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Abstract

Exosomes proteins and microRNAs have gained much attention as diagnostic tools and
biomarker potential in various malignancies including prostate cancer (PCa). However, the
role of exosomes and membrane-associated receptors, particularly epidermal growth fac-
tor receptor (EGFR) as mediators of cell proliferation and invasion in PCa progression
remains unexplored. EGFR is frequently overexpressed and has been associated with
aggressive forms of PCa. While PCa cells and tissues express EGFR, it is unknown
whether exosomes derived from PCa cells or PCa patient serum contains EGFR. The aim
of this study was to detect and characterize EGFR in exosomes derived from PCa cells,
LNCaP xenograft and PCa patient serum. Exosomes were isolated from conditioned
media of different PCa cell lines; LNCaP xenograft serum as well as patient plasma/serum
by differential centrifugation and ultracentrifugation on a sucrose density gradient. Exo-
somes were confirmed by electron microscopy, expression of exosomal markers and
NanoSight™ analysis. EGFR expression was determined by western blot analysis and
ELISA. This study demonstrates that exosomes may easily be derived from PCa cell lines,
serum obtained from PCa xenograft bearing mice and clinical samples derived from PCa
patients. Presence of exosomal EGFR in PCa patient exosomes may present a novel
approach for measuring of the disease state. Our work will allow to build on this finding for
future understanding of PCa exosomes and their potential role in PCa progression and as
minimal invasive biomarkers for PCa.

Introduction

Prostate cancer (PCa) is the second leading cause of death among Western males. Preserved
activity of the androgen receptor is the main driver for PCa progression and metastasis [1, 2].
Early stage PCa is curable, however, one-third of the cases progress to a more aggressive PCa
with poor patient survival [3]. Despite the availability of several therapeutic strategies, targeting
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metastases and managing disease relapse remains a challenge. Hence, successful early detection
of PCa is of great importance. Apart from the commonly used diagnostic procedures/tests such
as prostate specific antigen (PSA) testing and digital rectal examination [4], a critical need
remains for us to discover new biomarkers and develop a more sensitive yet minimally invasive
tests for better and early diagnosis of PCa.

There is growing evidence suggesting that cancer cells release microvesicles of 30-100 nm
in diameter known as ‘exosomes’, and that exosomes are readily found in biological fluids
including plasma, serum, malignant ascites, urine and breast milk [5, 6]. Exosomes are
derived from late endosomes known as multivesicular bodies (MVBs) and are released upon
fusion of the MVBs with the plasma membrane [7]. Exosomes contain unique protein and
RNA cargo that are released into the cellular microenvironment and thus can promote cell-
cell communication in addition to other mechanisms [8, 9]. Recently, our lab and others have
demonstrated that benign as well as PCa cells with or without androgen receptor (AR) release
exosomes [9, 10]. Additionally, a comprehensive lipid and proteomic analysis revealed dis-
tinct differences in protein profiles of exosomes derived from benign as compared to malig-
nant PCa cell lines [9, 11, 12]. Studies have shown that exosomes contain membrane-
associated proteins which act as mediators of cell growth and likely to confer cellular pheno-
typic change via cell-cell communication [13-15]. However, the role of component mem-
brane-associated growth factor receptors of exosomes as mediators of cell proliferation and
invasion remains unexplored.

