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Abstract
DNA sequencing by imaging in an electron microscope is an approach that holds promise

to deliver long reads with low error rates and without the need for amplification. Earlier work

using transmission electron microscopes, which use high electron energies on the order of

100 keV, has shown that low contrast and radiation damage necessitates the use of heavy

atom labeling of individual nucleotides, which increases the read error rates. Other prior

work using scattering electrons with much lower energy has shown to suppress beam dam-

age on DNA. Here we explore possibilities to increase contrast by employing two methods,

X-ray photoelectron and Auger electron spectroscopy. Using bulk DNA samples with mono-

mers of each base, both methods are shown to provide contrast mechanisms that can dis-

tinguish individual nucleotides without labels. Both spectroscopic techniques can be readily

implemented in a low energy electron microscope, which may enable label-free DNA

sequencing by direct imaging.

Introduction
Significant demand exists for the development of high throughput technologies capable of
extremely low-cost, high quality DNA sequencing. Established sequencing technologies based
on capillary array electrophoresis and cyclic array sequencing offer such analytical capability,
and currently marketed 2nd generation sequencers are delivering information at a cost of less
than $5,000/genome. One major drawback is that these technologies typically identify only 10–
100 bases out of the 3 billion base pairs in the human genome in a given sequence segment or
read. Another drawback is the relatively large raw read error rate. Important applications like
de novo sequencing assembly, determination of point mutations, differentiation of closely
related species, and targeted resequencing require low error rates. Furthermore, the complex
repetitive nature of DNAmakes it costly, time consuming, and in some cases impossible to
accurately reassemble the complete sequence from short reads.

Transmission Electron Microscopy (TEM) has been explored for imaging long DNA seg-
ments [1,2] by utilizing high electron energies (80–300 keV) to achieve sub-nanometer
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resolution. The high impact energy, however, not only produces radiation damage, it necessi-
tates the use of heavy atom labels to provide contrast in the image of the nucleotides. The radia-
tion damage limits the electron dose and thereby the throughput. Furthermore, the
complications associated with reliably labeling the bases lead to significant read errors.

Scattering electron beams with significantly lower energies has been shown to prevent radia-
tion damage to biological molecules. For example, experimental work [3–5] carried out by
Fink’s group has demonstrated that DNA withstands a radiation dose of 108 electrons/nm2

accumulated over more than one hour with impact energies from 60 to 230 eV. The absence of
radiation damage associated with low impact energies motivates our goal to establish the feasi-
bility of nucleotide-specific contrast mechanisms that may enable the sequencing of DNA by
electron imaging techniques. If sufficient contrast can be achieved then, in principle, sub-nano-
meter DNA sequence images may be achievable without the need for heavy atom labeling. The
elimination of labels not only simplifies the preparation of the DNA strand, but it eliminates
the errors associated with attaching the labels and correlating the nucleotides to their labels.
Amplification is not needed, which eliminates another source of error in sequencing. Further-
more, an imaging method could enable long read lengths, which reduce the computational
complexity and uncertainty associated with stitching the segments to assemble the full
sequence.

In a prior study we focused on establishing nucleotide-specific variations of low energy elec-
tron reflectivity [6]. In a second study we noted that preliminary results on a single set of sam-
ples suggested the possibility that two well-established spectroscopic techniques, X-ray
Photoelectron Spectroscopy (XPS) and Auger electron spectroscopy (AES), may be applicable
to enable DNA imaging [7].

