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Abstract
The heterogeneity of spontaneous preterm birth (SPTB) requires an interdisciplinary

approach to determine potential predictive risk factors of early delivery. The aim of this

study was to investigate maternal whole blood gene expression profiles associated with

spontaneous preterm birth (SPTB, <37 weeks) in asymptomatic pregnant women. The

study population was a matched subgroup of women (51 SPTBs, 114 term delivery con-

trols) who participated in the All Our Babies community based cohort in Calgary (n = 1878).

Maternal blood at 17–23 (sampling time point 1, T1) and 27–33 weeks of gestation (T2) were

collected. Total RNA was extracted and microarray was performed on 326 samples (165

women). Univariate analyses determined significant clinical factors and differential gene

expression associated with SPTB. Thirteen genes were validated using qRT-PCR. Three

multivariate logistic models were constructed to identify gene expression at T1 (Model A), T2

(Model B), and gene expression fold change from T1 to T2 (Model C) associated with SPTB.

All models were adjusted for clinical factors. Model C can predict SPTB with 65% sensitivity

and 88% specificity in asymptomatic women after adjusting for history of abortion and anae-

mia (occurring before T2). Clinical data enhanced the sensitivity of the Models to predict

SPTB. In conclusion, clinical factors and whole blood gene expression are associated with
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SPTB in asymptomatic women. An effective screening tool for SPTB during pregnancy

would enable targeted preventive approaches and personalised antenatal care.

Introduction
Preterm birth (PTB; birth before 37 weeks of gestation) is the greatest challenge facing contem-
porary obstetrics in both high and low resource settings. The World Health Organization esti-
mated that 11% of all live births in 2010 were premature (15 million) and PTB rates are
increasing [1]. Preterm related complications include death, lifelong sequelae including motor
and sensory impairment [2] and immediate and long-term emotional and financial conse-
quences for families, communities and the health care system [3, 4]. The prevention of PTB is
essential for accelerating progress towards the United Nation’s Fourth Millennium Develop-
ment Goal as the social and economic benefits of reducing the rate of PTB are enormous [5].

PTB is becoming a preventable disease. The use of progesterone [6–8], cervical cerclage [9]
and antibiotics [10] in women at high risk of PTB are improving outcomes. However, these
treatments are only useful in a subset of women [6–8]. The current screening tools to identify
asymptomatic women at high risk of spontaneous PTB (SPTB) include clinical risk factor
assessment [11], measuring cervical length [12, 13] and screening for fetal fibronectin (fFN)
[14, 15]. These tools are limited by their low sensitivities (<50%), with some as low as 8% [11,
16]. The cornerstone of preventing PTB is to reliably identify these women and develop tools
for risk stratification. This will assist the development and implementation of preventive mea-
sures as well as efforts to improve the clinical management of PTB. The multifactorial aetiolo-
gies and serious consequences of PTB highlight the need for a multidisciplinary approach to
identify factors predictive of PTB [17].

Parturition is a complex process that begins weeks before labour onset (Fig 1) [18, 19].
Labour is an inflammatory process with elevated levels of maternal circulating leukocytes [20]
and increased leukocyte infiltration into the myometrium, decidua and cervix before and dur-
ing labour [21, 22]. Whole blood mRNAs are assumed to be contributed, in part, by leukocytes
and may reflect physiological processes. We postulate that maternal leukocytes circulating
through gestational tissues (i.e. amnion, chorion, decidua, myometrium and cervix) during
pregnancy are exposed to ‘signals’ from these tissues, and respond by altering their gene
expression. An alternate postulate is that maternal leukocytes may be initiating and coordinat-
ing the process of parturition. This current study profiled whole blood mRNA collected from
asymptomatic pregnant women and investigated the univariate association of whole blood
gene expression at approximately 18 and 28 weeks of gestation with impending SPTB. Three
multivariate models associated with SPTB were subsequently constructed using data at 18
weeks, 28 weeks, and from 18 to 28 weeks of gestation.