In addition to androgens, prostate growth and function is in-part regulated by several
growth factors and their cognate receptors, one of which is the epidermal growth factor and its
receptor (EGFR)[16, 17]. EGFR is a 170 kDa proto-oncogene and transmembrane receptor
which is typically over-expressed in various malignancies including PCa [18]. Ligand binding
to EGFR induces dimerization, phosphorylation and internalization of the EGFR which then
trigger a network of intracellular signalling pathways, resulting in DNA synthesis, cell prolifer-
ation, migration and adhesion [18]. It has been shown that nearly 30% of PCa cases overex-
press EGFR and that deregulation of EGFR-mediated signaling pathways is associated with
poor clinical outcomes [19, 20]. Although EGFR is identified as an important anti-tumor tar-
get, therapies against EGFR using small tyrosine kinase inhibitors such as Gefitinib, Lapatinib
and Erlotinib have been shown to have limited effectiveness in PCa [21-23]. While the intracel-
lular trafficking, recycling and degradation of EGFR have been extensively investigated, very
little is known as to whether EGFR escapes lysosomal degradation and is instead selectively
released extracellularly via exosomes. In vitro studies have now shown that exosomes isolated
from immune and cancer cells contain EGFR, EGFR ligands and soluble isoforms of EGFR.
Additionally, tumor cells release exosomes and/or exosomal cargo into the blood circulation of
cancer patients [24-29]. These observations have led us to hypothesize that EGFR could be
selectively released via exosomes and may very well play a role in PCa progression. Further-
more, the possibility that the selective uptake of EFGR into exosomes may be, at least in-part,
responsible for failure of clinical outcome cannot be overruled, however no comparative analy-
sis between the exosomal contents and tumor cell has been done in this manuscript. To deter-
mine whether PCa derived exosomes contain EGFR, we isolated and characterized exosomes
from a panel of PCa cells as well as serum from LNCaP xenografted mice and serum/plasma
from PCa patients. This is a first report showing that EGFR is contained in the exosomes
derived from PCa cell lines, both LNCaP xenograft and PCa patient serum. These observations
are encouraging to further investigate the possible role of EGFR-containing exosomes in pro-
survival and treatment resistance mechanisms as well as potential biomarkers in PCa diagnosis
and progression.
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Materials and Methods
Ethics Statement

Frozen PCa patient plasma/serum was purchased from a private blood and tissue repository,
Bioserve’s Global Biorepository, 9000 Virginia Manor Road, Suite 207 Beltsville, MD 20705
USA (http://www.bioserve.com/human-samples/global-biorepository-overview.cfm). The
control serum was obtained from 31 year old healthy male volunteer with a verbal consent
approved by the ethics board (certificate #09-01010). The University of British Columbia
Clinical Research Ethics Board (certificate #109-01010) approved the use of commercially
acquired human serum to be used for the purpose of this research.

The approval for animal work was obtained from the University of British Columbia’s Insti-
tutional Animal Care Committee (IACC, # A11-0337). During the study the care, housing and
use of animals was performed in accordance with the Canadian Council on Animal Care
Guidelines and all efforts were made to minimize the suffering.

Cell Culture

Human prostate cancer cells, LNCaP [30]and C4-2 cells were maintained in RPMI 1640
medium whereas DU145 and PC3 in Dulbecco’s Modified Eagle’s Medium (DMEM) supple-
mented with 5% FBS (Invitrogen) and antibiotic, at 37°C in 5% CO2. Benign RWPE-1 cells
also were grown in keratinocyte-SFM (KSFM) with growth supplement (GIBCO) and 1% peni-
cillin-streptomycin (Invitrogen). Cells were grown to 60-70% confluence and serum-starved
for 48-72 hours prior to exosomes isolation. All the cell lines were obtained from ATCC.

Serum samples

Mice bearing LNCaP xenografts were prepared as previously described [31, 32]. Briefly, athymic
mice were inoculated with 2 x 10° LNCaP cells. Tumors were grown for 28 days after which
serum was derived from blood drawn by cardiac puncture upon euthanisation. Serum samples
were collected by from three nude control mice and three mice bearing various sizes of tumors:
small (<400mm?); medium (400-1000mm?) and large (> 1000mm?>). Frozen PCa patient
plasma/serum was purchased from a private blood and tissue repository, Bioserve (Beltsville,
MD, USA). Four human plasma and three serum samples obtained from PCa patients (Table 1)
were analysed in this study. The control serum was obtained from two 31 year old healthy male
subjects. Approval was obtained from The University of British Columbia Clinical Research
Ethics Board for human serum to be used for the purpose of this research.