Here we present detailed measurements analyzing the possibility to utilize AES and XPS sig-
nals to detect nucleotide-specific contrast. We have utilized specimens with oligomers contain-
ing only one of the four single bases (Adenine (A), Cytosine (C), Guanine (G), or Thymine
(T)). It is noted that nitrogen is present in the nucleobases and absent in the phosphate-sugar
backbone. Furthermore, the purines (A and G) possess more nitrogen than their complements
(T and C) because of their imidazole ring. Fig 1 lists the elemental compositions (not including
hydrogen) and ratios of key elements for the four nucleotides. The C and T bases can be unam-
biguously identified by their nitrogen content alone (3 and 2 atoms, respectively). On the other
hand, the bases A and G both have 5 nitrogen atoms and cannot be identified by their nitrogen
content. However, the state of nitrogen in nitrogen-to-carbon bonds differ for the two bases
(single versus double). Furthermore, the A and G bases differ in the number of oxygen atoms.
This allows discrimination of the four bases by comparing the O/N ratio of the four bases. The
identification of individual bases by comparing C/O ratio is, in principle, also possible although
ubiquitous carbon contaminations can obstruct such efforts [8]. Preliminary XPS and AES
results on a single set of samples have been reported [7]. Inspired by encouraging signals
reported in Ref. 7, we substantiate the presence of base-specific contrast on several sets of sam-
ples, varying in oligomer length, purification and film thickness. In addition, we have per-
formed quantitative analysis of the individual spectra that supports our explanation of the
base-specific contrast. In the following sections we present experimental data showing that the
elemental ratios and bonding states can be used to distinguish the individual DNA bases.

Results

X-ray Photoelectron Spectroscopy (XPS)
We used XPS to analyze individual samples of homopolymeric 20mers that were prepared by
electrostatic adsorption onto gold coated surfaces modified with aminoundecanethiol. DNA
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films were tailored to a thickness larger than the escape depth of the photoemitted electrons to
minimize signal contributions from both the aminoundecanethiol layer and the gold surface.
Survey spectra were obtained to monitor the coverage of DNA and the presence of any contam-
inants. Subsequently we performed high resolution measurements of the expected DNA ele-
ments, i.e. phosphor, nitrogen, oxygen and carbon. Phosphor and nitrogen are particularly
interesting candidates for positive identification of DNA because these elements are seldom
misrepresented by surface contaminations from sample preparation or handling [8]. Phosphor
is present in the phosphate-sugar backbone of DNA at a constant level for all samples (1 phos-
phate group per base). Nitrogen on the other hand is only present in the nucleobase and varies
in content and binding state for each of the 4 nucleotides. Consequently we used the phosphor
2p signal for normalization (S1 Fig) of all samples and the nitrogen 1s spectra for quantitative
analysis. Fig 2 shows an overlay of the individual nitrogen 1s spectra, which clearly distinguish
the purine bases (A and G) from the pyrimidine bases (C and T): the larger nitrogen content in
the purines (5 nitrogen atoms per base) results in larger and wider nitrogen peaks when com-
pared to the pyrimidines (C and T, which have 3 and 2 nitrogen atoms per base, respectively).
For detailed quantitative analysis of the samples, the elemental content is derived from the area
under the spectral peak of the element.

Figs 3 and 4 show the quantitative analysis of the acquired XPS spectra for the four nucleo-
tide samples. Fig 3 displays a bar graph of the N/P elemental ratios as derived from the experi-
mental XPS spectra and compares them to the theoretical elemental nucleotide composition
ratio. The measured N/P ratios agree well with theory and can be used to identify the pyrimi-
dine samples C and T with 3 and 2 Nitrogen atoms per base, respectively.

Fig 1. Composition and elemental ratios of DNA bases.

doi:10.1371/journal.pone.0154707.g001
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The purines, A and G, both contain 5 nitrogen atoms and cannot be distinguished by the
N/P ratio alone. Fig 4 shows the O/N ratio in comparison to the theoretical ratios. Here, we
find an acceptable qualitiative agreement with the expected ratios for the XPS spectra albeit
with an excess of oxygen, likely due to oxygen-containing contaminations [8,9]. The amount of
oxygen is different between the purine bases (Adenine contains only the 4 oxygen atoms from
the phosphate group while Guanine has an additional oxygen atom present in the nucleobase)
so the O/N ratio is unique for each individual base.

