted to cox p-value<0.05 and the analyses were summarized in S2, 54, S6, S8
and S10 Tables.

Kaplan-Meier plotter database analysis

A Kaplan-Meier plotter database contains the 4,142 breast, 1,648 ovarian, 2,437 lung and 1,065
gastric cancer patients using probe sets on the HGU133 Plus 2.0 array. The correlation between
ACSL expression and survival in breast, ovarian and lung was analyzed by Kaplan-Meier plot-
ter (http://kmplot.com/analysis/) [25]. The hazard ratio with 95% confidence intervals and log
rank p-value was also computed.

GeneGo Metacore analysis

The function analysis was performed by GeneGo Metacore software using the GO Processes.
We applied the co-expression profiles from the Oncomine as the parameter of correlation>0.6
and the top ten GO Processes were identified.

Cell line

The HCT116 was obtained from Dr. H.L. Wu at National Cheng Kung University. The MDA-
MB-231 was obtained from Dr. P.L Kuo at Kaohsiung Medical University. The A549 was
obtained from Dr. W.T. Chang at National Cheng Kung University.
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RNA interference and lentivirus production

ACSL1 shRNAs were obtained from the National RNAi Core facility (Academia Sinica, Taipei,
Taiwan). The following target sequences were used: GCCCAGATGATACTTTGATAT and
CCCTTGGTGTATTTCTATGAT. The Turbofect transfection reagent was used for production of
lentiviral particles according to the protocol provided from the National RNAi Core facility.

Western blotting analysis

Cell lysate was harvested in RIPA lysis buffer and the amount of protein was determined with
Micro BCA Protein Assay kit (Millipore, MA, USA). 30ug protein lysate was loaded into acryl-
amide gels and then transferred onto polyvinylidene fluoride membranes (Amersham Biosci-
ences, Piscataway, NJ). The membrane was blocked with 5% nonfat dry milk and incubated
with primary antibody for specific protein overnight. The membranes were incubated with
horseradish peroxidase-conjugated secondary antibody and probed with ECL western blotting
detection system (Millipore, MA, USA) and visualized with the BioSpectrum AC imaging sys-
tem. The catalog number of antibody was as the following: the anti-ACSL1 antibody (#4047,
Cell Signaling) and the anti-B-actin antibody (GTX109639, GeneTex).

MTT assay

The cells were seeded onto 24 well plate at the density of 2X10* per well. The cells were incu-
bated with MTT (Thiazolyl Blue Tetrazolium Bromide, Sigma Chemical) for 3 hours at the 5%
CO, and 37°C and the absorbance was detected at 570 nm by ELISA reader.

Boyden chamber assay

The upper wells of the chamber were seeded at the density of 2.6X10* cells in serum-free
DMEM, while lower wells contained the DMEM with 10% FBS. The cells of HCT116, A549
and MDA-MB-231 were incubated for 48, 24 and 6 hours, respectively. The cells that migrated
through the polycarbonate filer were fixed using methanol and stained with Giemsa stain. The
stained cell images were taken under the 10X objective lens by microscope and the mean num-
ber of stained cell was counted in five fields.

Anchorage-independent growth

5X10° cells were suspended in the 0.3% agar over a layer of 0.6% agar and incubated for 14
days in a 5% CO, atmosphere humidified incubator at 37°C. The colonies were stained
with 0.05% crystal violet. The colony images were taken under the 4X objective lens by
microscope and the mean area of stained colony was quantified in ten fields by the Image-
Pro Plus software.

Statistical analysis

All statistical analyses were performed using GraphPad Prism version 4 (GraphPad Software,
La Jolla, CA, USA). The statistical analysis was performed using two-way ANOVA followed by
Bonferroni post-tests for MTT assay and one-way ANOVA followed by Tukey post hoc for
migration and soft agar assay.

Result

ACSL contributes to the different physiological roles in various types of cancers [12]. ACSL1
modulates the uptake of fatty acid in hepatoma cells [26]. Hepatocytic deletion of Pten in mice
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develops hepatocellular carcinoma and increased acsl5:acsl1 ratio [27]. To elucidate the role of
ACSL family in cancer, the systematic analysis of ACSL family expression was demonstrated
using Oncomine database. The expression of ACSL family was compared between tumor and
normal tissues in different types of cancers. The threshold was designed as the following
parameters: p-value of 1E-4, fold change of 2, and top gene ranking of 10%. The ACSL expres-
sion was higher in cancer than that in normal tissue in certain types of cancers. On the other
hand, ACSL expression was lower in cancer than that in normal tissue in other types of cancers.
These data indicates that individual ACSL may play either oncogenic or anti-oncogenic func-
tion depending on the cancer types (Fig 1). Therefore, detailed analysis of ACSL1, ACSL3,
ACSL4, ACSL5, and ACSL6 were described below.