Antibodies

The antibodies used were: mouse anti- CD-9 (C-4, #sc-13118), mouse anti-Alix (1A12, #sc-
53540) and goat anti-EGFR (N-20, #sc-31155) from Santa Cruz Biotechnology Inc, (Santa
Cruz, CA); rabbit anti-LAMP2 (#ab37024) from Abcam (Toronto, ON) and rabbit anti-GRP94
(#2104) from Cell Signaling Technology (Whitby, ON). All primary antibodies were used at a
concentration of 1:1000 for western blot analyses. The secondary antibodies used for detection
were Alexa Flour 680 donkey anti-rabbit (# A10043, 1:10000), donkey anti-mouse (#A10038,
1:10000) and donkey anti-goat (#A21084, 1:10000) from Life Technologies (Invitrogen), Bur-
lington ON.

Preparation of exosomes fractions

Exosomes from PCa cells were isolated using serial centrifugation method as previously
described [9]. Frozen patient plasma/serum or LNCaP xenograft serum samples were diluted
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Table 1. Information of PCa plasma and serum used to derive exosomes.

Subject

N O A 0N =

doi:10.1371/journal.pone.0154967.t001

Medications Age
None 31 Healthy male
Simvastatin 20mg, Glipizide 500mg, Bystolic 10mg, Exforge 5/160 83 Stable Disease State
Thyroid Medication; Cholesterol Medication; Lupron 54 Stage 4; Stable
Lupron; Mitoxantrone; Mitrofurantoin; Prednisone; Synthroid (on and off) 75 Flare-Up: Progressive disease in pelvis
Lupron; Mitoxantrone; Mitrofurantoin; Prednisone; Synthroid 75 Flare-up
ASA, Multivitamins, Lisinopril, Metropolol, Zocor 69 T1C:Remission
Metoprolol; Lovastatin; Calcium; Vitamin D; Aspirin; Omeprazole 83 Chemically Castrated
Diovan; Vitamin D; Omega 3; Multivitamins; Aspirin; Simvastatin 81 Unknown

with phosphate buffer saline (PBS) in a 1:1 ratio [33]. Plasma/serum samples were then pre-
treated with anti-IgG antibody (1:500 dilution) coupled to A/G sepharose beads (25ul) to pre-
cipitate excessive non-specific immunoglobulins. After an overnight incubation at 4°C, the
pre-treated samples were centrifuged at 5000xg for 15 min and the pre-cleared serum was used
for exosomes isolation using a standard ultracentrifugation method previously reported [9, 33].
Briefly, the pre-cleared serum samples went through a series of centrifugation steps (2000xg for
20 min and 20,000xg for 45 min) and then transferred onto 30% sucrose solution, followed by
ultra-centrifugation at 110,000xg for 2 h. Isolated exosomes were recovered from the sucrose
solution and stored at -80°C until further analyses.

Transmission electron microscopy (TEM)

Exosomes isolated from LNCaP xenograft serum and PCa patient plasma/serum were adsorbed
onto glow discharged 300 mesh formvar/carbon-coated TEM grids (Ted Pella, Redding Califor-
nia, USA) for 5 min. The samples were negatively stained with 2% aqueous uranyl acetate for 5
min and observed with a Hitachi H7600 TEM operated at 80kV (Hitachi High-Technologies
Corp., Tokyo, Japan). Images were captured with a side mounted 1K AMT Advantage digital
camera (Advanced Microscopy Techniques, Corp. Woburn, MA, USA) [9].

NanoSight™ particle tracking analysis

The size and concentration of the isolated exosomes were analysed using the NanoSight™
LM10-HS10 system (NanoSight Amesbury, UK) as recently described [34]. Each exosomes
sample was diluted in exosomes-free pre-filtered PBS to obtain measurable concentration
between 0.5x10° and 5x10° particles/ml. For analysis, a monochromatic laser beam (405nm)
was applied to the diluted plasma exosomes that was injected into a LM 12 viewing unit using a
controlled syringe system laser. NanoSight™ tracking analysis (NTA) software version 2.3 ana-
lyzed the samples at a constant temperature (25°C) with camera shutter speed at 60 millisec-
onds and gain set to 1400. The NTA software produced six videos of 60 seconds duration, with
a 5-second delay between the recordings creating six replicate histograms that were averaged to
give the final estimate of the particle size and concentration of exosomes. NTA settings were
pre-optimized and kept constant between samples.