Fig 2. High-resolution nitrogen 1s XPS spectra for single-stranded homopolymeric 20mers.

doi:10.1371/journal.pone.0154707.g002

Fig 3. Nitrogen-to-phosphor ratio from XPS analysis of A, C, G and T 20mers.

doi:10.1371/journal.pone.0154707.g003
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Carbon 1s spectra with deconvoluted components for each individual base are shown in Fig
5. Each base contains multiple peaks from hydrocarbons (C-C and C-H) and carbon bound to
oxygen (C-OH) that are present in either the nucleobase or the sugar backbone. In addition,

Fig 4. Oxygen-to-nitrogen ratio from XPS analysis of A, C, G and T 20mers.

doi:10.1371/journal.pone.0154707.g004

Fig 5. High-resolution carbon 1s XPS spectra for single-stranded homopolymeric 20mers.

doi:10.1371/journal.pone.0154707.g005
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each nucleobase contains additional carbon species like carbon bound to nitrogen (C-N,
N-C-N and N = C(-N)-N), amide carbon (N-C = O) and urea carbon (N-C (= O)-N). The
compositions of these carbon species are unique for each base but interpretation of individual
components is complex. Nonetheless high binding energy species like urea carbons (present in
C and T) are noticeable as a shoulder at 289 eV. In addition, the shape of the spectra for A and
G differ from each other with well separated peak maxima (286.4 and 285.0 eV).

Previous reports [10–12] have analyzed carbon 1s spectra of DNA and have fitted the data
with peaks at approximately 285, 286.5, 288 and 289 eV. We assigned these binding energies to
the various carbon species and found a reasonable agreement with earlier studies and expected
peak ratios.

Auger Electron Spectroscopy (AES)
We used AES to analyze individual samples of homopolymeric 5mers that were prepared by elec-
trostatic adsorption onto gold coated surfaces modified with aminoundecanethiol. We acquired
numerically differentiated [13] AES spectra of A, C, G, and T covered specimens, and the promi-
nent peaks for carbon, nitrogen, and oxygen are detected in the Auger spectra of all DNA speci-
mens, as shown in Fig 6. The peak at 179 eV can be attributed to tantalum, the sample holder
material. Peak heights were determined as the difference between the maximum and the mini-
mum of the derivative spectrum around the expected peak position. While the phosphor peak
has a very low signal, the intensity of the carbon peak varies significantly, possibly due to contam-
ination which is further exacerbated by the primary electron beam. The carbon peak is also pres-
ent and of comparable height on the reference specimen, whereas nitrogen and oxygen peaks
measured on the reference specimen are approximately 80% to 90% smaller than the ones mea-
sured on DNA.We thus focus on the signal originating from nitrogen and oxygen (Fig 6B).
Although the Auger peak height for one element is roughly proportional to its abundance within
the sample, the peak heights of different elements are not necessarily comparable due to different
cross-sections for Auger electron emission. Nevertheless, the ratio of the O/N AES peak heights
can still serve as a measure to identify the nucleotide immobilized on the specimen.

Fig 7 shows the quantitative analysis of the acquired Auger spectra for the four nucleotide
samples. It displays bar graphs of the O/N peak height as derived from the experimental Auger
spectra and compares them to the theoretical elemental nucleotide composition ratio. Purines
(A and G) and Pyrimidines (C and T) are clearly distinguishable, and C and T can be easily
held apart as well. However, the contrast between A and G is more subtle and may be challeng-
ing for sequencing by imaging. As an additional pathway to discriminate between A and G,
future studies will examine the peak shapes and energy shifts between A and G covered
samples.

Discussion
Further detailed analysis of the XPS spectra reveals that the nitrogen spectrum itself may be
sufficient to unambiguously distinguish the individual bases. This realization can be under-
stood by focusing on the small energy window centered around 399 eV marked by a dashed
box in the zoomed-in view of the individual nitrogen 1s spectra in Fig 8. Previous studies
[10,11] have divided the nitrogen spectra for DNA bases into two binding energy regions, one
above 400 eV and the other one around 399 eV. The higher binding energy region is attributed
to single-bonded (non-conjugated sp3) amines and the lower region to double-bonded (conju-
gated sp2) imino species. T has 2 single-bonded amines and accordingly a narrow spectra con-
taining only the high binding energy peak is present in the sample. All the other samples
contain both high and low energy peaks as expected from their mixed composition of both
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single and double-bonded nitrogen. Accordingly, the nitrogen signals from the narrow energy
window centered at 399 eV can be used to assign the individual bases. Within this energy win-
dow, nitrogen signals are increasing in nearly equal steps, starting with the minimum nitrogen
content for T, followed by increased content for C and G, and reaching a maximum for A. The
roughly linear dependence on the nitrogen signal is attributed to the aforementioned double-
bonded nitrogen present in differing amount in the individual bases: T has no double-bonded
nitrogen, C has one, G has two and A has three (see Fig 1). The integrated counts for the four
bases, T, C, G, and A are approximately 1900, 2800, 4200, and 5100, respectively. Subtraction
of 1900 (for T) results in remaining counts of 0, 900, 2300 and 3200 each for T, C, G and A.
This corresponds to the attained amount of double-bonded nitrogen for each base. We also
performed peak-fitting on the individual nitrogen spectra (S2 Fig) and found that the obtained
peak ratios qualitatively follow the predicted ratios with a minor overrepresentation for the
lower binding energy peak at 399 eV, comparable to a previous report [10]. The nominal pair
contrast, defined here as a ratio of the difference and the sum of the individual base signals,
obtained from the XPS measurements on bulk DNA, is estimated from the integral of the