Materials and Methods

Patient Recruitment
The study population was drawn from a subset of women who participated in the All Our
Babies (AOB) study, a community based longitudinal pregnancy cohort in Calgary, Alberta,
Canada approved by the Conjoint Health Research Ethics Board, University of Calgary (Ethics
#20821 and #22128). Pregnant women receiving prenatal viral serology testing were recruited
through a partnership with Calgary Laboratory Service between May 2008 and December
2010. Written consent was obtained at the time of the first blood collection. Women also
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Fig 1. Parturition begins weeks before labour onset. (A) Labour is an inflammatory process with elevated levels of
maternal circulating leukocytes and increased leukocyte infiltration into the myometrium, decidua and cervix before
and during labour. (B) Parturition is a long complex process that begins weeks before the onset of labour. The cervix
gradually ripens and the myometrium switches from a quiescent to a contractile state. (C) In preterm birth, the cascade
of events culminating in birth is transposed earlier in gestation. iNOS, induced nitric oxide synthase; IL8, interleukin 8;
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completed a survey about lifestyle, psychosocial and health care utilisation (prenatal care, social
support, symptoms of stress, anxiety and depression, and breastfeeding) at<25 weeks, 34–36
weeks of gestation and 4 months postpartum [23].

Detailed inclusion and exclusion criteria for the AOB study have been described [24].
Briefly, inclusion criteria were�18 years of age, gestation age<18 weeks at time of recruitment
and singleton pregnancy. Exclusion criteria were multifetal pregnancy and pre-existing medical
conditions (diabetes, high blood pressure, autoimmune disorders, kidney disease, cardiovascu-
lar disease or chronic infection). Clinical and antenatal records were extracted from the Alberta
Health electronic database. Women who had PTB were confirmed by a manual review of the
medical charts. Clinical data were unavailable for four women who delivered out of province at
term. Fig 2 summarises the patient recruitment, patient phenotyping and selection process.

Spontaneous preterm labour (SPTL) is defined as spontaneous onset of labour�37 weeks
of gestation resulting in preterm delivery. Preterm prelabour rupture of membranes (PPROM)
is defined as spontaneous rupture of membranes at<37 weeks without labour, onset of sponta-
neous labour occurred at least 60 min after PPROM and subsequent preterm delivery. Term
delivery is birth at�37 weeks of gestation irrespective of spontaneous onset or induction, vagi-
nal delivery or caesarean section. In Calgary, anaemia is defined as<120 g/L of haemoglobin;
oligohydramnios and polyhydramnios are diagnosed using an amniotic fluid index of<5 cm
and>20 cm, respectively. Antepartum haemorrhage is defined as recurrent haemorrhage at
�20 or>20 weeks of gestation. Urinary tract infection (UTI) was indicated positive by either
microscopic or macroscopic urinalysis, or culture. Demographic, clinical, labour and delivery
variables were analysed using one-way ANOVA, Student’s t-test, Chi-squared test or Fisher’s
exact test (R, version 3.2.1).

Sample Collection and Processing
Maternal blood samples were collected at 17–23 (time point 1, T1) and 27–33 weeks of gesta-
tion (time point 2, T2) into four PAXgene blood RNA tubes (PreAnalytix/BD Canada, Missis-
sauga, ON, Canada) and stored at -80°C until analysis.

RNA Extraction, Quality Check and Microarray
Total RNA was extracted using the PAXgene blood RNA Kit (PreAnalytix/QIAGEN, Toronto,
ON, Canada) adhering to the manufacturer’s protocol. All samples had RNA integrity number
of>7 (RNA 6000 Nano Kit and Agilent 2100 BioAnalyzer; Agilent Technologies, Santa Clara,
CA) and were hybridised to Affymetrix Human Gene 2.1 ST (Affymetrix, Santa Clara, CA).
Microarray was performed by The Centre for Applied Genomics (TCAG; The Hospital for
Sick Children, Toronto, ON, Canada). Data were deposited into the National Center for Bio-
technology Information Gene Expression Omnibus (accession number: GSE59491; https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE59491).

