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Abstract
Unmanned aerial vehicle (UAV) has been widely used in many industries. In the medical

environment, especially in some emergency situations, UAVs play an important role such

as the supply of medicines and blood with speed and efficiency. In this paper, we study the

problem of multi-objective blood supply by UAVs in such emergency situations. This is a

complex problem that includes maintenance of the supply blood’s temperature model dur-

ing transportation, the UAVs’ scheduling and routes’ planning in case of multiple sites

requesting blood, and limited carrying capacity. Most importantly, we need to study the

blood’s temperature change due to the external environment, the heating agent (or refriger-

ant) and time factor during transportation, and propose an optimal method for calculating

the mixing proportion of blood and appendage in different circumstances and delivery con-

ditions. Then, by introducing the idea of transportation appendage into the traditional

Capacitated Vehicle Routing Problem (CVRP), this new problem is proposed according to

the factors of distance and weight. Algorithmically, we use the combination of decomposi-

tion-based multi-objective evolutionary algorithm and local search method to perform a

series of experiments on the CVRP public dataset. By comparing our technique with the tra-

ditional ones, our algorithm can obtain better optimization results and time performance.

Introduction
In natural disaster zones where there are serious casualties, it is sometimes necessary to send
blood supplies to the injured on their spots instead of bringing them to the hospital for blood
infusion due to inaccessibility. With the advancement of unmanned aerial vehicles (UAV)
technology (like UAV surveillance[1], traffic monitoring[2], rescue mission[3] and aerial pho-
tography[4]) for use in rugged environment, it is easier to substitute UAVs for traditional
transportation (such as vehicles, helicopter) in some emergency situations. However, in the
event of numerous casualties, a computer program is required to effectively deploy UAVs to
their designated locations. This is similar to the travelling salesman problem (TSP) in which
the shortest path to be traversed by the salesman to a series of location points is to be
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determined. However, in real applications, it is much more complicated than the traditional
route planning problem, which involves many sub problems such as multiple UAVs’ schedul-
ing, blood’s temperature change during transportation and the different demand of blood in
different areas.

The logistics routing problem was firstly proposed by Assad et al. in 1983[5]. The traditional
Vehicle Routing Problem (VRP) focuses on how to make the lowest cost when using only one
car to send goods from the warehouse to several customers. This problem has been widely
studied in many fields, such as network and logistics. In reality, different conditions and situa-
tions also bring different constraints to the traditional problem, thus it is extended continu-
ously. For instance, Capacitated VRP (CVRP) [6] limits the vehicle’s carrying capacity, Time-
dependent VRP (TDVRP) [7] focuses on the transport time constraints, Multi-depot VRP
(MDVRP) [8] introduces multiple starting points into the original problem, and Periodic VRP
(PVRP) [9] requires the vehicles’ route planning to be some of time periodicity. At the same
time, people are concerned with not only the economic cost in the optimization process, but
also the time cost, no-load ratio, etc. For example, in the green logistics [10,11,12,13], people
also study the carbon emission problem where the routes in VRP are related to the vehicle
emissions.

VRP is a typical NP-hard combinatorial optimization problem [14]. Specifically, when the
scale of the problem is not big, the exact algorithm can be used to obtain the optimal solution,
such as integer linear programming [15], dynamic programming [16], etc. But with the incre-
ment of scale, it is sometimes difficult to solve it in polynomial time. Therefore, we need to use
the approximate algorithm to obtain a near-optimal solution. Currently, many researchers use
the typical meta-heuristics algorithm [17] to solve the VRP, such as the tabu search [18], simu-
lated annealing [19] in local search method, the bee colony algorithm [20], ant colony algo-
rithm [21] and genetic algorithm [22] in population search method.

Our proposed blood supply problem is an extension to the original CVRP. In the CVRP,
there are n customers in different locations on the map and each customer has a personal need
di. Also, there are several vehicles which have the same carrying capacity Q (Q>max{di|
1�i�n}). We need to arrange and delegate these vehicles to satisfy the need of the injured per-
sonnel (our customers). However, each customer can only accept service from one vehicle,
each vehicle from the warehouse will finally return without overload during the trip, and the
goal of this problem is to minimize vehicles’mileage. But our problem is to supply the blood to
several blood needing places by UAVs which has a limited carrying capacity. However, the
blood is transported in the form of blood bags and its temperature will affect its quality, so we
need to use the heating agent or refrigerant to keep the temperature in an appropriate range, at
the same time, the amount of blood needed or the length of path will affect the weight of the
required heating agent or refrigerant. Therefore, the payload of the UAV will be reduced.
Because a UAV may need to supply several places in one task, and so the longer the trip, the
more heating agent or refrigerant it needs. If we only try to minimize the vehicles’mileage, it
may increase the number of UAVs that is required. In real application, the distance cost is not
the only cost in one trip of the UAV, so it is more meaningful to reduce the number of flights.
Therefore, we may treat the distance cost and the number of flights as our objectives, which
should be optimized in our model. We use the decomposition-based multi-objective evolution-
ary algorithm to solve this problem and compare it with the traditional multi-objective CVRP
algorithm. The experimental result shows that our method can generate a better solution in an
acceptance time.