Fig 6. Auger spectra for single-stranded homopolymeric 5mers. Peak positions for phosphor (LMM 120
eV), carbon (KLL 272 eV), nitrogen (KLL 379 eV) and oxygen (KLL 503 eV) are marked with the respective
elemental symbols. Spectra are normalized to obtain the expected ratio of oxygen (A:C:G:T = 5:6:6:7) as
shown in Fig 1. Panel a shows an overview of detected electrons in the 30–600 eV range, and panel b shows
zoom-ins of the nitrogen and oxygen peaks.

doi:10.1371/journal.pone.0154707.g006
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counts in Fig 8 over a 1 eV window about the energy of 399 eV. Using the integrated counts
listed above, the nominal pair contrast becomes 0.2 and 0.5 for the GC and AT base pairs,
respectively. For single strand DNA specimens, the signal from the substrate can potentially

Fig 7. Oxygen-to-nitrogen ratio from Auger analysis of A, C, G and T 5mers.

doi:10.1371/journal.pone.0154707.g007

Fig 8. High-resolution nitrogen 1s XPS spectra for single-stranded homopolymeric 20mers. The
dashed window centered at 399 eV highlights the difference in the amount of conjugated nitrogen between
the various nucleotides.

doi:10.1371/journal.pone.0154707.g008
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weaken the contrast. However, we believe that the potential reduction of the contrast can be in
part mitigated by a proper choice and cleanliness of the substrate, in particular by avoiding
potential Nitrogen contamination and compounds with elemental signals that could overlap
the Nitrogen peaks.

We note that the correlation between the increasing signal levels at 399 eV and the amount
of double-bonded nitrogen is also reflected in the binding energy at peak maximum of the
entire nitrogen spectra. The peak maximum position is related to the amount of individual
nitrogen species within each base. A lower peak maximum is found in purine bases which have
a higher content of double-bonded nitrogen. The purine A with the highest amount of double-
bonded nitrogen has the lowest peak maximum (399.4 eV) followed by G (399.8 eV), C (400.6
eV) and T (400.8 eV). This suggests that in addition to the spectral count at 399 eV, the peak
maxima and the shape of the spectra (characteristic shoulder for A and narrow peak for T) can
be used to distinguish the individual bases. Binding energies are known to increase with film
thickness due to extra-atomic relaxation and charging effects [14, 15]. Thus for a thinner film
consisting of individually aligned DNA strands a uniform shift to lower peak binding energies
is expected without significant changes between the four nucleobases. These films are also
expected to be thin (< = 2 nm) with minimal effects caused by the orientation of the DNA
strands [10]. Nitrogen 1s photoelectrons have kinetic energies on the order of 1000 eV, and
simulations show that energy windows as large as 1 eV can be used for imaging while maintain-
ing sub-nanometer resolution [7]. Consequently, we believe that in the XPS imaging mode we
can use either a single energy-filtered image of the nitrogen peak at the energy level of 399 eV
or a combination of the shape and peak maxima of the nitrogen 1s spectra to distinguish indi-
vidual bases.