ACSL1

ACSLL1 is associated with glucose homeostasis. The activation of ACSL1 regulates the insulin
resistance by PKC activation in muscle cell [28,29]. ACSL1 interacts with the fatty acid trans-
port protein (FATP), which is able to facilitate the uptake of fatty acid [30]. The activation of
acyl-CoA-synthetase by ACSL1 promotes the fatty acid accumulation, indicating the potential
target for hepatic steatosis [26,31]. Loss of ACSLI favors the ABCAL1 expression, contributing
to the apoA-I-mediated cholesterol efflux in macrophage [11]. Lacking ACSL1 in heart-specific
tissue drives the reduction of B-oxidation and results in the heart dysfunction [32]. In addition,
miR-205 blocks the lipogenesis in liver cancer and anti-miR-205 promotes the increase of tri-
glyceride by ACSL1. The negative-correlation of miR-205 and ACSL1 expression in hepatitis B
virus X protein (HBx)-transgenic mice suggests that miR-205 leads to the dysregulation of
lipid metabolism by ACSL1 and the cancer progression [33]. We applied Oncomine database
to identify the ACSL1 expression in various kinds of cancer with the thresholds mentioned
above. ACSL1 was upregulated in colorectal cancer, but decreased in lung and breast cancer
(Fig 2A-2C). In addition, there was a lower expression level of ACSLI in brain, cervical, esoph-
ageal, head and neck, leukemia, liver, and sarcoma cancers (Fig 2D and S1 Table). To further
elucidate the role of ACSL1 in cancer progression, the prognostic value of ACSL1 expression in
bladder, brain, breast, colorectal and ovarian cancer patients was determined using PrognoScan
database according to the parameter of cox p-value<0.05 (Fig 2E and S2 Table). The breast
and colorectal cancer patients with higher ACSL1 expression has poor survival (Fig 2F and
2G). We further used the Kaplan-Meier plotter database to evaluate the survival of breast and
lung cancer patients. The probe 201963 for ACSL1 was used in analyzing the prognostic value
in breast cancer and lung cancer patients. These data indicated that ACSL1 was associated with
the poor survival in breast cancer, but was associated with the better survival in lung cancer
(Fig 2H and 2I). The co-expression analysis reveals the biological function and provides the
information for studying the underlying mechanism. We identified the co-expression profile of
ACSL1 from the Oncomine database (SIA-S1C Fig). We further applied GeneGo Metacore to
annotate gene ontology. No genes with the correlation > 0.6 were found in breast cancer data-
set (S1A Fig). Specifically, the co-expression profiles for ACSL1 with a strong cluster of 126
genes (R > 0.6) across a panel of 65 rectal adenocarcinoma and 65 normal colorectal samples
and 878 genes (R > 0.6) across a panel of 186 lung cancer and 17 normal lung samples were
uploaded and the top ten GO Processes were listed (S1D and S1E Fig). In colorectal cancer,
ACSL1 was coexpressed with myosin binding protein H (MYBPH), protein tyrosine phospha-
tase, receptor type E (PTPRE), 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3
(PFKFB3), suppressor of cytokine signaling 3 (SOCS3), leukocyte immunoglobulin like recep-
tors (LILRA3), and chemokine (C-C motif) ligand 4 (CCL4). These molecules mainly influence
immune response, metabolism, and chemotaxis. As for lung cancer, ACSL1 was coexpressed
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Fig 1. ACSL mRNA expression in various cancer types. The comparison indicated the number of datasets with ACSL mRNA overexpression (right
column, red) and under expression (left column, blue) in cancer versus normal tissue. The threshold was designed with following parameters: p-value of
1E-4, fold change of 2, and gene ranking of 10%.

doi:10.1371/journal.pone.0155660.g001

with leucine rich repeat (in FLII) interacting protein 1 (LRRFIP1) and TSC22 domain family
member 1 (TSC22D1). The analysis revealed that ACSL1 may be involved in immune response
and cell chemotaxis in colorectal cancer and response to stress in lung cancer.