The rest of this paper is organized as follows. In Section 2, we provide a problem definition
of the new UAV-based Capacitated Vehicle Routing Problem (UCVRP). Decomposition-based
multi-objective evolutionary algorithm with detailed explanation is discussed in Section 3 to
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solve the new UVCRP. Section 4 gives experimental results. In our experiments, we obtain the
relationship among the weight of blood, the heat agent and the route in a certain circumstance,
and we also conduct the comparison on the well-acknowledged benchmark instances. The con-
clusions and further work are drawn in the last section.

Problem Definition
A group of UAVs U = {u1,. . .,um} transport the blood bags to each blood needing place from
the warehouse. The warehouse (starting point) and several blood needing places forms a bi-
directional graph G = (V,E); V = {v0,v1,. . .,vn} that consists of the n + 1 nodes in the graph and
E = {(i,j)|i,j 2 V,i 6¼ j} is the set of edges; v0 stands for the starting point while v1,. . ., vn are n
blood needing places, and eij is the flight distance between vi and vj. Each UAV has a limited
carrying capacity w, the amount of blood each blood needing place needs is di, each blood
needing place can be supplied at most once, and the UAV will return to the starting point after
finishing its task (Fig 1).

During live blood transportation, in order to keep the temperature of the blood within
2–10°C [23], when the environment temperature is below -5°C, some heating agent (hot water)
will be placed with the blood bags during the transit. Also, when the environment temperature
is higher than 15°C, the refrigerant (ice) will be needed. The hot water and the ice will be called
as appendages in the rest of the paper. We hope to have a more reasonable arrangement of the
appendages in order to reduce their impact on the payload of UAVs.

In the mathematical model of heat conduction [24], the exothermic process of the hot water
is similar to the endothermic process of the ice. For a place vi, the former is defined as follows:

�c1 � pi
@t1
@t

¼ ðt1 � t3Þ � g11 þ ðt1 � t2Þ � g31; ð1Þ

�c2 � di

@t2
@t

¼ ðt2 � t3Þ � g21 þ ðt2 � t1Þ � g31: ð2Þ

The physical meaning of Eq (1) is that the hot water’s releasing heat to the environment and
the blood results in the reduction of its enthalpy. Eq (2) denotes the enthalpy reduction of the

Fig 1. An example of UAV flight plan for multiple disaster areas.

doi:10.1371/journal.pone.0155176.g001
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blood owning to the heat releasing from the blood to the environment and the hot water. The
temperature of the blood will rise when the heat from the hot water is greater than the heat
flow to the environment; otherwise, it will drop. When the initial temperature of the hot water,
t1(0), the initial temperature of the blood t2(0) and the temperature of the environment, t3, are
known, we can solve the differential equations. Table 1 summarizes the notations used in the
heat conduction model.

In this model, c1, c2, g11, g21 and g31 are constants and relate to the physical characteristics of
blood, water and the material of the container respectively. The flight time, τ, is determined by
the flight distance, si. Therefore, when t3, t1(0) and t2(0) are given as input values of a specific
application environment, the weight of hot water, pi, can be calculated according to Eqs (1) and
(2).

Usually, the typical UAV that is used in the emergency situation has a limited flight dis-
tance. Therefore, we assume that all the blood needing places are within the reach of UAV and
the weight of blood (possible appendages) is not exceeding the carrying capacity. In the UAV
scheduling process,m UAVs will start from the starting point at the same time and complete
the task within one trip. Our goal is to minimize the total mileage and the number of UAVs.