In the XPEEM imaging mode, electrons from a small energy window are selected with
which to form the image in order to deliver analytical information about the specimen such as
its elemental composition. The application of the optimum aperture to the wide angular distri-
bution of the photo-emitted electrons combined with the additional filtering by the energy
window can significantly reduce the fraction of the electrons that reach the detection plane
when compared to the collection efficiency of the reflected electrons in the LEEM imaging
mode. However the resulting loss in the intensity is partially recovered by the greater nominal
contrast of the X-ray signal and by the introduction of the pentode MAC, which significantly
increases the optimum aperture angle as well as the tolerable energy spread. In order to achieve
realistic acquisition times, the intensity of the illuminating X-ray beam needs to be increased
by focusing the illuminating X-ray beam to provide a close match to our desired field of view (a
few μm) and by utilizing a high brilliance X-ray source, e.g. available in a synchrotron beam
line. Radiation damage could potentially be an issue but a related XPS [11] study found that
the Nitrogen region of interest did not show any X-ray damage for a continuous X-ray expo-
sure for 4 hours and we expect our exposure time to be significantly shorter. A careful optimi-
zation balancing the acquisition time and X-ray beam intensity will be required.

Conclusions
We have presented XPS and AES investigations of DNA homopolymers that demonstrate two
feasible contrast mechanisms that can distinguish individual nucleotides without labels. We
have shown experimentally that the nucleotide element ratios and bonding states can be used
to distinguish the individual bases. Detailed, quantitative analysis of the XPS and AES spectra
shows that the elemental composition and bonding states are in good qualitative agreement
with theory and yields an appreciable nominal contrast of 0.2 and 0.5 for the GC and AT base
pairs. The experimental contrast obtained in XPS and AES holds promise for sequencing by
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imaging in an electron microscope. This can be achieved by integrating the XPS and AES imag-
ing modes into an aberration-corrected low energy electron microscope to enhance their lateral
resolution to the sub-nanometer range and explore their elemental and chemical specificity to
distinguish the individual nucleotides. This approach thus has promise to significantly improve
the performance of a DNA sequencing tool based on direct imaging and will be suitable for a
wide range of applications in the biosciences, material sciences, and nanotechnology, where
nanometer scale resolution and analytical capabilities are required.

Materials and Methods

Specimen preparation
Gold surfaces were obtained by sputtering the gold onto silicon wafers using chromium as an
intermediate adhesive layer (Stanford Nanofabrication Facility). Prior to use, gold substrates
were diced into 50 mm2 pieces (~7x7 mm2) and cleaned in UV-Ozone (Jelight UVO-cleaner
42) for 15 minutes. This was followed by immediate immersion in a 1 mM aminoundeca-
nethiol (Sigma Aldrich) solution in ethanol for overnight incubation. The substrates were sub-
sequently washed extensively with ethanol and dried in a stream of argon. Homopolymeric
oligonuclotides (5mers and 20mers purchased from Integrated DNA Technologies) were dis-
solved in deionized water. All samples were prepared by electrostatic adsorption of oligonuclo-
tides onto self-assembled monolayers (SAMs) of aminoundecanethiol. XPS samples containing
homopolymeric 20mers were prepared by spotting 10 μL droplets of a 100 μM oligo solution
directly onto the SAM -layer and left to dry overnight in a sealed NaCl saturated Teflon cham-
ber. The thickness of the DNA films were adjusted by the number of droplets spotted onto the
samples. Typically 2–4 droplets were used for each individual sample. Samples used for Auger
measurements were prepared in a similar manner with the exception that the oligomer solution
contained 5mers diluted to 10 μM. The use of lower concentration and shorter oligomers
resulted in thinner DNA films (approximately 10 monolayers instead of a few 100 monolayers)
and was found to be favorable to mitigating charging effects. Surface charging, specimen thick-
ness and substrate signal affect to a different degree the experimental results in XPS, Auger and
LEEM, with XPS being the least and LEEM the most sensitive to charging. While MAD-LEEM
would not only offer spatial resolution but also compensate charging for all these imaging
modes, our currently available instrumentation required slightly different DNA film conditions
to balance the charging and the presence of parasitic signal from the substrate and surface
contaminations.