Combination of the gene expression analysis from Oncomine and survival analysis from
PrognoScan or Kaplan-Meier plotter revealed the oncogenic role of ACSLI in colorectal cancer
and the tumor suppressor role for ACSLI in lung cancer. To validate the oncogenic role of
ACSLL1 in colorectal cancer and tumor suppressor role in lung cancer, two different lentiviral
particles expressing ACSL1 shRNA were introduced to colorectal HCT116 cell line and lung
A549 cell line, respectively. The knockdown efficacy of ACSL1 was determined by western
blotting (Fig 3A). ACSL1 shRNA decreased proliferation in HCT116 cells, but increased prolif-
eration in A549 cells (Fig 3B). In addition, the anchorage-independent growth and cell migra-
tion were inhibited in HCT116 after lentiviral particles expressing ACSL1 shRNA infection. In
contrast, ACSL1 shRNA enhanced the anchorage-independent growth and cell migration in
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Fig 2. ACSL1 analysis in different cancer types. The box plot comparing specific ACSL1 expression in normal (left plot) and cancer tissue
(right plot) was derived from Oncomine database. The analysis was shown in breast carcinoma relative to normal breast (A), in rectal
adenocarcinoma relative to normal rectum (B), and in lung carcinoma relative to normal lung (C). The fold change of ACSL1 in various types of
cancers was identified from our analyses in S1 Table and expressed as the forest plot (D). The statistically significant hazard ratio in various
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high (red) and low (black) expression in breast (F) and colorectal (G) cancer was identified as the threshold of cox p-value<0.05 from
PrognoScan database. The survival curve comparing the patient with high (red) and low (black) expression in lung (H) and breast (I) cancer was
plotted from Kaplan-Meier plotter database.

doi:10.1371/journal.pone.0155660.g002

A549 (Fig 3C and 3D). The bioinformatics prediction of potential role of ACSL1 from Onco-
mine and PrognoScan in colorectal and lung cancer is supported by the in vitro assay.

Interestingly, the data obtained from Oncomine indicated that ACSL1 may function as a
tumor suppressor gene in breast cancer (Fig 2A); however, the data obtained from PrognoScan
and Kaplan-Meier plotter indicated that ACSL1 may play a potential oncogene in breast cancer
(Fig 2F and 2I). To study the inconsistent bioinformatic results of ACSL1 in breast cancer, the
lentiviral particles containing ACSL1 shRNAs were introduced to MDA-MB-231 breast cancer
cell and the protein level of ACSL1 was determined by western blotting (Fig 3A, right panel).
ACSL1 knockdown cell exhibited a reduced cell proliferation, which was demonstrated by
MTT assay (Fig 3B, right panel). Downregulation of ACSL1 also inhibited anchorage-indepen-
dent growth and cell migration of the MDA-MB-231 cells with soft agar assay and Boyden
chamber assay (Fig 3C and 3D, right panel). Altogether, the prediction of oncogenic role of
ACSL1 from PrognoScan and Kaplan-Meier plotter in breast cancer is supported by the in
vitro experimental assay. The in vitro experimental analysis may be useful to resolve the dis-
crepancy of analyses on ACSL1 obtained from Oncomine database and PrognoScan.

ACSL3

ACSL3 is abundant in lipid droplets and endoplasmic reticulum and is required for the fatty
acid uptake. N-terminus of ACSL3 is required for the translocation from the endoplasmic retic-
ulum to lipid droplet (LD) [34]. ACSL inhibitor, triacsin C, reduces ACSL3 expression and
inhibits the lipid droplet formation [35,36]. ACSL3 is responsible for the VLDL assembly,