Based on the above model, we can define a complete UAV blood supply route planning
problem as follows:

xijk is a Boolean variable, xijk = 1 indicates that the UAV uk flies from vi the vj, otherwise,
xijk = 0.

yik is a Boolean variable, yik = 1 indicates that the UAV uk supplies the vj, otherwise, yik = 0.
Sk is a set of nodes visited by the UAV uk.

minZ1 ¼
Xn

i¼0

Xn

j¼0

Xm
k¼1

eij�xijk; ð3Þ

minZ2 ¼ m; ð4Þ

s:t:

Xn

i¼1
ðdi þ piÞ � yik � w; 8kXm

k¼1
x0jk � m;8jXm

k¼1
yik ¼ 1; 8i; i 6¼ 0Xn

i¼0
xijk ¼ yjk; 8j; j 6¼ 0; i 6¼ j; 8kXn

j¼0
xijk ¼ yik; 8i; i 6¼ 0; i 6¼ j; 8k

X
i2Sk

X
j2Sk

xijk ¼ jSkj; 8k

Sk1 \ Sk2 ¼ f0g; 8k1; 8k2
[
k
Sk ¼ f0; . . .; ng

0 2 Sk; Sk � f0; . . .; ng; 2 � jSkj � n

xijk ¼ f0; 1g; 8i; j; k
yik ¼ f0; 1g; 8i; j; k

: ð5Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Objective 1: Eq (3) is used to calculate the total mileage of UAVs, and we minimize the total
mileage by obtain the shortest path for each UAV.
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Objective 2: Eq (4) is used to obtain the optimal scheduling for minimizing the number of
UAVs.

Eq (5) is the constraint for Objective 1 and 2.
Constraint 1: The UAV cannot be overloaded.
Constraint 2: The number of UAVs must be not more thanm.
Constraint 3: Each blood needing place can only be visited and served by one UAV.
Constraint 4: Each blood needing place is only accessed once.
Constraint 5: Only one UAV departs from each blood needing place.
Constraint 6: The number of edges passed by each UAV is equal to the number of nodes vis-

ited by itself.
Constraint 7: Each UAV has to visit the starting point.
Constraint 8: All of the routes of UAVs cover all nodes.
Constraint 3,4,5,6,7,8: All routes should be formed as loops

Method
UCVRP is a multi-objective problem [25], which attempts to minimize the total distance and
the number of required vehicles. The multi-objective optimization is different from the single
objective optimization, which will generate a Pareto optimal set having a trade-off between
multi objectives. Multi-objective evolutionary algorithms usually initialize a set of random
solutions and iteratively generate new ones by selection, crossover, mutation, local search and
etc. (as shown in Fig 2)

When dealing with the multi-objective problem, we usually make use of the evolutionary
algorithm in two ways. The first is based on the definition of Pareto dominance. By using the
non-dominated sort [27], the population will be divided into several levels where the lower
level means the better and the non-dominated individuals in the evolution will be reserved by
elitist strategy. The second is the decomposition-based multi-objective evolutionary algorithm
framework [28]. In this way, the original multi-objective optimization problem will be decom-
posed into a certain number of single objective sub-problems and each sub-problem is a single
objective optimization problem. Thus, the traditional single objective optimization algorithm
can be extended and applied in this framework. In this paper, we extend the MOEA/D algo-
rithm framework [28] and use it to solve the UCVRP.

Table 1. Notations used in the Heat Conduction Model.

Notation Meaning

t1 Current temperature of the hot water

t2 Current temperature of the blood

t3 Temperature of the environment

c1 Specific heat capacity of the hot water

c2 Specific heat capacity of the blood

g11 Heat conductance between the hot water and the container

g21 Heat conductance between the blood and the container

g31 Heat conductance between the container and the environment

t1(0) Initial temperature of the hot water

t2(0) Initial temperature of the blood

τ Flight time

pi Weight of the hot water needed for place vi
di Weight of the blood needed for place vi

doi:10.1371/journal.pone.0155176.t001
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Chromosome representation
Path problem usually uses the natural number coding, that is, using a set of natural numbers
H = [h0,h1,. . .,hn] to represent the chromosome. There are two common coding methods [29]:
the vehicle-oriented natural number coding, and the destination-oriented natural number cod-
ing. Fig 3 shows a solution to the UCVRP, where 0 is the starting point of UAVs, number 1–9
represent various blood needing places and the three routes mean that three UAVs are needed
to access all the points in one round.

Vehicle-oriented coding will firstly determine the number of delivery sub-routes, then
place the destination points into sub-routes and determine the point access order for each sub-
route (i.e. determine the required number of UAVs, allocate the point required to access for
each UAV and determine the order in each sub-route). For example, Table 2 is the vehicle-ori-
ented coding result of the solution in Fig 3, and Target 1 is assigned to Route 1 as the first target
to be accessed. The advantage of this method is the decomposition of the problem which
reduces the complexity, but it is costly in memory consumption and not intuitive.