XPS
XPS is a quantitative spectroscopic technique that measures the elemental composition and the
chemical and electronic states of a specimen. The spectra are obtained by irradiating the mate-
rial with a beam of X-rays, while simultaneously measuring the kinetic energy and number of
electrons that escape the specimen. In this method, low energy electrons are measured, giving
rise to shallow depth and high chemical sensitivity values, which are respectively on the order
of nanometers and of about 0.1% atomic concentration. XPS measurements were performed
on a commercial XPS System (PHI Versaprobe) equipped with a monochromatic Al Kα source
and a hemispherical electron energy analyzer using a spot size of 100 μm. The acquisition time
for the individual Nitrogen spectra was 100 s. The maximum X-ray photon flux is estimated to
be approximately 1011 photons/(mm2 s), resulting in an average X-ray photon dose of ~ 10
photons / nm2 for the exposure time of 100 s. Survey scans were performed on all samples
using a pass energy of 100 eV. Survey scans consistently identified the expected elements (C, O,
N, P) and occasionally trace amounts of Au (from the underlying substrates) or adventitious
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elements (typically Na that is believed to be present as a counter ion to the phosphate in the
DNA). Samples with a Au signal exceeding 1% in the survey scans were re-spotted with addi-
tional DNA to make a thicker DNA film. Electrons detected from the Au layer have higher
kinetic energy (and a larger escape depth) than any electrons detected from the aminoundeca-
nethiol layer (C or N). Thus the absence of Au peaks in the survey spectra is a confirmation
that neither nitrogen nor carbon from the aminoundecanethiol layer are included in the analy-
sis. High resolution XPS spectra were obtained using a pass energy of 20 eV. All samples identi-
fied the common phosphor 2p peak within a narrow window of 0.2 eV. Consequently we
report all XPS peaks referenced to this phospor peak (aligned at 133.6 eV in accordance with
previous studies) [14]. High resolution XPS peaks were fit using Multipak software. A convolu-
tion of Lorentzian and Gaussian line shapes was used to fit the individual peaks while the back-
ground was modeled using a combination of Shirley and linear functions. Individual peak
positions were kept fixed within +/- 0.2 eV for all samples, and the full width at half maximum
(fwhm) converged to consistent values between 1.2 eV (for C 1s) and 1.8 eV (for N 1s)
throughout the series without restrictions and are consistent with common ranges for poly-
mer-like materials.

AES
In Auger Electron Spectroscopy the sample is excited with a primary electron beam with a
fixed energy of several keV and an energy spectrum of secondary electrons is recorded. The pri-
mary beam excites secondary electrons by several mechanisms, including Auger electron emis-
sion. In this process, a tightly bound electron from a core level (e. g. the K-shell) is emitted.
Another electron from a higher level (e. g. L1) can gain energy by filling the resulting hole. This
energy gain can either be released as a photon or it can be transferred to a third electron bound
to the atom (e. g. in the L2,3-shell). If the transferred energy exceeds the binding energy, then
an Auger electron can be emitted (a KLL emission). As the transferred energy and thus the
kinetic energy of the emitted Auger electron is dependent on the electron binding energy dif-
ferences, the Auger electron energy spectrum is element specific and also sensitive to the chem-
ical environment to some degree. Auger electron energy spectra are usually differentiated for
analysis to remove the large background of secondary electrons [13]. AES measurements were
performed on a commercial AES system (Perkin-Elmer PHI 10–155) operating at 3 keV and
with an emission current of 1mA. The beam is focused at the sample into a spot of approximately
1 mm2 with a maximum beam current of 50 μA. Its cylindrical mirror analyzer has an energy res-
olution of 0.5 eV or less for the applied energy range. Spectra are composed of five averaged
passes with a step size of 500 meV and a dwell time of 100 ms at each energy step, with a total
acquisition time of 960 s per spectrum. The current density at the specimen is 5 x 10−17 A / nm2,
and we estimate the average electron dose to be approximately 300,000 electrons / nm2. All differ-
ential spectra have been normalized to obtain the expected ratio of oxygen (A:C:G:T = 5:6:6:7)
and the linear background based on the featureless stretch between 600–900 eV in the AES spec-
tra has been subtracted.