which coordinate the lipid metabolism by exporting the exogenous cholesterol and triglyceride
into plasma and is associated with the HCV infection. The downregulation of ACSL3 by
siRNA reduces the VLDL secretion and inhibits the secretion of HCV particles from infected
hepatocyte [37]. ACSL3 promotes palmitic acid-triggered osteoblastic gene expression and cal-
cium deposition in vascular smooth muscle cell [38]. The cytokine oncostatin M-induced
ACSL3 activation is dependent upon ERK-pathway activation and is associated with the
decrease of cellular triglyceride and the increase of fatty acid B-oxidation [14]. Furthermore,
PPAR-§ is involved in the activation of cytokine oncostatin M-induced ACSL3 expression in
hepatoma [39]. The induction of ACSL3 is demonstrated by LXR, which is a nuclear protein
and involved in the lipid uptake from lipoprotein [40]. Previous study indicates that ACSL3 is
overexpressed in lung cancer [17]. In contrast, there is a lower ACSL3 expression in prostate
cancer tissue compared to that in normal tissue [18]. Our analysis revealed that ACSL3 was
down-regulated in ovarian cancer and up-regulated in melanoma (Fig 4A and 4B). In system-
atic analysis, ACSL3 was overexpressed in head-neck and liver cancer, but was underexpressed
in colorectal cancer (Fig 4C and S3 Table). The prognostic value of ACSL3 was analyzed using
the PrognoScan database with the threshold above (Fig 4D and S4 Table). The better prognosis
in ovarian cancer patient and the worse prognosis in melanoma patient with higher ACSL3
expression were in accordance with the result from Oncomine (Fig 4E and 4F). The oncogenic
role of ACSL3 in melanoma is consistent with a previous study [16]. On the other hand,
ACSL3 may be considered as a potential tumor suppressor gene in ovarian cancer develop-
ment. The co-expression profiles of ACSL3 were identified from Oncomine (Fig 4G and 4H).
We identified the co-expression profiles for ACSL3 with a strong cluster of 27 genes across a
panel of 185 ovarian carcinoma and 10 normal ovary tissues and 229 genes across a panel of 45
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Fig 3. ACSL1 shRNAs modulate cancer growth in vitro. ACSL1 expression was downregulated with lentiviral particles containing
shRNA targeting ACSL1 or luciferase in HCT116, A549 and MDA-MB-231. (A) The protein expression of ACSL1 was determined by
western blotting with an anti-ACSL1 antibody. (B) The proliferation of the cell with ACSL1 knockdown expression was analyzed by MTT
assay at the indicated time points. The statistical difference was calculated using two-way ANOVA followed by Bonferroni post-tests. *
indicated p<0.05; n.s indicated not statistically significant. (C) The cell migration of the cell with ACSL1 knockdown expression was
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analyzed by Boyden chamber assay. The number of migrated cell was counted and the result was expressed as the fold change
relative to the parental cell. All pairs of groups were compared using Tukey post hoc multicomparison test for one-way ANOVA. *
indicated p<0.05; n.s indicated not statistically significant. (D) The cells with ACSL1 knockdown expression were plated in soft agar,
and the colonies were monitored for 14 days. The colonies were quantified using Image-Pro Plus software. The result was expressed
as the fold change relative to the parental cell. All pairs of groups were compared using Tukey post hoc multicomparison test for one-
way ANOVA. * indicated p<0.05; n.s indicated not statistically significant.