Differential Gene Expression Analyses
Microarray CEL files were normalised using Robust Multi-array Average (Bioconductor, R)
[25], probes were annotated using Custom (Gene)Chip Definition Files for Entrez Gene (ver-
sion 18) [26], gene expression lower than the 25th percentile were removed, and differential
gene expression was analysed using limma [27] with multiple hypothesis testing (false

HA, hyaluronan; GAGs, glycosaminoglycans; T1, study samples collected at 17–23 weeks of gestation; T2, study
samples collected at 27–33 weeks of gestation. Illustrations adapted fromWord et al [18].

doi:10.1371/journal.pone.0155191.g001
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Fig 2. Flowchart outlining the recruitment, patient phenotyping and sample selection process for this study.

doi:10.1371/journal.pone.0155191.g002
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discovery rate, FDR). limma analyses were adjusted for gestational age at sampling, significant
demographic or clinical variables when appropriate (see S1 Text). Differential gene expression
was initially performed between SPTL and PPROM at T1 or T2 to determine if any gene was
differentially expressed between these two subtypes of SPTB. There was no differentially
expressed gene between SPTL and PPROM, thus, SPTL and PPROM were combined into a
SPTB group for all subsequent analyses. Five limma analyses were conducted. The first two
limma analyses determined genes differentially expressed between women who had SPTBs and
term deliveries at (1) T1 or (2) T2.

Investigating the temporal gene expression from T1 to T2 provides information about the
progression of pregnancies that result in normal term deliveries or SPTBs. Hence, the third
and fourth limma analyses were performed to identify genes displaying temporal changes from
T1 to T2 within women who had (3) SPTB or (4) term deliveries. The fifth analysis was con-
ducted to identify (5) genes whose expression fold change from T1 to T2 were different between
SPTBs and term deliveries. Genes with FDR<0.05 were selected for qRT-PCR validation.

Gene Set Enrichment
Pre-ranked Gene Set Enrichment Analyses [28] was utilised to determine significantly enriched
gene sets/pathways (Gene Ontology Biological Processes, Reactome, KEGG and BioCarta, ver-
sions 5.1) between women who had SPTBs and term deliveries at (1) T1 or (2) T2; gene sets
associated with temporal changes within women who had (3) SPTBs or (4) term deliveries, and
(5) gene sets that reflect the difference in gene expression fold change between SPTB and term
delivery.

Qualitative Real Time PCR
Genes (limma FDR<0.05) that displayed>25% increase or>15% decrease, and CEL files with
arbitrary intensity expression values of at least four were selected for qRT-PCR validation [29–
31]. Primers were designed using Primer BLAST; pooled cDNA (paired samples from six
women) were used to determine primer specificity and efficiency; and primer efficiencies
(90%-105%) were determined using five-point standard curves. qRT-PCR was carried out in
quadruplicate and quantification cycle (Cq) of all genes were<32. Gene expression was ana-
lysed using the 2(-Delta Delta Ct) method. Using CFX Manager 3.1 (BIO-RAD, Hercules, CA),
qRT-PCR expression data were corrected for primer efficiencies and normalised to the geomet-
ric mean Cq of three optimised housekeeping genes (TBP, SDHA and YWHAZ [31]; average
expression stability was M<0.5 [32]) to obtain the first Delta Ct. Wilcoxon test was used to
compare the relative gene expression between paired samples (second Delta Ct). Correlation
between microarray and qRT-PCR was performed using Spearman’s rho.

Multivariate Models Associated with Spontaneous Preterm Birth
Three multivariate models were constructed to identify gene expression at T1 (Model A), T2

(Model B), and gene expression fold change from T1 to T2 (Model C) associated with SPTB
(Statistical Analysis System, version 9.3, SAS Institute Inc, Cary, NC). Clinical factors occurring
before T1 or T2 that were significant in univariate analyses were entered into separate clinical
factor multivariate logistic regression analyses. Clinical factors occurring before T1 that
remained significant in the multivariate clinical factor analysis were adjusted for in Model A;
and significant clinical factors occurring before T2 in the multivariate clinical factor analysis
were included for Models B and C. Gestational age were also accounted for in the Models (S1
Text). To assess validity, each Model was subjected to ten five-fold cross-validation with gene
selection occurring at every fold. To evaluate the importance and effect of adjusting gene
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expression with clinical factors, models were also built without clinical factors (i.e. using gene
expression only; S1 Text). The probability cut-off was 0.5, predictive performances such as area
under receiver operator characteristic curve (ROC AUC) are the average of ten cross-validation
runs. ROC AUCs were graphed using ROCR, R [33].