Western blot analysis

Exosome samples were processed in radioimmunoprecipitation assay (RIPA) buffer to release
the exosomal content. Protein concentration was then measured by using the BCA Protein
Assay kit according to manufacturer’s instructions (Thermo Scientific Pierce). Equal amount
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of protein (30pg) was loaded for each sample on a 10% SDS-PAGE gel. Exosomal markers
were identified using primary antibodies specific for lysosomal-associated membrane protein-
2 (LAMP-2) (1:1000), CD-9 (1:1000) and Alix (1:1000). The expression of EGFR in exosomes
derived from PCa cell lines as well xenograft or human plasma/serum was detected using goat
anti-EGFR antibody which detects EGFR of human and mouse origin.

ELISA for EGFR detection

EGEFR levels in exosomes isolated from LNCaP xenograft and patient plasma/serum were
determined using the EGFR ELISA kit (Sigma Aldrich, # RAB0160) according to the manufac-
turer’s protocol. Lyophilized human EGER protein standard, whole plasma/serum and exo-
somes samples were added to the 96-well plate which was pre-coated with anti-human EGFR
antibody for 2.5 h at RT. RWPE-1 cell lysate was used as the positive control. Biotinylated
EGEFR antibody was added for 1 h at RT following washes. HRP-Streptavidin was then incu-
bated for 45 min. ELISA Colorimetric 3,3',5,5-tetra-methylbenzidine (TMB) was added for 30
min in the dark and 0.2M sulphuric acid (stop solution) was added immediately to stop the
reaction upon which yellow colored product was measured at 450nm using an automated
ELISA reader (Rayto, RT-1904C Chemistry Analyzer, Atlanta GA, USA) at 450 nm. The results
represent amount of EGFR in unprocessed plasma and purified exosomes as ng/ml. The assay
was repeated twice and with each sample in triplicate.

Statistical Analysis

Statistical analysis was performed using GraphPad Prism 6.0. The difference between exosomal
EGEFR in PCa patients and control subjects was analysed by applying the student t-test. The
data are expressed as mean +SEM.

Results

Three fold enrichment of exosomes in PCa patient serum than healthy
controls

Characterization of exosomes isolated from LNCaP xenografted mouse serum and PCa patient
plasma/serum was carried out using TEM, NanoSight™ and Western blot analyses, collectively.
TEM analyses revealed a majority of vesicles in the 100nm size range which were characteristic
of exosomes, according to their classic cup-shaped morphology, in representative C4-2 PCa
cells, LNCaP xenograft serum as well as PCa patient serum (Fig 1). The presence of exosomes
was further confirmed using NanoSight™ technology as recently described [34]. Figs 2 and 3
showed NTA profiles of exosomes with a single peak that represents the mode size of exosomes
(85-150nm), as per the size of exosomes reported routinely in literature. We observed that the
total concentration of exosomes derived from control mice serum was 1.98 x 10'! particles/ml
(Fig 2A). Interestingly the number of particles increased in the serum derived from mice bear-
ing small (2.2 x 10", Fig 2B), medium (3.98 x 10" Fig 2C) and large (6.66 x 10" Fig 2D)
tumors suggesting that exosomes are more abundant in tumor bearing mice than the normal
mice. Furthermore, we measured the number of exosomes from serum derived from control
human and PCa patients. Fig 3A showed that control human serum contained 4.15 x 10" par-
ticles/ml, whereas PCa patient plasma (13.3 x 10'") and serum (9.9 x 10"") showed two-fold
increase in number of particles indicating that tumor cells produce more exosomes than the
normal cells (Fig 3B and 3C). The NanoSight analyzed between 3000-4000 particles and hence
the SEM was low between +£0.12-0.35.
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Fig 1. TEM analysis show presence of exosomes. Representative TEM images of exosomes derived from
a) C42 PCa cell line b) LNCaP xenograft serum and ¢) patient plasma by ultracentrifugation method.
Exosomes were negatively stained with 2% uracyl acetate after removal of moisture. Arrows indicate cup-
shaped structures which are identified as exosomes (30—100 nm in diameter).