Fig 2. Sketch of multi-objective optimization [26].

doi:10.1371/journal.pone.0155176.g002
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Destination-oriented coding directly uses a one-dimensional array to represent the route.
For instance, Table 3 is the destination-oriented coding result of the solution in Fig 3. Although
this method can clearly obtain the optimized route and is easily to be implemented, it often
generates many infeasible solutions and is not conducive to the optimization of the solution.

These two methods are commonly used when the number of vehicles or the number of
routes is known. Because the total number of vehicles is one of our optimizing goals in this
paper, therefore, we choose the destination-oriented coding and eliminate all 0s from it. By
partitioning the route from left to right, we can get gene segment which is not exceeding the
carrying capacity as a route (as shown in Table 4). This representation of the solution uses less
computer memory and is more intuitive; moreover, the solution generated by this method
must be a feasible one.

Crossover
In genetic algorithm, the crossover can generate new individuals by swapping the partial struc-
ture of two parents and we can use it to greatly improve the searching ability of the genetic
algorithm. For the permutation encoding, there are some common crossover algorithms, such
as Partially Matched Crossover (PMX), Position-based Crossover, Order Crossover, Cycle
Crossover [30]. In this paper, we use the classical crossover algorithm PMX. Since the accessed
points are placed in chromosome with the order from left to right, so if we try to directly swap
the partial structure of two parents, there may exist some points which appear twice or disap-
pear in children, and such chromosomes will not meet the constraints of the model. Firstly,
PMX will randomly select two cutting points X and Y from the two parents, swap the segment

Fig 3. Example of a solution.

doi:10.1371/journal.pone.0155176.g003

Table 2. Representation scheme 1: Vehicle-oriented coding.

Target 1 2 3 4 5 6 7 8 9

Route 1 1 3 3 2 3 3 2 2

Sequence 1 2 7 8 5 6 9 3 4

doi:10.1371/journal.pone.0155176.t002
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between X and Y from one parent with that from the other parent and record the mapping
relation for this swap. For the remaining part of each parent, it’s by using the relation that we
map the old value to a new value. (As shown in Fig 4)

Mutation
Mutation is usually used in genetic algorithm to increase the diversity of the population. When
dealing with the route encoding, in order to avoid the crossing, we use the gene segment to rep-
resent the route and do the insertion, swap and reverse to optimize it by various ways [31,32].
(As shown in Fig 5)

Local search
Although the genetic algorithm is a global optimization algorithm, its local search ability is
poor since its local search ability is mainly realized by mutation, which is more suitable for
searching in a large scale. Therefore, it has a poor performance in the local search, in another
word, the fine-tune ability of the mutation is limited. In this paper, the local search heuristics is
introduced to improve the local search ability of this algorithm.

In the Holland’s schema theorem [33], the representation and the reproduction of the artifi-
cial chromosome has been qualitatively analyzed and discussed. Since the schema can also be
interpreted as the same structure, it can represent the structure which has the same features in
the chromosome. Based on the encoding method in this paper, the schema is a route or a sub-
route, and we can get the expectation of the number of individuals which contains the schema
S in generation t+1 according to the HOLLAND schema theorem,

ntþ1ðSÞ � ntðSÞ �
f ðSÞ
favg

� 1� Pc

dðSÞ
l � 1

� OðSÞPm

� �
; ð6Þ

where nt(S) and the nt+1(S) represents the number of individuals, which contains the schema S
in generation t and t+1 respectively; f(S) is the average fitness of individuals contains the
schema, while the favg is the average fitness of the whole population; δ(S) is the defined length
of the schema; l is the length of each chromosome; the probability of the crossover and the
mutation is Pc and Pm respectively; O(S) is the number of definite characters in the schema.
The determinants in the number of individuals contains the schema in generation t+1 are
described in the definition of the schema theorem, which mainly includes the ratio of the aver-
age fitness of individuals contains the schema to the average fitness of the population, probabil-
ity of the crossover and the probability of the mutation. It can be seen that after the operation
of selection, crossover and mutation in genetic algorithm, the appearance possibility of low-
order schemata, shorter defining length and higher average fitness will increase exponentially.
When we use the random connection strategy that nearest-neighbors have the priority, the

Table 3. Representation scheme 2: Destination-oriented coding.