Results
After excluding iatrogenic PTB, there were 51 SPTB cases where 10 were extreme SPTB (<32
weeks) and four delivered before T2. The average time from PPROM until labour onset was
27.7 hours. Power calculations indicated that a control group of at least 85 term women was
required to match 51 SPTB, with an effect size of 0.5, significance level of 0.05 and power of
0.8. Term delivery controls (n = 114, power = 0.84) were matched to SPTB cases drawn from
baseline survey at<25 weeks of gestation by parity (no previous birth/at least one previous
birth), maternal age (<35 years versus�35 years), pre-pregnancy body mass index (<18.5 kg/
m2, 18.5–24.9 kg/m2, 25–29.9 kg/m2,�30 kg/m2), ethnicity (Caucasian versus non-Caucasian),
and pre-pregnancy smoking status (yes/no). A total of 326 microarrays (165 women) were per-
formed. Eleven clinical variables were significantly associated with SPTB (Table 1).

Differential Gene Analysis using limma
There was no differentially expressed gene at FDR<0.05 but at FDR<0.10, there were 0 and 26
differentially expressed genes between women who had SPTB and term delivery at T1 and T2,
respectively. There were 234 and 2329 genes that displayed significant temporal differences
within women who had SPTBs or term deliveries, respectively (FDR<0.05). There was no gene
whose expression fold change was significantly different between SPTB and term delivery. All
differential gene expression data are in S1 Table.

Gene Set Enrichment
Significantly enriched gene sets are in S2 Table (FDR<0.05). At both sampling time points,
gene sets and pathways associated with inflammation were upregulated in women with SPTBs
compared to women who had term deliveries (n = 37 upregulated gene sets at T1, n = 103 at T2;
22 common gene sets). These inflammatory pathways include leukocyte migration, lysosomes,
NF-kB activation, pathways involving cytokines and their receptors (e.g. IL1, IL2, IL6, IFN,
IL1R, TNFR2, CCR3, CXCR4 and CD40) as well as toll-like and NOD-like receptor signalling.
In contrast, women with SPTBs had lower RNAmetabolism, RNA processing and T cell activa-
tion (including CTLA4 pathway) compared to women who had term deliveries (n = 163 down-
regulated gene sets at T1, n = 100 at T2; 77 common gene sets).

As pregnancy progressed from T1 to T2, women who had SPTBs demonstrated increased
cellular proliferation, cell migration signalling pathway (by L1) and extracellular matrix degra-
dation involving lysosomes (n = 32 upregulated gene sets), and decreased cellular transcription
(n = 1 downregulated gene set). In women with term deliveries, there was increased signalling
for cell migration, haemostasis, apoptosis and immune response (n = 114 upregulated gene
sets); while there was decreased lymphocyte activation and NCAM cell adhesive interactions as
pregnancy progressed to T2 (n = 36 downregulated gene sets). When investigating whether any
gene set was enriched for genes whose expression fold change were different between SPTBs
and term deliveries, there was no up-regulated gene set but “membrane fusion” (n = 1) was sig-
nificantly down-regulated in SPTB.
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Table 1. Demographic, clinical, labour and delivery characteristics of the 165 participants.

Spontaneous Preterm Birth (SPTB) Term Birth SPTL vs PPROM vs
Term

SPTB vs Term

SPTL PPROM SPTL and PPROM p-value p-value

Patient Demographics

Women, n 15 36 51 114

Maternal age, mean
years±SD

31.1±4.9 31.3±4.6 31.2±4.7 31.1±4.7 0.910 0.850

Pre-pregnancy BMI,
mean±SD

21.9±2.8 26.6±9.1 25.3±8.0 25.8±72 0.321 0.702

Ethnicity 0.559 0.946

Caucasian, n (%) 10 29 39 (76.5) 85 (74.6)

Non-Caucasian, n
(%)

5 7 12 (23.5) 29 (25.4)

Smoking during
pregnancy

0.379 0.367

Yes, n (%) 2 8 10 (19.6) 14 (12.7)

No, n (%) 13 28 41 (80.4) 96 (87.3)