doi:10.1371/journal.pone.0154967.g001

Identification of markers confirm exosomes isolation from serum

Western blot analyses were performed to determine the expression of exosome-specific mark-
ers. As shown in Fig 4A, CD-9 (tetraspanin), a commonly used membrane-bound exosomal
marker was higher in the serum of small LNCaP xenografts, as compared to that in exosomes
from control nude mouse. Interestingly, we did not see a significantly higher expression in the
large tumors. These data also correlated with the NanoSight data (Fig 2) showing higher num-
ber of exosomes in serum of tumor bearing mice than the control mouse serum. To further val-
idate the purity of the exosome fractions obtained, we determined the presence of a known
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Fig 2. Representative graphs of NanoSight™ particle tracking analysis. The analysis showed that mean
size of exosomes isolated from control mouse was 126 nm (a) whereas LNCaP xenografted mice bearing
small tumour was 81nm (b), 137 nm from medium (c¢) and 67 nm from large tumours (d). The concentration of
exosomes secreted increased with the increasing size of the tumour.

doi:10.1371/journal.pone.0154967.9002
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Fig 3. PCa patient serum has higher number of exosomes than control. NTA profiles of exosomes show a single peak that represents mean particle
size and concentration of exosomes from normal subject (a) and patient plasma (b) and serum (c). The mean particle size ~120nm nm confirmed presence
of exosomes. Exosomes derived from PCa patient was significantly higher than the control human serum.

doi:10.1371/journal.pone.0154967.9003

endoplasmic reticulum marker GRP94 in the exosomes isolated from xenograft serum samples.
Our data showed lack of GRP94 in the exosome fractions, indicating successful enrichment
and isolation of exosomes from serum samples via sucrose-assisted ultra-centrifugation. The
expression of lysosomal-associated membrane protein-2 (LAMP-2) and Alix was also investi-
gated as an alternative exosome marker. Fig 4B and 4C showed that LAMP-2 and Alix was
detected in PCa serum/plasma derived exosome fractions and was concentration-dependent.
Whereas whole plasma was devoid of LAMP-2, again indicating the quality of exosomes
enriched for during isolation.
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Fig 4. Exosome isolation from plasma is validated by the presence of exosome markers. a) CD9 was present in exosomes derived from LNCaP
xenograft mice bearing small, medium and large LNCaP tumours whereas the control mouse serum lacked CD9. GRP94, a known endoplasmic
reticulum protein which is used as a negative control was absent in the exosomes suggesting enrichment b) LAMP2 was present in exosomes
derived from PCa patient plasma whereas absence of LAMP2 in whole plasma indicated successful enrichment. ¢) Alix was present in exosomes
derived from patient plasma at different exosomal protein concentrations.

doi:10.1371/journal.pone.0154967.9004

PCa derived exosomes contain EGFR

EGFR is a potent cell regulator associated with advanced PCa progression. We next determined
whether PCa cells and serum derived exosomes contain EGFR. Fig 5A shows differential
expression of full-length 170kDa EGFR in total cell lysates as well as exosomes fractions
derived from a panel of AR-positive (LNCaP, C4-2, RWPE-1) and AR-negative (DU145, PC3)
cell lines. Overall, the presence of EGFR in total cell lysates is higher than its exosome counter-
parts, whereas cell-derived exosomes show variable EGFR content for different cell lines. We
next determined the presence of EGFR in the in vivo samples. Exosomes from control mice
serum showed no EGFR however exosomes isolated from serum of LNCaP xenografts con-
tained EGFR irrespective of the presence of tumor and tumor size (Fig 5B).