0 1 2 0 8 9 5 0 6 3 4 7 0

doi:10.1371/journal.pone.0155176.t003

Table 4. Representation scheme 3.

Route1 Route2 Route3

1 2 8 9 5 6 3 4 7

doi:10.1371/journal.pone.0155176.t004
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generated schema and its sub-schema usually have the segment of the optimal solution with
low-order schemata, shorter defining length and higher average fitness and these segments are
easy to be passed to the next generation.

The basic idea of the strategy is that we divide the code sequence of one chromosome into
several segments from which some segments are randomly selected at a proper proportion. For
each selected segment, we select the first element as the first one for the new segment after reor-
ganization, select the nearest element to the first one from the remaining elements of the origi-
nal segment as the second one for the new segment, and then select the nearest one to the
second element as the third one, until all elements from the original selected segment have
been processed. The fitness of the recombined gene code will be calculated and compared with
the original one. If the new recombined gene code is dominated by the original one, the new
one will be discarded; otherwise the new one will replace the old one. As shown in Fig 6(A), the
new segment has a better fitness and will replace the old one. However in Fig 6(B), the old one
is better and the new one is discarded.

Because the algorithm needs to repeatedly use the order of distances between all nodes, in
order to avoid repeatedly calculating the distances and the orders, we build the adjacency
matrix R. Assuming there is a N×N distance matrix D, Dij represents the distance between
nodes i and j. Rij is the order of distance Dij among all the distances Dik (k2[0,N-1], k 6¼i). For
example, the R02 = 1 represents that node 2 is the nearest to node 0 and the R01 = 2 represents
that node 1 is the second nearest to node 0.

Fig 4. Example of PMX operation.

doi:10.1371/journal.pone.0155176.g004
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D ¼
0 6:22 5:51

4:70 0 6:34

8:53 5:72 0

2
664

3
775; R ¼

0 2 1

1 0 2

2 1 0

2
664

3
775:

Fig 5. Mutation operators.

doi:10.1371/journal.pone.0155176.g005

Fig 6. Results of nearest neighbor reorganization.

doi:10.1371/journal.pone.0155176.g006
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The detail process of the random nearest neighbor search is as follows:
Step 1: Evenly divide the gene code into βM segments (M is the number of UAVs required

in this solution while β is used to control the segment size).
Step 2: Select β	M	θ gene segments according to the recombination proportion θ.
Step 3: According to the adjacency matrix R, the selected gene segments are reorganized

based on the random nearest neighbor connection strategy.
Step 4: Complete the recombination of β	M	θ gene segments and generate the new gene

code.

Algorithm framework
In this paper, we extend the framework of decomposition-based MOEA and apply the local
search with random nearest neighbor to solve the UCVRP. The framework of our proposed
algorithm, MOEA/D-N-UVRP, is shown in Fig 7.

Besides, we also use two other algorithms, MOEA/D [28] and NASGII [27], in order to
solve the UCVRP for comparison. Here, we name them as MOEA/D-UCVRP and NAS-
GII-UCVRP respectively. All three algorithms adopt the strategy of mutation and crossover;
however, the random nearest neighbor search is our contribution.

Experimental Result

Calculation of the proportion between blood and appendage
In our model, the UAV carries blood and appendage, and we can calculate the weight of
required appendage by using the weight of blood required and the transport time. Assuming
that the temperature of the external environment is -25°C, 2000ml blood that has an initial
temperature, T2(0) = 5 based on 2.4 kg of hot water with an initial temperature, T1(0) = 50, and
that the current temperature of the blood transportation container is 20°C. According to the
Eqs (1) and (2), T1 and T2 will change as shown in Fig 8.

It can be seen from Fig 8 that the temperature of the water is decreasing with time whereas
the temperature of the blood is increasing during the time as the water temperature is decreas-
ing. In the problem, we must ensure that the temperature of the blood is in an appropriate
range during the transit. If the weight of the hot water is relatively heavier than the weight of
the blood, the blood temperature will rise rapidly in a short period of time. In Fig 9(A), when
the ratio of the weight of hot water to the weight of blood is 4.4, the blood temperature can be
kept between 2–10°C (in the appropriate range) within 4.5 hours, and above 10°C between 4.5
hours and 12.6 hours. Then in Fig 9(B), we increase the initial temperature of hot water, the
blood temperature will be above 10°C within just 2 hours and last for more than 20 hours.
Therefore, during the transit, the change of the blood temperature depends on the initial tem-
perature and the weight of hot water, and it’s not practical to increase the initial temperature of
the hot water for the goal of reducing its total weight.