doi:10.1371/journal.pone.0155660.g003

melanoma and 25 normal samples. GeneGo Metacore annotation for enriched biological pro-
cess indicated that the genes involved in phosphatidylcholine biosynthetic process and organ-
elle fission were more likely to be coexpressed in ovarian cancer and in melanoma, respectively
(Fig 41 and 4]). It was interesting to note that ACSL3 was coexpressed with snurportin 1
(SNUPN), thyroid hormone receptor interactor 13 (TRIP13), and semaphorin 5A (SEMA5A).
TRIP13 is involved in the spindle-assembly checkpoint and SNUPN is involved in snRNP
importing. Semaphorin 5A (SEMAS5A) is known to be responsible for certain types of autism.

ACSL4

ACSLA4 is present in the peroxisome, mitochondria, and endoplasmic reticulum and is involved
in arachidonate metabolism [41,42]. The deficiency of ACSL4 is correlated with the mental
retardation and Alport syndrome [43]. The ACSL4-heterozygous mice have the abnormal uteri
and uterine prostaglandin production [44]. ACSL4 regulates the neuron growth and differenti-
ation [45]. Induction of ACSL4 expression promotes the tumor progression in xenograft
model, and the combination of ACSL4, LOX-5 and COX-2 inhibitor effectively reduces the
tumor formation in vivo [46]. The expression of ACSL4 mRNA is correlated with the estrogen
receptor alpha expression and ACSL4 is sensitive to the triacsin C treatment, indicating that
ACSL4 affects the steroid hormone-sensitivity in breast and prostate cancer [47]. ACSL4 cata-
lyzes the conversion of free arachidonic acid into arachidonic acid-CoA ester and reduces the
arachidonic acid-induced apoptosis in colon cancer. The overexpression of ACSL4 is associated
with the colon carcinogenesis [48,49]. ACSL4 is also overexpressed in liver cancer tissues com-
pared with the corresponding normal tissue. Arachidonic acid drives the ACSL4 ubiquitination
by the substrate-induced posttranslational regulatory mechanism [50,51]. ACSL4 expression is
negatively correlated with the amount of miR-205 in clinical HCC specimens. Hepatitis B virus
X protein-induced lipogenesis can be abolished by miR-205 targeted ACSL4 mRNA [52]. Anal-
ysis from the Oncomine indicated that ACSL4 was down-regulated in bladder, brain, breast,
leukemia, and lung cancer, but up-regulated in colorectal cancer, head and neck, kidney, mye-
loma, and liver cancer (Fig 5A and S5 Table). The prognostic analysis indicated that the colo-
rectal patient with higher ACSL4 expression had poor survival; in contrast, the brain, breast,
and lung cancer patient with lower ACSL4 expression had poor survival (Fig 5B and S6 Table).
The analysis of ACSL4 gene expression in cancer from Oncomine (Fig 5C-5F) was in accor-
dance with the survival analysis from PrognoScan (Fig 5G-5]). Combination of the gene
expression from Oncomine and survival from PrognoScan revealed the oncogenic role of
ACSL4 in colorectal cancer and the tumor suppressor role of ACSL4 in breast, brain, and lung
cancer. These data are consistent with a previous study on the expression of ACSL4 in colon
cancer tissues [49]. However, the results of the current analysis are inconsistent with a previous
study investigating the overexpressed ACSL4 in breast cancer tissue [53]. The co-expression
profiles for ACSL4 in breast, brain, colorectal and lung cancer were analyzed from Oncomine
(S2A-82D Fig). The co-expression profiles for ACSL4 were applied to annotate gene ontology
using GeneGo Metacore with a strong cluster of 3,444 genes across a panel of 53 breast carci-
noma and 6 normal breast samples, 117 genes across a panel of 10 brain tumor and 5 normal
brain samples, 509 genes across a panel of 20 colorectal cancer and 20 normal colorectal
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Fig 4. ACSL3 analysis in various cancer types. The box plot comparing specific ACSL3 expression in normal (left plot) and cancer tissue (right
plot) was derived from Oncomine database. The analysis was shown in ovarian carcinoma relative to normal ovary (A) and in melanoma relative to
normal skin (B). The fold change of ACSL3 in various types of cancers was identified from our analyses in S3 Table and expressed as the forest plot
(C). The statistically significant hazard ratio in various types of cancers was identified from our analyses in S4 Table and expressed as the forest plot
(D). The survival curve comparing the patient with high (red) and low (black) expression was plotted from PrognoScan database. The analysis of
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survival curve in ovarian cancer (E) and melanoma (F) was identified as the threshold of cox p-value<0.05. ACSL3 is coexpressed with the indicated
genes across a panel of 185 ovarian carcinoma and 10 normal ovary tissues (G). ACSL3 is coexpressed with the indicated genes across a panel of
45 melanoma and 25 normal skin tissues (H). Top 10 significant GO processes were visualized by GeneGo Metacore software according to the co-
expression profiles of the 27 genes in ovarian cancer (l) and 229 genes in melanoma (J). Bar length represented the significance and negative
logarithm of enrichment p-value.