Consumption of
alcohol during
pregnancy

0.021 0.038

Yes, n (%) 3 4 7 (13.7) 4 (3.6)

No, n (%) 12 32 44 (86.3) 106 (96.4)

Clinical Characteristics

Gravidity, mean±SD 2.7±1.7 2.0±1.3 2.2±1.4 2.0±1.2 0.109 0.410

Parity 0.480 0.984

Nulliparous, n (%) 6 21 27 (52.9) 60 (54.5)

Multiparous, n (%) 9 15 24 (47.1) 50 (45.5)

History of previous
PTB

0.001 0.001

Previous PTB, n
(%)

4 7 11 (21.6) 4 (3.6)

No previous PTB, n
(%)

11 29 40 (78.4) 106 (96.4)

History of abortion 0.002 0.001

At least one
abortion, n (%)

5 9 14 (27.5) 8 (7.3)

No previous
abortion, n (%)

10 27 37 (72.5) 102 (92.7)

Mode of conception 0.188 0.267

Spontaneous
conception, n (%)

13 34 47 (92.2) 106 (96.4)

Assisted
reproductive
technologies, n (%)

2 2 4 (7.8) 4 (3.6)

Oligohydramnios 0.800 1.00

Present, n (%) 0 2 2 (3.9) 4 (3.6)

Absent, n (%) 15 34 49 (96.1) 106 (96.4)

Polyhydramnios 0.002 0.094

Present, n (%) 3 0 3 (5.9) 1 (0.9)

Absent, n (%) 12 36 48 (94.1) 109 (99.1)

(Continued)
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Table 1. (Continued)

Spontaneous Preterm Birth (SPTB) Term Birth SPTL vs PPROM vs
Term

SPTB vs Term

SPTL PPROM SPTL and PPROM p-value p-value

Gestational
diabetes during
pregnancy

0.216 0.350

Present, n (%) 2 3 5 (9.8) 5 (4.5)

Absent, n (%) 13 33 46 (90.2) 105 (95.5)

Antepartum
haemorrhage
during pregnancy

0.004 0.009

�1 episode of
bleeding, n (%)

7 9 16 (31.4) 14 (12.7)

None, n (%) 8 27 35 (68.6) 96 (87.3)

Antepartum
haemorrhage <20
weeks of gestation
(i.e. threatened
miscarriage)

0.419 0.353

�1 episode, n (%) 3 6 9 (17.6) 12 (10.9)

None, n (%) 12 30 42 (82.4) 98 (89.1)

Antepartum
haemorrhage >20
weeks of gestation

0.021 0.262

�1 episode, n (%) 6 4 10 (21.3) 14 (12.7)

None, n (%) 8 29 37 (78.7) 96 (87.3)

Urinary tract
infection during
pregnancy

<0.001 0.001

Present, n (%) 4 3 7 (14.0) 1 (0.9)

Absent, n (%) 11 32 43 (86.0) 109 (99.1)

Urinary tract
infection before first
study sample

0.029 0.029

Present, n (%) 1 2 3 (6.0) 0 (0.0)

Absent, n (%) 14 33 47 (94.0) 110 (100.0)

Urinary tract
infection before
second study
sample

<0.001 0.003

Present, n (%) 3 2 5 (10.0) 0 (0.0)

Absent, n (%) 12 33 45 (90.0) 110 (100.0)

Anaemia during
pregnancy

<0.001 <0.001

Anaemic, n (%) 4 8 12 (23.5) 3 (2.7)

Non-anaemic, n (%) 11 28 39 (76.5) 107 (97.3)

Anaemia before first
study sample

0.099 0.099

Present, n (%) 0 2 2 (3.9) 0 (0.0)

Absent, n (%) 15 34 49 (96.1) 110 (100.0)

Anaemia before
second study
sample

<0.001 <0.001

(Continued)

Gene Expression Associated with SPTB in Asymptomatic Women

PLOSONE | DOI:10.1371/journal.pone.0155191 June 22, 2016 9 / 17



qRT-PCR Validation
Validation was performed on 192 samples randomly chosen from 48 women who had term
deliveries (96 paired-samples) and 50 SPTBs (92 paired-samples, 4 single samples at T1). This
resulted in using two 384-well plates to screen for each gene of interest. Genes which had sig-
nificant temporal expression within women who had SPTBs or term deliveries were subjected
to validation (S3 Table). Thirteen unique genes were successfully validated using qRT-PCR
(p<0.05, Wilcoxon test). There was a significant correlation between microarray and qRT-PCR
data (Spearman’s rho = 0.934, p<0.001).