In our real application, in addition to keeping the blood temperature within the appropriate
range, considering that the blood may not be used immediately, the blood should have a proper
temperature in a longer period of time. As shown in Fig 10, in order to use less hot water while
keeping the temperature of the blood in an appropriate range after delivery, we can choose the
delivery time when the temperature in the descending zone.

In the optimization of the UAVs’ scheduling, the evolutionary algorithm requires a lot of
iterations, and it will cost a computational time to calculate the weight of required hot water
per iteration. In order to reduce the calculation time, we draw a hot water weight proportion
table according to the blood weight and transit time in the real situation at a given temperature
as shown in Table 5 (The horizontal axis shows weight and the vertical axis shows distance).

Multi-Objective Algorithm for Blood Supply via UAVs
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For example, when the flight distance to one place is 7 and the weight of blood is 11, the weight
of hot water needed is 11×0.06.

Since the experiment is based on the VRP public data set, the data set has only the numerical
values without unit and its distribution tends to be discrete. So when calculating the weight of
required hot water, we map the weight of blood needed and the distance to the range [0, 20]
according to Eq 7, where the distance is linear with the time, which can be mapped directly
into the time interval. We also note that Eq 7 is a linear transformation.

coordX ¼ 20 � CurX �MinX
MaxX �MinX

coordY ¼ 20 � CurY �MinY
MaxY �MinY : ð7Þ

Fig 7. MOEA/D-N-UVRP that is based on the framework of the MOEA/D for UCVRP, where the main
adjustment is in the dashed box.

doi:10.1371/journal.pone.0155176.g007
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Fig 8. The temperature of the water (T1) and the blood (T2) change with time in the given
circumstance.

doi:10.1371/journal.pone.0155176.g008

Fig 9. Temperature changes with time in the case of different weight of hot water and blood. Note: Red line represents
the blood temperature is beyond the appropriate range.

doi:10.1371/journal.pone.0155176.g009
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In that equation, CoordX is the mapped value of the blood’s weight, CoordY is the mapped
value of the distance. Now,MaxX andMinX are maximum and minimum loadage respectively,
whileMaxY andMinY are maximum and minimum flight distance respectively. However,
since the weight of blood and hot water may exceed the carrying capacity of the UAV during
transit, there may exist some nodes which cannot be accessed in the data set.

In the experimental process, the starting point also can be considered as a destination point,
since the blood requirement and the flight distance is zero, so we haveMinY =MinX = 0 here.
When mapping the blood weight, if the weight of blood is close to theMaxX, the minimum
ratio of the weight of hot water to the weight of blood can be set as 0.02:1. In order to ensure
that the weight of blood and hot water will not exceed the maximum carrying capacity of the
UAV, theMaxX can be set as w / (1 + 0.02). As for the mapped value of distanceMinY, we can
set it directly for different data instances.

It can be seen from Table 5 that the change of the proportion is not uniform; the proportion
value increases along the time axis from small to large and decreases with the blood weight.

Fig 10. Temperature changes with time.Green line represents an appropriate time interval of arrival.

doi:10.1371/journal.pone.0155176.g010

Table 5. Proportions between hot water and blood.

Distance/Weight [0, 2] [2, 3] [3, 5] [6, 10] [10, 15] [15, 20]

[0, 5] 1 0.5 0.2 0.06 0.03 0.02

[5, 10] 1.2 0.8 0.4 0.10 0.06 0.04

[10, 15] 1.9 1.2 0.6 0.18 0.12 0.08

[15, 20] 2.4 1.5 0.8 0.28 0.18 0.15

doi:10.1371/journal.pone.0155176.t005
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While theMinX for blood weight has been given above, theMaxY for distance is not set yet. As
shown in Fig 11, when theMaxY takes a large value, the proportion between hot water and
blood is easy to be concentrated in the smaller area on the time axis; however, if theMaxY
takes a small value, the proportion is easy to be concentrated in the larger area. Fig 11 shows
the distribution of the proportion caused by differentMaxY values. If theMaxY takes a larger
value, it will result in a larger requirement of the hot water, then the total weight UAVs need to
carry will increase and the more UAVs will be needed.

Parameter setting
Parameters used in the experiments are shown in Table 6. All the algorithms are written using
Java programming language and operate on a computer (Core I3 CPU, 2.93GHZ, 4G memory
space). All the operating computers adopt single-threaded execution.