DNA preparation for sequencing by electron microscopy imaging
The challenge for imaging a sequence of DNA does not remain solely with the necessary resolv-
ing power of the electron microscope. First, DNA has to be removed from its natural environ-
ment, an aqueous solution, and subsequently deposited onto a substrate in a manner suitable
for imaging: a process referred to as linearization. Here we outline the requirements for the
preparation of DNA for sequencing by imaging and give an overview of the state of the art.
This outline is the basis of the model for the presented contrast simulations.
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If DNA could be extruded and linearized onto a substrate, there would still remain the ques-
tion of what form DNA takes outside of an aqueous environment. In its natural form, known
as B-DNA, the polymer comprises two helical, intertwined strands. The two strands contain a
complementary sequence of nucleotides with the bases on each strand held together by a
sugar-phosphate backbone and with each base forming hydrogen bonds with its complement
on the other strand. If the polymer were to retain its natural state when extruded from solution,
then the tight spacing between the base pairs characterized by a rise per base pair of γ = 0.34
nm would present the primary challenge for resolving them. In addition, there is the issue of
differentiating the base-to-base intensity contrast, which provides the sequence information,
from the competing signal that would arise from the helical, intertwined geometry, which
repeats itself every h = 3.4 nm or 10 base pairs.

A number of groups have worked on related problems and there exists a body of literature
which helps to assess these questions. In the 1990’s, experiments [16,17] were performed in
which DNA in solution was grafted onto a silinated substrate (surface treated with silicon-
hydrides). Upon extrusion of the substrate from the solution, the anchored DNA was found to
remain attached to the surface in a manner that did not form clumps. Furthermore, the DNA
polymer was found to have stretched by about 50%. This phenomenon, dubbed molecular
combing, was attributed to the force associated with the surface tension of the air-water menis-
cus pulling on the DNA molecule. Estimates of this force were found to be two orders of mag-
nitude greater than the entropic forces keeping the DNA polymer in a random coil
configuration, but smaller than the force required to break a covalent bond. Furthermore, it
was noted that because the force was localized at the air-water interface, it acted identically on
each base pair leaving the solution, thereby stretching the polymer uniformly.

The molecular combing experiments were complemented by experiments on DNA
micro-manipulation using optical tweezers and magnetic beads to twist and stretch DNA
[18–20]. These studies have shown that a small force of order 1 pN is able to counter the
effects of entropy to nearly stretch DNA to its contour length. Beyond this point, the force
rises abruptly to stretch the bonds holding DNA in its normal B-form. When the force
reaches 60-to-70 pN, DNA (that is free to twist) undergoes a phase transition where it
stretches at near constant force to approximately 1.7 times its contour length. This new
form, labeled as S-DNA, is believed to describe the stretched DNA in the molecular combing
experiments.

While there have emerged successful, discrete and continuous chain models [21,22] to
describe the force-extension curve of DNA from its entropic and elastic regions all the way
through its phase transition (with an Ising model), there remains some ambiguity regarding
the actual form of overstretched S-DNA. S-DNA cannot be a complete unwinding of the DNA
helix. A geometric calculation of the contour length of the sugar-phosphate backbone helix
shows that an unwound DNA ladder would extend by a factor of

p
(1+ (2πa / h)2)ffi 2.1, not

1.7, where a = 1 nm is the helix radius.
Experimental findings [23] of suppression of the phase transition when DNA is twist-con-

strained have motivated a helical model of S-DNA that has a reduced winding with a helical
turn of h = 22 nm holding approximately 37.5 base pairs to give a rise per base pair of γ = 0.59
nm (providing the 70% increase from the value in B-form). However, demonstrations of a
reduction in the force required for the phase transition in chemical conditions that destabilize
the DNA double helix have led to compelling thermodynamic arguments suggesting that
S-DNA is composed of long stretches (of order 100 base pairs) of “melted”, single-stranded
DNA held together by local regions of remnant base pairing [24].
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Supporting Information
S1 Fig. High-resolution P 2p XPS spectra for single-stranded homopolymeric 20mers. All
spectra have been peakshifted to 133.6 eV and scaled to the same height. The obtained peak-
shift and scaling factor were used for normalization of all other elements throughout each sam-
ple.
(DOCX)

S2 Fig. Peak-fitted high-resolution N 1s XPS spectra for single-stranded homopolymeric
20mers. The data for all samples are fit with one peak for single-bonded nitrogen at 400.6 eV.
In addition the Adenine, Cytosine and Guanine samples are fit with a second peak at 399.5 eV
corresponding to double-bonded nitrogen.
(DOCX)
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