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Abstract

Background

Immunity to human influenza A virus (IAV) infection is only partially understood. Broadly
non-neutralizing antibodies may assist in reducing disease but have not been well
characterized.

Methods

We measured internalization of opsonized, influenza protein-coated fluorescent beads and
live IAV into a monocytic cell line to study antibody-dependent phagocytosis (ADP) against
multiple influenza hemagglutinin (HA) subtypes. We analyzed influenza HA-specific ADP in
healthy human donors, in preparations of intravenous immunoglobulin (IVIG), and following
IAV infection of humans and macaques.

Results

We found that both sera from healthy adults and IVIG preparations had broad ADP to multi-
ple seasonal HA proteins and weak cross-reactive ADP to non-circulating HA proteins. The
ADP in experimentally influenza-infected macaque plasma and naturally influenza-infected
human sera mediated phagocytosis of both homologous and heterologous IAVs. Further,
the IAV phagocytosed in an antibody-mediated manner had reduced infectivity in vitro.

Conclusion

We conclude that IAV infections in humans and macaques leads to the development of
influenza-specific ADP that can clear IAV infection in vitro. Repeated exposure of humans
to multiple IAV infections likely leads to the development of ADP that is cross-reactive to
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strains not previously encountered. Further analyses of the protective capacity of broadly
reactive influenza-specific ADP is warranted.

Introduction

There is a need to better understand immunity to influenza A viruses (IAVs) to rationally
develop improved vaccines. [1-5]. Neutralizing antibodies (NAbs) can prevent influenza virus
infection (IVI) but are primarily directed towards the highly variable regions of the surface
hemagglutinin (HA) protein of influenza and are frequently strain specific. There is great inter-
est in NAbs to the conserved stalk regions of HA. Strategies to induce such antibodies by vacci-
nation are under development [6, 7].

Infection and/or vaccination can lead to the induction of a range of functional antibodies.
Non-neutralizing antibodies (non-NAbs) have the potential to bind conserved regions of HA.
Antibody-dependent cellular cytotoxicity (ADCC) triggering antibodies bind to viral proteins
on the surface of infected cells, and engage the CD16 Fc receptor [8, 9] to activate innate
immune cells [10-12]. ADCC triggering antibodies induced by serial influenza infections of
humans are frequently cross-reactive [10, 13, 14] and are important in protecting mice from
IAV [15, 16].

Non-NAbs can also mediate antibody-dependent phagocytosis (ADP) through CD32,
CD64 and CD89 receptors [8]. ADP plays a role in the prevention of HIV infection, where a
composite of non-NAD functions appears to contribute to the partial efficacy of a HIV vaccine
candidate [17]. There is one report that influenza infection of mice can generate antibodies
that mediate ADP but this has not been explored further [18].

In this report we both adapted a HIV-specific ADP assay [19] to measure influenza-specific
ADP and also developed an in vitro functional assay that measures antibody-mediated clear-
ance of live IAVs. We assessed sera from humans and macaques infected with influenza to
determine the potential of HA-specific ADP antibodies.

Materials and Methods
Influenza ADP-SHIP assay

ADP was performed by measuring the internalization of opsonized HA-coated beads by a
phagocytic cells line (Fig 1A). The methods were similar to those previously described for HIV
[19, 20] with minor modifications. Briefly, FITC-labeled NeutrAvidin® FluoSpheres@ (beads
1pum, Invitrogen, Carlsband, CA) were labeled both with internalization probe tagged with Cy5
(FIP¢ys) [21] and 0.75ug biotinylated HA or HIV-1 gp140 then opsonized with 10ug/ml puri-
fied IgG (Protein G HP Multitrap, GE Healthcare, UK). 1x10° THP-1 (ATCC TIB-202) cells
were incubated with the beads for 16 hr. A 16hr incubation provided a reasonable balance
between ADP and non-specific bead uptake (not shown). Cell surface FIP¢,5 was quenched
with a complimentary probe so that internalized beads (FITC+Cy5+—i.e. truly phagocytosed)
can be measured. Cells were fixed and 5x10* cells were analyzed by flow cytometry. Back-
ground levels of ADP activity were assessed against HIV-1 gp140 since all donors were HIV-
negative and calculated as the mean plus 2 SD. Background ADP levels were reproducible
across multiple experiments (11-14%) as illustrated in the dotted lines Figs 1B and 3A-3C.