In order to validate the clinical relevance of exosomal EGFR, we examined whether exo-
somes isolated from PCa patient plasma/serum contained EGFR. Western blot analyses
showed detectable levels of a full-length 170kDa EGFR in two out of four exosome fractions of
the PCa patient plasma and all three serum samples, whereas the exosomes from control sam-
ples were negative for EGFR (Fig 5C). As shown in Fig 5D, exosomes contained EGFR in a con-
centration dependent manner. More interestingly, the unprocessed whole serum also showed
considerable levels of EGFR suggesting the presence of soluble form EGFR circulating in the
serum of PCa patients as was previously reported for pancreatic cancer patient serum in a
study exploring exosomes in serum from this patient population[35]. Furthermore, EGFR lev-
els were detected in whole plasma/serum and exosomes derived from PCa patients and control
subject using ELISA assay (Fig 5E). ELISA measurement showed that soluble EGFR levels in
patient plasma or serum were not remarkably different than the control serum; however,
EGEFR levels were significantly higher in exosomes derived from PCa patients’ plasma/serum
when compared with the control subject.

Discussion

Exosomes circulating in blood may provide important information that may be often neglected
in prognostic evaluations. Our lab recently published an extensive proteomic and lipid analysis
of exosomes derived from PCa cells in vitro with a view to providing insight into candidate pro-
tein biomarkers which exosomes have the potential to yield [9]. We have also established a
reproducible method for isolation and quantification of exosomes from human serum[34]. The
release of exosomes in blood, urine and other biological fluids thus offers an opportunity to

PLOS ONE | DOI:10.1371/journal.pone.0154967 May 6, 2016 8/14



@’PLOS ‘ ONE

EGFR in Prostate Cancer Exosomes

a Cell lysate Exosome b Exosome
7 ") o)
o) o w w o ° -
S g89tf 25898 £53 8
) o) -
3 £53% 838 53 =& 8 32 & 3
EGFR-——-—. i e — e ot i
c Exosome Whole plasma
1.2 3 4 5 6 7 C c 1 2
EGFRN‘.’H g ‘ "
(170kDa) . ; b . e
Serum-Exosome serum Plasma-exosome plasma
d

MW 20 40 60 80 100 40 20 40 60 80 100 40 g

— =

(170kDa) |w——m p—

EGFR | s s mom ot = o
1ok | L e e——

e Unprocessed plasma Exosomes
100+ 50+
T x
1 1 T
£ E
S 60 S 30
c c
£ 40 £ 20
2 g
20 10+
0- 0-
N
& & & &
® Q@Q ® Q‘f?\\
Subjects Subjects

Fig 5. EGFR in PCa derived-exosomes. EGFR was present in exosomes derived from a) panel of AR-
responsive and AR-unresponsive as well as benign prostate epithelial cells (RWPE-1) and compared with
cell lysate, b) Control nude mouse and LNCaP xenograft serum. ¢) EGFR is contained in exosomes derived
from four different PCa patients’ plasma (1-4), 3 serum samples (5—7) and control subject and in
unprocessed plasma from control subject and patient (1 and 2). d) The expression of EGFR at 170kDa and
110kDa in serum and plasma is increased with increasing loading protein concentration. Interestingly, there
is a significant amount of EGFR in unprocessed plasma which is in addition to the exosomal fraction. The
histogram (e) shows EGFR levels (ng/ml) measured by ELISA in unprocessed plasma from control subject
and PCa patient plasma/serum and exosomes derived from corresponding plasma/serum. The levels of
serum EGFR are relatively similar in control and PCa subjects whereas exosomes isolated from PCa patient
serum contained significantly higher amounts of EGFR than the control subject. Data represented as mean
+SEM, *p<0.05.

doi:10.1371/journal.pone.0154967.g005

utilize non- invasive methods for prognostic and diagnostic evaluation of PCa in patients. This
work, focusing on relevance of EGFR in PCa, describes the isolation and characterization of
exosomes derived from in vitro, in vivo and clinical PCa samples as an extension of our previ-
ous work in PCa cell lines[9] [34].