Multivariate Models Associated with Spontaneous Preterm Birth
Clinical Factors. Significant clinical variables determined after delivery (placental abrup-

tion, chorioamnionitis, gestational age at delivery and birth weight), during late gestation
(Group B streptococcus) or those that did not achieve significance before T2 were not consid-
ered. Significant clinical factors with events occurring before T1 were alcohol consumption, his-
tory of PTB, history of abortion and UTI before T1. History of PTB (p = 0.0024) and history of

Table 1. (Continued)

Spontaneous Preterm Birth (SPTB) Term Birth SPTL vs PPROM vs
Term

SPTB vs Term

SPTL PPROM SPTL and PPROM p-value p-value

Present, n (%) 4 8 12 (23.5) 1 (0.9)

Absent, n (%) 11 28 39 (76.5) 109 (99.1)

Group B
Streptococcus in
vaginal tract (>36
weeks of gestation)

0.071 0.043

Present, n (%) 2 2 4 (7.8) 24 (21.8)

Absent, n (%) 13 34 47 (92.2) 86 (78.2)

Placenta Praevia 0.143 0.327

Present, n (%) 0 3 3 (5.9) 2 (1.8)

Absent, n (%) 15 33 48 (94.1) 108 (98.2)

Labour and Delivery Characteristics

Abruptio Placentae 0.004 0.004

Yes, n (%) 1 5 6 (11.8) 1 (0.9)

No, n (%) 14 31 45 (88.2) 109 (99.1)

Chorioamnionitis 0.004 0.004

Yes, n (%) 1 5 6 (11.8) 1 (0.9)

No, n (%) 14 31 45 (88.2) 109 (99.1)

Gestational age at
delivery, mean
weeks±SD

33.5±2.6 33.6±2.6 33.6±2.6 39.2±1.2 <0.001 <0.001

Birth weight, mean
grams±SD

2257±551 2363±618 2332±596 3384±473 <0.001 <0.001

Neonatal Gender 0.683 0.601

Male, n (%) 8 22 30 (58.8) 71 (64.5)

Female, n (%) 7 14 21 (41.2) 39 (35.5)

Spontaneous preterm labour (SPTL); preterm prelabour rupture of membranes (PPROM); for continuous variables, one-way ANOVA or Student’s t-test
was used for comparison; for categorical variables, Chi-squared test or Fisher’s test (when category size �4) was used.

doi:10.1371/journal.pone.0155191.t001
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abortion (p = 0.0025) remained significant in the clinical factor multivariate analysis and were
adjusted for in Model A. Alcohol consumption, history of PTB, history of abortion, UTI before
T2 and anaemia before T2 were significant clinical factors with events occurring before T2; his-
tory of abortion (p = 0.0002) and anaemia before T2 (p = 0.0003) remained significant in the
clinical factor multivariate analysis and were included in Models B and C.

Multivariate Gene Expression Models. After adjusting for gestational age and clinical fac-
tors, candidate genes were incorporated into multivariate logistic regressions (stepwise selec-
tion) to build Models A, B and C (Table 2). As the prevalence of SPTB in this study was 31%
(51 SPTB out of 165 total deliveries; higher than the average PTB rate of 10%), positive and
negative predictive values, and false positive and negative rates must be interpreted with cau-
tion as these values are dependent on the prevalence of the disease, i.e. PTB in the study popu-
lation, whilst sensitivity, specificity and ROC AUC are prevalence independent.

The ROC AUCs of Models A, B and C with clinical factors were 11.0%, 12.0% and 10.9%
higher than the ROC AUCs of their corresponding Models without clinical factors (Fig 3). This
resulted in 18.3%, 34.8% and 23.0% increased sensitivity, and 3.4%, 0.9% and 4.7% increased
specificity in Models A, B and C with clinical factors, respectively, when compared to Models

Table 2. Multivariate models (Models A, B and C) associated with spontaneous preterm birth (SPTB) at 17–23 (T1) and 27–33 (T2) weeks of
gestation.