Proteins and biotinylation

Influenza HAs and HIV-1 gp140 proteins were sourced from Sinobiological, Shanghai, China.
50pg of protein was biotinylated using EZ-Link® Sulfo-NHS-LC-Biotin kit (Thermo Fisher
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Fig 1. Representative influenza HA-specific ADP assay. The ADP assay is performed as describe in (A).
In brief, FITC fluorescent beads coated with hemagglutinin (HA) and fluorescent internalization probe
(FIP¢ys) are opsonized with 10ug/ml purified IgG from blood plasma or sera. HA-coated beads are incubated
16 hr with monocyte-like cell line, THP-1. Cy5 fluorescence from surface bound beads is quenched. Cells are
fixed and analysed by flow cytometry. (B) Gating strategy of single cells. (C) Gating strategy for internalized
beads+ (FITC+, Cy5+) and surface associate beads+ (FITC+. Cy5-) cells. Uptake of H3N2 A/Wyoming/03/
2003 HA-coated beads in presence of influenza sero-negative human serum IgG or healthy human adult
plasma IgG (top 2 panels). Uptake of HIN1 A/Puerto Rico/08/1939 HA-coated beads opsonized with IgG
from macaque plasma either pre-influenza infection or post-influenza infection (bottom 2 panels). Data are
representative of 14 human donors (Fig 2) and 6 macaques (Fig 5).

doi:10.1371/journal.pone.0154461.g001

Scientific, Waltham, MA) following manufacturer’s recommendations. 50-fold biotin excess
was used to label each of the HA proteins and a 20-fold excess for the HIV-1 gp140 control
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Fig 2. Comparison of Hl titres and ADP activity in healthy adults. (A) H1N1 A/California/04/2009 (H1N1 PdmQ9), A/Solomon Islands/03/2006 (H1N1 Sol
Isl), A/New Caledonia/20/1999 (H1N1 New Cal), H3N2 A/Wyoming/03/2003 (H3N2 Wyo), H5N1 A/Vietnam/1194/2004 (H5N1 Viet) y-irradiated and H7N9 A/
Anhui/01/2013 (H7N9 Anh) y-irradiated hemagglutination inhibition (HI) titres were determined for 14 healthy donors. (B) ADP activity in serum IgG against
seasonal H1N1 and H3N2 HAs (left panel) and rare H2N2 A/Japan/503/1957 (H2 Japan), H4H6 A/Swine/Ontario/01911-1/1999 (H4 Ontario), H5N1 A/
Vietnam/1194/2004 (H5 Viet), H7N9 A/Shanghai/1/2013 (H7 Shan) and H7N7 A/Netherlands/219/2003 (H7 Neth) HAs (right panel) was evaluated. HIV-1
gp140 was included as negative control in each experiment. Line and error bars represent mean + SEM. **** P <(0.0001, *** P <0.001, ** P <0.01,and ns
P > 0.05 determined using Bonferroni’s multiple comparison test. Dotted line indicated mean + twice SD of ADP for HIV-1 gp140. (C) Correlation of H1
PdmO09, H1 Sol Isl and H3 Wyo HA-specific ADP activity and Hl titre to the same virus determined using Pearson’s correlation. Data are representative of

n = 3 independent experiments. (D) Correlation of H1 Pdm09, H1 Sol Isl, H3 Wyo, H2 and H5 Viet HA-specific ADP activity and IgG endpoint tires to the
same or similar virus using Pearson’s correlation. Serial dilutions of plasma on IgG ELISA were performed in duplicate.

doi:10.1371/journal.pone.0154461.9002
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post 2009 IVIG samples were evaluated against seasonal H1 and H3 HAs (B) and non-circulating H2N2 A/
Japan/503/1957 (H2 Japan), H4H6 A/Swine/Ontario/01911-1/1999 (H4 Ontario), H5N1 A/Vietnam/1194/
2004 (H5 Viet) and H7N9 A/Anhui/1/2013 (H7 Shan) HAs (C). HIV-1 gp140 was included in each experiment
as negative control. Dotted line indicated mean + twice SD of ADP for HIV-1 gp140. Line and error bars
represent mean = SEM. **** P < (0.0001, *** P <0.001, ** P <0.01, * P <0.05 and ns P > 0.05 determined
using Bonferroni’s multiple comparison test. Data are representative of n = 3 independent experiments. (D)
1gG endpoint titres were calculated for each IVIG sample to H1 Pdm09, H1 Sol Isl, H3 Wyo, H2 and H5 Viet.
Half-log serial dilutions ranging from 100 to 0.030 ug/ml IVIG were performed in duplicates for each antigen
and an average was calculated. Line and error bars represent mean + SEM for each group. Endpoint tires are
expressed as 1/endpoint titre concentration. There were no significant differences in the pre- and post-2009
HA-specific IgG levels.

doi:10.1371/journal.pone.0154461.g003

protein. ELISA experiments using streptavidin-HRP to assess biotinylation indicated the above
levels of biotin showed generally more efficient biotinylation compared to lower levels of biotin
(20- and 10-fold excess respectively) and higher amounts of biotin (100- and 50-fold respec-
tively) did not result in improved biotinylation (data not shown). Excess biotin was removed
by washing four times with PBS using the 30k Amicon® Ultra-0.5ml Centrifugal Filter Units
(Millipore, Billerica, MA).

Hemagglutination Inhibition (HI) assay

HI titres were measured in either plasma or serum samples as previously described [22].
Briefly, samples were pre-treated with receptor destroying enzymes (Denka Seiken C. Ltd).
Plasma or sera were serially diluted 2-fold from 1:10 up to 1:640 in PBS. The capacity of the
plasma or sera to inhibit agglutination of 1% turkey red blood cells by specific strains of IAV
was measured. Titres are stated as the reciprocal of the highest dilution of plasma or serum
where hemagglutination is inhibited.