Two-objective: total distance and number of UAVs
In traditional CVRP, the total distance and the number of vehicles cannot be the two partially
conflicting objectives. If the total distance is the minimal one, we cannot reduce it by adding
additional vehicles. In our problem, we should consider increasing the payload and reducing
the carry of the hot water. If the number of UAVs is small, then the UAVs will need to fly a

Fig 11. Using frequency of each proportion in Table 5 for instance E-n101-k14 according to differentMaxY values.MaxY is set as
150 and 30 for (a) and (b) respectively.

doi:10.1371/journal.pone.0155176.g011

Table 6. Algorithm parameters setting.

Parameter Value

Population size 100

Crossover rate 0.95

Mutation rate 0.2

Iteration number 15000000

Local search rate, β value, recombination ratio 0.3, 1~3, 0.5

doi:10.1371/journal.pone.0155176.t006
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longer time. However, that means we need more hot water. Thus, the total distance and num-
ber of UAVs are both relevant and competitive.

In Table 7, the MOEA/D-N-UAV is the algorithm proposed in this paper for UCVRP, the
NSGAII-CUVRP is based on the traditional NSGAII for CUVRP and the MOEA/D-CUVRP is
based on the MOEA/D. We run these three algorithms on nine instances according to different
proportions between hot water and blood. Each algorithm has been executed five times and we
take the average of the results. It’s shown that the MOEA/D-N-UAV is better than the MOEA/
D-CVRP and the NSGAII-CVRP in terms of optimization, and has an average increase of 3%
compared with MOEA/D-CVRP. The detail optimal solutions of MOEA/D-N-UAV on
instance E-n23-k3 and E-n101-k14 are illustrated in Table 8, Figs 12 and 13.

In the actual experiments, although the total distance and the number of UAVs show some
competition, they are not completely antagonistic. As shown in Table 7, for instance E-n76-k7,
the MOEA/D-N-UCVRP can obtain two optimal solutions while the NSGAII-CUVRP only
has one. From the results of MOEA/D-N- UCVRP, the total distance by 20 UAVs is less than
the one by 19 UAVs. Also, we can adjust theMinY to generate more solutions which indicates
that introducing the concept of the appendage into UCVRP makes distance and weight be
associated and competitive so that generate the UCVRP.

Performance analysis
The main metrics of the multi-objective algorithm are Hypervolume (HV) and Inverted Gener-
ational distance (IGD) [34]. HV computes the size of the region that is dominated by a set of
non-dominated solutions, based on a reference vector that is constructed using the worst

Table 7. Computational results of numerical experiments.

Instance MinY MOEA/D-N-UVRP NSGAII-CUVRP MOEA/D-CUVRP

Routes Distance Routes Distance Routes Distance

E-n23-k3 50 5 716.0254 5 796.1452 5 796.2122

100 5 720.3495 5 729.5467 5 809.4691

E-n30-k3 50 7 774.9813 7 796.4517 7 821.2371

100 7 766.8213 7 830.3797 7 803.5596

E-n22-k4 50 7 562.3227 7 562.8716 7 568.0511

100 7 552.6351 7 553.9392 7 591.9198

E-n30-k4 50 7 555.9675 7 555.9675 7 564.2600

100 7 555.8100 7 559.5431 7 571.6969

E-n33-k4 50 7 563.0726 7 584.1540 7 564.6380

100 7 553.9392 7 557.3958 7 570.1265

E-n51-k5 50 14 929.4797 14 945.5339 14 977.78299

100 13 931.3218 14 933.0224 13 937.06053

E-n76-k7 50 19 1594.2543 20 1337.2121 20 1362.9699

20 1326.8182

100 19 1359.2679 19 1500.9811 19 1461.3264

20 1347.6392 20 1401.1281

E-n76-k14 50 26 1599.4121 26 1663.6542 26 1640.9537

100 26 1593.0755 26 1597.5972 26 1640.9537

E-n101-k14 50 30 1942.2819 30 1942.2819 30 1992.8213

100 30 1929.004 30 1980.2141 30 2026.7598

doi:10.1371/journal.pone.0155176.t007
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objective values of each objective. It is defined as

HVðPFÞ ¼ Uf 2 PFHVðf ÞwithHVðf Þ ¼ ff 0 2 O : f 
 f 0g; ð8Þ

where the Pareto front (PF) denotes the set of non-dominated sets, O is the objective space and
HV(f) is the set of objective vectors dominated by f. Distance from Representatives in the PF

(IGD-metric): Let P	 be a set of uniformly distributed points along the PF. Let A be an

Table 8. Detailed optimization results of MOEA/D-N-UAV on instance E-n23-k3 and E-n101-k14.