Average of ten five-fold cross validations (cut-off = 0.5)

ROC AUC Sensitivity (%) Specificity (%) Positive
Predictive
Value* (%)

Negative
Predictive
Value* (%)

False Positive
Rate* (%)

False Negative
Rate* (%)

SPTB models with gene expression and significant clinical factors included

A ZNF605,
LRRC41,

PCDHGA12,
ABT1, THBS3,
VNN1, history of
PTB and history

of abortion

0.780 52.4 84.3 61.0 79.2 15.7 47.6

B LOC100128908,
CST13P, EEF1D,
RPH3A, TRBV6-

6, PLEC,
MIR601, ZNF16,

history of
abortion and
anaemia

0.838 62.3 87.3 67.8 84.5 12.7 37.7

C LOC100128908,
MIR3691,

LOC101927441,
CST13P,

ACAP2, ZNF324,
SH3PXD2B,

TBX21, history of
abortion and
anaemia

0.841 64.7 88.3 70.1 85.4 11.7 35.3

SPTB models with gene expression only

A - 0.703 44.3 81.5 52.5 76.0 18.5 55.7

B - 0.748 46.2 86.5 59.6 79.0 13.5 53.8

C - 0.758 52.6 84.3 58.7 80.7 15.7 47.4

Area under receiver operator curve (ROC AUC)

*As the prevalence of SPTB in this study was 31% (51 SPTB and 114 term deliveries), positive predictive value, negative predictive value, false positive

rate and false negative rate must be interpreted with caution as they are dependent on the prevalence of the disease, i.e. PTB in the study population,

whilst sensitivity, specificity and ROC AUC are prevalence independent.

doi:10.1371/journal.pone.0155191.t002
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without clinical factors. Models B and C were more sensitive than Model A (62.3% and 64.7%
versus 52.4%), most likely due to the shorter time frame from sampling at T2 to SPTB (average
of 4.7 weeks after T2).

Discussion
This study profiled pregnant whole blood mRNA and investigated the association of whole
blood gene expression with impending SPTB in asymptomatic women at two clinically relevant
time points. T1 generally corresponds to when fetal anatomy ultrasound scan is performed and
T2 is when blood is collected for gestational diabetes screening. This large, paired and unique
dataset also provide glimpses of pregnancy progression that result in either SPTB or term deliv-
ery. The eleven clinical variables significantly associated with SPTB agree with previous reports
[13, 34–39]. Although the association of inflammation with the general physiology of labour at
term or preterm gestation is well documented [22, 31, 40, 41], our paired data and gene set
enrichment analyses show for the first time, that inflammation is consistently elevated at 17–23
and 27–33 weeks of gestation in the blood of asymptomatic women who had SPTBs compared
to women with term deliveries. Lastly, the integration of clinical data alongside gene expression
enhanced the sensitivity of our models to predict SPTB.

Gene set analyses provide biological knowledge of how genes interact and orchestrate path-
ways. Despite not observing any significant gene at FDR<0.05, numerous gene sets were signif-
icantly associated with SPTB. We hypothesized that circulating maternal leukocytes pick up
‘signals’ from gestational tissues and respond by altering their gene expression. The most strik-
ing gene set enrichment result was that women who had SPTBs have increased interleukin sig-
nalling, mainly driven by IL1 and IL6, and leukocyte migration into gestational tissues as early
as 18 weeks compared to women who had term deliveries. The early migration of leukocytes
into the cervix may accelerate its ripening process and lead to SPTB (Fig 1C) [18, 42]. The
increased signalling of IL1 and IL6 can also contribute to SPTB by increasing oxytocin and
prostaglandin production leading to accelerated cervical ripening [43–45], early myometrial
contractions [46–48] and premature fetal membranes rupture [49, 50].