Our study demonstrates, the presence of EGFR in exosomes purified from PCa cells cul-
tured in vitro, serum of LNCaP xenograft bearing mice and PCa patient serum. Several reports
have indicated the presence of EGFR in exosomes derived from glioblastoma, pancreatic, breast
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cancer and ovarian cell lines in vitro and in exosomes from lung cancer patient serum, however
limited is known of EGFR in PCa derived exosomes[36-39]. EGFR is often over-expressed and
is associated with aberrant signaling leading to aggressive malignancies and poor patient sur-
vival rate [40]. In PCa, hyperactivity of EGFR is linked with androgen independence and
metastasis of prostate cancer cells [41, 42]. Since exosomes are involved in cell- cell communi-
cation that alters the phenotype of the recipient/target cells [43-45], exosomal-EGFR expressed
by various tumor types, including PCa may play an important role in cancer progression. We
observed that the number of exosomes was significantly higher in PCa serum and xenograft
than the control, suggesting that exosomes may present a tool to differentiate the normal and
disease state. Our results are in agreement with a recent study by Turay et al where they show
that exosome numbers specifically increased in the serum of PCa patients compared to their
control counterparts [46]. Tumor-exosomes are thought to have role in the development of
resistance to anti-tumor therapies [47, 48]. However while pre-clinical data indicate that EGFR
plays a significant role in PCa progression [21]; clinical trials involving EGFR inhibitors (Gefi-
tinib, Lapatinib or Erlotinib) have shown limited benefit to PCa patients [22, 23, 49].

Soluble isoforms of EGFR (sEGFR) have also been identified in conditioned media of
breast, non-small cell lung cancer and pancreatic cancer cells as well as circulating in blood-
stream [35, 50, 51]. However, there is limited information about the mechanistic role and bio-
chemical properties of these isoforms. There is evidence that full length EFGR undergoes
proteolytic cleavage and novel isoforms [52, 53]. Furthermore, a full-length receptor and a
65kDa soluble isoform have been identified on exosomes released from human keratinocyte
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Fig 6. Schematic representation of possible role of EGFR-exosomes in cancer progression. Ligand
binding induces rapid activation and internalization of EGFR and endocytosis. Whether EGFR escapes
lysosomal degradation and is released extracellularly via exosomes is unknown. The transfer of EGFR via
exosomes may significantly alter the tumor microenvironment and could be relevant to progression of an
aggressive PCa.

doi:10.1371/journal.pone.0154967.9g006
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cell lines [50]. Similarly, we observed a full length 170kDa EGFR and a band at 110kDa in
patient plasma and serum-derived exosomes suggesting that soluble isoforms of EGFR may be
present in exosomes in addition to the 170kDa EGFR. Interestingly, in PCa cell lines and
LNCaP xenograft bearing mouse serum such bands were not observed. Our observation is
supported by a similar study in breast cancer cells and patient serum which speculates the
presence of soluble growth factors circulating in the patient serum [54]. We also detected a
band at 110kDa in patient plasma/serum that could possibly be the free soluble isoform of
EGEFR. Previous reports showing soluble EGFR protein in serum of patients with metastatic
breast and lung cancer could support our results [39, 54]. Although in breast cancer patients,
the soluble EGFR isoforms were associated with short survival rate, some imply increased
sEGFR or no difference between healthy individuals and patients [39]. Nevertheless, estima-
tion of sSEGFR levels in exosomes and peripheral blood may provide clinical relevance in met-
astatic cancers. The EGFR isoforms which are present in PCa patient serum clearly have an
unidentified role in tumorigenesis and further quantitative assays are needed for evaluation of
these isoforms in PCa-derived exosomes. In summary, the present study shows exosomes are
abundantly secreted in the serum of xenografted mice bearing tumors and PCa patients than
their control counterparts. Furthermore, this study identified EGFR in secreted exosomes and
provides compelling evidence that circulating EGFR may be constitutive in exosomes and fur-
ther evaluation of exosomes EGFR in PCa patient serum may identify its role in the resistance
of EGEFR targeted therapies tested in the clinic against PCa progression (Schematic representa-
tion of role of EGFR as shown in Fig 6).
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