doi:10.1371/journal.pone.0155660.g004

samples, and 54 genes across a panel of 25 lung adenocarcinoma and 25 normal lung samples.
The GO processes analyses demonstrated the co-expression genes, including serine protease
inhibitor 2 (SERPIN2), heterogeneous nuclear ribonucleoprotein C-like 1 (HNRNPCL1),
inter-alpha-trypsin inhibitor heavy chain 2 (ITIH2), protein C receptor (PROCR), and leucine
rich repeat (in FLII) interacting protein 1 (LRRFIP1). These gene products were involved in
cellular metabolic process, Fc receptor signaling pathway, extracellular matrix organization,
and system development in breast, brain, colorectal and lung cancer (S2E-S2H Fig). It appears
that ACSL4 may have distinct roles in various tissues. The detailed mechanism by which
ACSL4 modulates cancer progression need to be further investigated.

ACSL5

ACSLS5 is located on mitochondria and involved in the enterocyte apoptosis by alternative
splicing [54]. A reduced ACSL5 expression is observed in the impaired small intestinal mucosa
[55]. The expression of ACSL5 functions as a marker for gastrointestinal tract differentiation
and villus atrophy [56,57]. ACSL5 is present in mitochondria and regulates lipid metabolism
dependent on TP53 status in colorectal adenocarcinoma [58]. The lower expression of ACSL5
is observed in the colorectal cancer tissue and the patient with the lower ACSL5 has a longer
disease-free interval (DFI) [59]. The expression level of ACSL5 is reduced in the neoplastic
urothelial tissues and the expression pattern of ACSL5 is associated with the differential types
of urothelium [60]. ACSL5 promotes the fatty acid uptake which results in fat storage or B-oxi-
dation in liver cancer [14,61]. Up-regulation of ACSL5 is associated with the hepatocyte steato-
sis and is sensitive to fatty acid-induced hepatic cell death [62]. Downregulation of ACSL5 by
RNAI significantly reduced fatty acid-induced lipid droplet formation in hepatocyte [63].
However, the impairment of ACSL activity in Acsl5-KO mice is insufficient to alter the long
chain fatty acid absorption [64]. A single nucleotide polymorphism of ACSL5 promoter drives
the ACSL5 mRNA expression in skeletal muscle cell and induces the weight loss [65]. ACSL5 is
highly expressed in glioma and drives the cell growth through midkine (MDK) in the acidic
microenvironment [66]. Our analysis revealed that ACSL5 is significantly overexpressed in
bladder, esophageal, lung, pancreatic and prostate cancer. A significant decrease of ACSL5 was
observed in breast, liver, lung, and ovarian cancer (Fig 6A-6D and S7 Table). There was a dif-
ference between lung carcinoma and lung adenocarcinoma that lung carcinoma expressed low
level of ACSL5 and lung adenocarcinoma expressed high level of ACSL5 (S7 Table). To con-
firm the role of ACSL5 in cancer, we analyzed the prognostic value using PrognoScan. The
analysis indicated that the brain cancer patient with higher ACSL5 expression had poor sur-
vival; in contrast, the patient with higher ACSL5 expression had good survival in breast, colo-
rectal, lung and ovarian cancer (Fig 6E-6H and S8 Table). To further confirm the survival, the
Kaplan-Meier plotter was used to identify the prognostic value in breast, lung and ovarian can-
cer. The better prognosis in breast, lung and ovarian cancer patient with higher ACSL5 expres-
sion was in accordance with the result from Oncomine and PrognoScan database, implying the
tumor suppressor role of ACSL5 in breast, lung and ovarian cancer (Fig 61-6K). The co-expres-
sion profiles of ACSL5 were identified from the Oncomine database (S3A-S3C Fig). The co-
expression profiles for ACSL5 with a strong cluster of 3 genes across a panel of 40 breast
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Fig 5. ACSL4 analysis in various cancer types. The fold change of ACSL4 in various types of cancers was identified from our analyses in S5 Table and
expressed as the forest plot (A). The statistically significant hazard ratio in various types of cancers was identified from our analyses in S6 Table and
expressed as the forest plot (B). The box plot comparing specific ACSL4 expression in normal (left plot) and cancer tissue (right plot) was derived from
Oncomine database. The analysis was shown in breast carcinoma relative to normal breast (C), in glioblastoma relative to normal brain (D), in colorectal
carcinoma relative to normal colorectal (E), and in lung adenocarcinoma relative to normal lung (F). The survival curve comparing the patient with high
(red) and low (black) expression in breast cancer (G), brain cancer (H), colorectal cancer (l) and lung cancer (J) was plotted from PrognoScan database
as the threshold of cox p-value<0.05.

doi:10.1371/journal.pone.0155660.g005
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Fig 6. ACSL5 analysis in various cancer types. The fold change of ACSL5 in various types of cancers was identified from our analyses in S7
Table and expressed as the forest plot (A). The box plot comparing specific ACSL5 expression in normal (left plot) and cancer tissue (right plot) was
derived from Oncomine database. The analysis was shown in breast carcinoma relative to normal breast (B), in ovarian carcinoma relative to
normal ovary (C), and in lung carcinoma relative to normal lung (D). The statistically significant hazard ratio in various types of cancers was
identified from our analyses in S8 Table and expressed as the forest plot (E). The survival curve comparing the patient with high (red) and low
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(black) expression in breast (F), ovarian (G), and lung (H) was plotted from PrognoScan database as the threshold of cox p-value<0.05. The
survival curve comparing the patient with high (red) and low (black) expression in breast (1), ovarian (J) and lung (K) cancer was plotted from

Kaplan-Meier plotter database.

doi:10.1371/journal.pone.0155660.g006

carcinoma and 7 normal breast samples, 2 genes across a panel of 43 ovarian cancer and 10
normal ovary samples, and 111 genes across a panel of 91 lung cancer and 65 normal lung sam-
ples were uploaded to the Metacore and the top ten GO Processes were identified (S3D-S3F
Fig). The top ranking genes included transmembrane protein 140 (TMEM140), TAP binding
protein-like (TAPBPL), baculoviral IAP repeat containing 3 (BIRC3), protein tyrosine phos-
phatase, receptor type E (PTPRE), and serpin peptidase inhibitor clade B ovalbumin member 1
(SERPINBI). It is interesting to note that PTPRE is coexpressed with ACSL1 and ACSL5 in
cancer, which warrants further investigation.