Instance MinY Distance Routes Optimal solution

E-n23-k3 50 716.5428 5 Route #1: {0, 11, 13, 9, 7, 0}

Route #2: {0, 18, 19, 22, 20, 0}

Route #3: {0, 14, 17, 15, 16, 3, 2, 1, 6, 0}

Route #4:{0, 12, 8, 5, 4, 21, 0}

Route #5:{0, 10, 0}

E-n101-k14 50 1938.8909 30 Route #1: {0, 71, 35, 9, 0}

Route #2: {0, 65, 66, 20, 0}

Route #3: {0, 68, 80, 12, 0}

Route #4: {0, 27, 1, 50, 0}

Route #5: {0, 47, 36, 46, 45, 0}

Route #6: {0, 48, 19, 11, 0}

Route #7: {0, 79, 34, 78, 69, 0}

Route #8: {0, 89, 8, 82, 0}

Route #9: {0, 26, 97, 95, 6, 0}

Route #10: {0, 51, 81, 33, 0}

Route #11: {0, 60, 37, 42, 87, 0}

Route #12: {0, 18, 83, 85, 0}

Route #13: {0, 7, 62, 10, 0}

Route #14: {0, 94, 59, 96, 0}

Route #15: {0, 53, 28, 0}

Route #16: {0, 13, 40, 58, 0}

Route #17: {0, 70, 30, 32, 90, 0}

Route #18: {0, 93, 91, 100, 98, 0}

Route #19: {0, 76, 3, 77, 0}

Route #20: {0, 41, 22, 75, 74, 0}

Route #21: {0, 14, 38, 44, 0}

Route #22: {0, 5, 61, 99, 0}

Route #23: {0, 4, 39, 25, 55, 0}

Route #24: {0, 29, 24, 54, 0}

Route #25: {0, 67, 23, 56, 0}

Route #26: {0, 21, 73, 72, 0}

Route #27: {0, 49, 64, 63, 0}

Route #28: {0, 84, 17, 86, 16, 0}

Route #29: {0, 2, 57, 15, 43, 92, 0}

Route #30: {0, 52, 88, 31, 0}

doi:10.1371/journal.pone.0155176.t008
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approximation to the PF, the average distance from A to P	 is defined as:

DðA; P	Þ ¼
X

v2P	dðv;AÞ
jAj ; ð9Þ

where d(v, A) is the minimum Euclidean distance between v and the points in A.
However, in our model, the total distance and the total number of UAVs are not completely

antagonistic. The optimization results of these three algorithms only have little non-dominated
solutions each time, usually, the number is 1 to 2. Then the PF may have only one solution,
which cannot be calculated by Eqs (8) and (9).

We also conduct an experiment about the iteration times and the time cost of these three
algorithms. Fig 14 shows the relations between the number of iterations and execution time of
MOEA/D-N-UCVRP, NSGAII-CUVRP and MOEA/D-UCVRP. In the 10000 to 20000

Fig 12. Optimization results of MOEA/D-N-UAV on instance E-n23-k3.

doi:10.1371/journal.pone.0155176.g012
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iterations, the time cost of three algorithms shows a linear increase, the fluctuation of the
NSGAII- CUVRP’s time cost is relatively large while the other two are more stable. Also, the
time cost of MOEA/D-N- UCVRP is very close to MOEA/D- UCVRP.

Conclusion
In this paper, the blood supply in emergency situation is introduced into the traditional Capac-
itated Vehicle Routing Problem, and a new multi-objective optimization problem is proposed
according to the two factors of distance and weight. Aiming to achieve a real-life blood supply
logistics, we study the blood’s temperature change due to the external environment, the heating
agent (refrigerant) and time factor during transit, and propose an optimal method for calculat-
ing the mixing proportion between blood and appendage in different circumstance. Algorith-
mically, we use the combination of decomposition-based multi-objective evolutionary
algorithm and local search method, in order to conduct a series of experiments on the VRP

Fig 13. Optimization results of MOEA/D-N-UAV on instance E-n101-k14.

doi:10.1371/journal.pone.0155176.g013
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public dataset, which is included in S1 File. By comparing our technique with the traditional
ones, we proved that our algorithm can obtain better optimization results and time perfor-
mance. Our model can also be used in the food warming and route planning of food delivery,
the transportation of frozen seafood and etc via UAVs.

Supporting Information
S1 File. VRP public dataset.
(ZIP)
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