Our AOB cohort is representative of the pregnant population in urban centres across Can-
ada [23, 51]. The SPTB rate in the state of Alberta is 6.2% [52]. We expected about 110 SPTBs
from 1878 AOB participants, but only 51 SPTBs were identified after manual chart review.
Thus, our AOB population was not enriched with women at high risk of SPTB. Nevertheless,
the predictive models developed in our AOB cohort may offer unique possibilities for research,
clinical care and resource utilization. The key to preventing SPTB is the early identification of
asymptomatic women at increased risk. The ability to identify these women can aid study
groups to focus on high risk women and avoid unnecessary (and expensive) research on those
destined for term delivery when evaluating new interventions to prevent PTB. The develop-
ment of a SPTB predictive tool will also allow further refinement of the subsets of women who
will benefit from the existing preventive strategies of progesterone therapy [8, 53], cervical
cerclage [54, 55] or pessary [56].

Many research studies have investigated tools to identify high-risk asymptomatic women.
For example, the absence of fFN in the cervicovaginal fluid is a classic negative predictor of
PTB [14, 15], especially for symptomatic women [57]. Dekker et al. reported average predictive
capacity for SPTB and PPROM using clinical risk factors, cervical length and uterine artery
Doppler ultrasound measurements at 19–21 weeks of gestation [11]. They also reported a mini-
mal overlap of risk factors for SPTB and PPROM, highlighting the heterogeneous condition of
PTB. We attempted but were unable to separately assess SPTL and PPROM due to small sam-
ple sizes. Kuhrt et al. recently developed a validated tool comprising of cervical length, fFN,
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history of SPTB/PPROM to predict high-risk asymptomatic women with ROC AUCs ranging
from 0.77 to 0.99, sensitivity between 54.5% and75.0%, and specificity between 63.5% and
97.7% [13]. The performances of our Models B and C are comparable to Kuhrt et al. In addi-
tion, it might be more advantageous to screen for biomarkers in maternal blood as blood is eas-
ily accessible, minimally invasive and can be collected in most women as part of standard

Fig 3. The area under receiver operator characteristic curves of Models A, B and C after ten five-fold cross-validation (CV) runs. These three
multivariate models were constructed to identify gene expression associated with spontaneous preterm birth (SPTB) at 17–23 weeks (A; Model A)
and 27–33 weeks (B; Model B); and gene expression fold change from 17–23 to 27–33 weeks of gestation associated with SPTB (C; Model C).
Models with clinical factors are represented using solid lines; Models without clinical factors are represented using dotted lines. The rainbow bar on
the right of each plot displays cut-off probabilities. The colour of the points along the average CV curve reflects its respective cut-off probability to
obtain the desired sensitivity and specificity.

doi:10.1371/journal.pone.0155191.g003

Gene Expression Associated with SPTB in Asymptomatic Women

PLOSONE | DOI:10.1371/journal.pone.0155191 June 22, 2016 13 / 17



antenatal care [31, 58]. This is in contrast to fFN screening where the test is limited to a subset
of eligible women, e.g. had no prior vaginal/cervical examination, unprotected sexual inter-
course and/or antepartum haemorrhage.

Models B and C are promising SPTB screening tools since most PTBs occur after 28 weeks
of gestation [59]. The slight difference in predictive efficacies between Models B and C, and the
simplicity of obtaining one sample at T2 makes Model B more clinically applicable. It is impor-
tant to note that although the predictive efficacies for our Models were reported using a 0.5
cut-off (Table 2), cut-off probability thresholds can be tailored for clinical use, e.g. a higher sen-
sitivity test is required to predict SPTB (Fig 3). Collectively, given the multiple aetiologies of
SPTB, a set of diagnostic markers including biochemical, clinical variables, cervical length as
well as whole blood gene expression may improve SPTB prediction in asymptomatic women in
the future.

In conclusion, this current work has shown that clinical factors and whole blood gene
expression are associated with SPTB in asymptomatic women. Gene set enrichment analyses
revealed elevated inflammation in women who had SPTBs. Our study did not assess fFN or
cervical length data as they were not routinely collected. More studies are needed in other
populations to validate our Models and compare them with fFN and/or cervical length.
Additional factors such as psychosocial (e.g. prenatal stress and anxiety) can also be
included. The ability to implement an effective screening test during antenatal care for
SPTB would enable strategic and personalised antenatal care, to improve outcomes for
infants and families.
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