ACSL6

A linkage disequilibrium-based genome-wide association study reveals the role of ACSL6 in
premature ovarian failure [67]. The schizophrenia is correlated with the single nucleotide poly-
morphism of ACSL6 [68]. The meta-analysis uncovers the association between ACSL6 and the
number of cigarettes smoked per day. The nicotine-induced ACSL6 upregulation is restored by
the nicotine receptor antagonist mecamylamine [69]. The murine long-chain acyl-CoA synthe-
tase (mLACS) regulates the neuronal cell proliferation and differentiation [70]. Analysis from
Oncomine revealed that the expression of ACSL6 was down-regulated in leukemia (Fig 7A). In
addition, ACSL6 was decreased in most forms of cancers, except colorectal cancer (Fig 7B and
S9 Table). The prognostic value of ACSL6 is analyzed using the PrognoScan database with the
above threshold (Fig 7C and S10 Table). The better prognosis in leukemia patient was in accor-
dance with the result from Oncomine database (Fig 7D). These data revealed that ACSL6
emerges as a potential tumor suppressor gene in leukemia. The co-expression profiles of
ACSL6 were identified from Oncomine (Fig 7E). We identified the co-expression profiles for
ACSL6 with a strong cluster of 144 genes across a panel of 1,995 leukemia and 74 normal
blood tissues. ACSL6 gene was coexpressed with SRY (sex determining region Y)-box 6
(SOX6), Dufty blood group, chemokine receptor (DARC), and other genes involved in porphy-
rin-containing compound metabolic processes in leukemia cell (Fig 7F).

Discussion

Increased fatty acid metabolism has been demonstrated to promote tumor progression in sev-
eral types of cancers. Since ACSL family is required for complex lipid synthesis, the role of
ACSL family is suggested to be pro-oncogenic previously [71]. However, the present report
indicates that ACSL family members may function as tumor suppressor genes in a variety of
cancers with bioinformatics analysis of cancer databases. Combination of the analyses from
bioinformatics databases and in vitro analyses, ACSL is a tumor suppressor gene in ovarian
and lung cancer and as an oncogene in colorectal cancer (Fig 7G). The analysis of genomic pro-
file reveals that different types of cancers have their own genomic patterns and each cancer
possess its biological characteristics. Previous studies demonstrate that ovarian and breast can-
cers display similar phenotypic and genotypic alterations. The alteration of PTEN and activa-
tion of PI3K pathway contribute to cell proliferation and metastasis in ovarian and breast
cancer [72,73]. In addition, the breast and ovarian cancers display similar alteration of protein
and lipid profiles by MALDI MS analysis [74]. The study assessing the genomic features of
ovarian and breast cancer uncovers the similarity of molecular origin, and the dataset compar-
ing the gene expression provides the evidence of similarity between basal-like breast cancer
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Fig 7. ACSL6 analysis in various cancer types. (A) The fold change of ACSL6 in various types of cancers was identified from our analyses in S9
Table and expressed as the forest plot. (B) The box plot comparing specific ACSL6 expression in normal (left plot) and cancer tissue (right plot) was
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ACSLS6 is coexpressed with the indicated genes across a panel of 1,995 leukemia and 74 normal blood samples. (F) Top 10 significant GO processes
were visualized by GeneGo Metacore software according to the co-expression profiles of the 144 genes in leukemia. Bar length represented the
significance and negative logarithm of enrichment p-value. (G) The summary of predictive role of ACSL in different cancers is based on the consistent
analyses of gene expression and outcome.

doi:10.1371/journal.pone.0155660.g007

and squamous cell lung carcinoma [75,76]. Moreover, the analysis of gene expression predic-
tors of response (GEPR) demonstrates the high similarity between ovary and lung carcinoma
[77]. These evidences support our findings that ACSL may function as a tumor suppressor
gene in ovarian and lung cancer. It should be noted that individual ACSL family members have
substrate specificity and exert non-overlapping function. ACSL1 may be different from other
ACSL family members, and play a pro-oncogenic role in breast cancer as demonstrated by
PrognoScan and in vitro analysis. On the other hand, ACSL5 may exert its specific tumor sup-
pressor role in different types of cancer through promoting ceramide [54] or Wnt2B palmitoy-
lation [78,79].

The systematical analysis of lipidomic change shows that fatty acid (FA) and phosphatidyl-
cholines (PC) are increased in various types of cancers and there is a higher ratio of monoun-
saturated fatty acid (MUFA)/saturated fatty acid (SFA) in breast, lung, colorectal, gastric, and
esophageal cancer tissues compared to the adjacent normal tissues. Nevertheless, the ratio of
PC(36:1)/PC(36:0) is increased in breast, lung, gastric, and esophageal cancer, but is not altered
in colorectal cancer, indicating the cell type-specific metabolic features in colorectal cancer
[80]. The network of ACSL1, ACSL4 and steraroyl-CoA desaturase-1 (SCD), which catalyzes
the conversion of SFA into MUFA, is demonstrated to induce EMT program and the higher
expression level of ACSL1/ACSL4/SCD is associated with the poorer survival outcome in colo-
rectal cancer [81]. These studies describing the potential oncogenic role of ACSL and the differ-
ential genomic background in colorectal cancer are in concert with our analyses.

The genomic analysis reveals that different types of cancers have their own genomic pat-
terns and each cancer possess its biological characteristics. Our data indicated that ACSL1
shRNA decreased cell growth and migration in HCT'116, but increased cell growth and migra-
tion in A549 cells. The ACSL1-coexpressed genes were identified from colorectal and lung can-
cer datasets respectively. Among the strong cluster of 126 genes in colorectal cancer and 878
genes in lung cancer, only eight genes were co-expressed in both of clusters. In addition, the
GO Process demonstrates the diverse effects of ACSL1 on colorectal and lung cancer. It is
interesting to note that bioinformatics analysis suggests a potential tumor suppressor role of
ACSL family in lung cancer. ACSL is required for conversion of fatty acid into complex lipid or
B-oxidation. A report has indicated that PPAR-y induces anti-proliferation through, at least in
part, B-oxidation [82]. Overexpression of ACSL may increase the flux of B-oxidation pathway
by PPAR-vy [83]. On the other hand, fatty acid B-oxidation may play an important oncogenic
role in breast cancer [84,85]. These data implies that ACSL1 may behave oppositely when
tumor growth has a different metabolic requirement.

In order to have the compelling analysis, we performed the analyses based on a large set of
gene expression with clearly defined p-value, fold change and top 10% gene ranking and prog-
nostic outcome with defined p-value and hazard ratio between cancer and normal tissues.
With the aim of predicting the potential role of ACSL in cancers, we identified all of the results
with statistical significance of gene expression from Oncomine in S1, S3, S5, S7 and S9 Tables
and identified all of the results with statistical significance of survival outcome from PrognoS-
can in S2, $4, S6, S8 and S10 Tables. Most of the analyses predicted the same trend in one can-
cer. However, a few analyses gave the inconsistent trend in one cancer, including the outcome
of ACSL3 in lung cancer of GSE13213 and GSE31210 datasets (Fig 4D and S4 Table), the
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expression of ACSL4 in Buchholz and Badea pancreatic cancer datasets (Fig 5A and S5 Table),
and the expression of ACSL5 in Hou and Okayama lung cancer datasets (Fig 6A and S7 Table).
These datasets were excluded from our analyses, and we defined the potential role of ACSL
only based on the consistent analyses of gene expression and outcome. Our approach is less
likely to generate the improper or designed data mining and provides the reasonable evaluation
with a statistically unbiased assessment.

In summary, bioinformatic analysis with Oncomine and PrognoScan database indicates
that ACSL family is involved in the cancer development. The design of inhibitor or activator of
ACSL family for cancer therapy is dependent on cancer type since ACSL may play either onco-
genic or tumor suppressor role in different types of cancer. In the future, the coexpressed genes
with ACSL family identified in this study may be employed to investigate the signal network of
ACSL family in cancer or other diseases.

Supporting Information

S1 Fig. Distribution of co-expression profiles and top ten GO processes for ACSL1. ACSL1
was coexpressed with the indicated genes across a panel of 532 breast cancer and 61 normal
breast tissues (A), across a panel of 65 rectal adenocarcinoma and 65 normal colorectal tissues
(B), and across a panel of 186 lung cancer and 17 normal lung tissues (C). Top 10 significant
GO processes were visualized by GeneGo Metacore software according to the co-expression
profiles of the 126 genes in colorectal cancer (D) and 878 genes in lung cancer (E). Bar length
represented the significance and negative logarithm of enrichment p-value.

(TIF)

S2 Fig. Distribution of co-expression profiles and top ten GO processes for ACSL4. ACSL4
was coexpressed with the indicated genes across a panel of 53 breast carcinoma and 6 normal
breast tissues (A), across a panel of 10 brain cancer and 5 normal brain tissues (B), across a
panel of 20 colorectal cancer and 20 normal colorectal tissues (C) and across a panel of 25 lung
adenocarcinoma and 25 normal lung tissues (D). Top 10 significant GO processes were visual-
ized by GeneGo Metacore software according to the co-expression profiles of the 3,444 genes
in breast cancer (E), 117 genes in brain cancer (F), 509 genes in colorectal cancer (G), and 54
genes in lung cancer (H). Bar length represented the significance and negative logarithm of
enrichment p-value.
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S3 Fig. Distribution of co-expression profiles and top ten GO processes for ACSL5. ACSL5
was coexpressed with the indicated genes across a panel of 40 breast carcinoma and 7 normal
breast tissues (A), across a panel of 43 ovarian cancer and 10 normal ovary tissues (B), and
across a panel of 91 lung cancer and 65 normal lung tissues (C). Top 10 significant GO pro-
cesses were visualized by GeneGo Metacore software according to the co-expression profiles of
the 3 genes in breast cancer (D), 2 genes in ovarian cancer (E), and 111 genes in lung cancer
(F). Bar length represented the significance and negative logarithm of enrichment p-value.
(TTF)
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