IgG ELISA

HA-specific IgG ELISA assay was performed to calculate IgG endpoint titres. 5 HA proteins
(HIN1 A/Solomon Islands/03/2006, A/California/4/2009, H3N2 A/Wyoming/03/2003, H2N2
A/Canada/720/2005 and H5N1 A/Vietnam/1194/2004) and SIV gp120 (Sinobiological) were
diluted individually at 500ng/ml in PBS. 96-well flat bottom MaxiSorp™™ plates (Nalgene
Nunc, Rochester NY) were coated with 50ng/well of each relevant protein at 4°C overnight.
Plates were washed with 0.05% Tween-20 in PBS, and a final wash of PBS using Wellwash™
Versa microplate washer (Thermo Fisher Scientific). Subsequent incubation steps were per-
formed at room temperature with gently agitation.

For plasma samples, non-specific binding was blocked using 1% fetal calf serum (FCS;
Thermo Fisher Scientific) in PBS for 1hr. Wells were washed, 2-fold serial dilutions (1:40 to
1:81,920) of plasma samples in 1% FCS were added, incubated 2 hr and washed. IgG in plasma
was detected adding 1:4,000 rabbit anti-human IgG/HRP conjugated (Dako, Denmark) and
washed after 1 hr. 100 ul 3,3’,5,5’-Tetramethylbenzidine (TMB; Sigma-Aldrich) was added to
develop color and stopped with 100 ul 1M HCI. Absorbance was measured at 450 nm. Each
serial dilution was done in duplicate for each antigen and gp120 SIV was included to calculate
background of each sample. Endpoint was determined as the well with the lowest concentra-
tion of IVIG where the absorbance was higher than gp120 SIV + 3SD. On account of higher
background using the above method on IVIG samples, a high-protein blocking buffer was used
with these samples (containing 10% FCS, 4% whey protein (Professional Whey, Australia) and
0.5% Tween-20). Half-log serial dilutions of IVIG samples starting at 100 pg/ml were added in
duplicates for each antigen. IgG detection and endpoint titre calculations were performed as
above. Endpoint titres of IVIG are expressed as 1/endpoint dilution titre pug/ml.
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Functional ADP assay

To evaluate the functional significance of ADP antibodies, we developed an assay for antibody-
mediated uptake of live IAVs by THP-1 monocytic cells through intracellular staining for influ-
enza NP. TAV was first incubated with human or macaque IgG for 1 hr at 37°C. In order to
measure Fc-mediated phagocytosis rather than natural binding of IA Vs to sialic acid, cells were
pre-treated with 50ug/ml sialidase (Sigma-Aldrich, St Louis, USA) for 1 hr at 37°C then washed
away with cold serum free RPMI. 5x10° THP-1 cells in serum free RPM1 1640 (Gibco, Thermo
Fisher Scientific) were seeded in a 96-well u-bottom plate. Cells were then incubated with IAV
strains, previously opsonised, or not, with IgG, at a multiplicity of infection of 10 for 1 hr then
washed three times with RF10 (RPM1 supplemented with 10% FCS) to remove free virus. Fol-
lowing 6 hr incubation at 37°C, THP-1 cells were washed with FACS wash buffer 2mM
EDTA, 1% BSA in PBS), fixed with 4% paraformaldehyde and permeabilized using 0.1% tri-
ton-X. Finally, cells were stained with 1:100 anti-NP-FITC antibody (431, Abcam, Cambridge,
UK) for 45 min and washed with FACS wash buffer. All cells were acquired immediately on
the LSR Fortessa (BD, Franklin Lakes, NJ) and analyzed using Flow]Jo analysis software version
10.0.7.

Infected THP-1 supernatant transfer to MDCK cells

We studied the ability of THP-1 cells infected with influenza in an antibody-dependent man-
ner to either release free virus or contain IAV. Sialidase treated THP-1 cells (5x10° cells) and
untreated A549 cells (~5x10° cells, a respiratory cell line supportive of influenza infection)
were infected with PR8 virus (M.O.1. of 10, in 200 pl) opsonised or not with IgG from influ-
enza-infected macaques. We studied an antibody dilution of 1:1000 since we showed that this
dilution retains ADP activity in the absence of neutralization (illustrated in Fig 4D). A 1:1000
IgG dilution results in a comparable concentration of IgG to that used above in the ADP-SHIP
assay (purified macaque IgG was 15.9 mg/ml on average). Cells were washed twice with RF10
to eliminate excess virus and antibodies from supernatant. After 20 hr of culture at 37°C,

150 pl of supernatant was transferred to ~5x10° MDCK cells in 150 pl. To assess NP levels of
the donor cells, THP-1 and A549 cell were resuspended, fixed, permeabilized, labelled with
anti-NP antibody and analysed by flow cytometry as above. NP signal in the recipient MDCK
cells was measured 20 hrs after the supernatant transfer by intracellular NP staining as above.

Patients, IVIG, human plasma and sera samples

ADP in healthy adults was studied in plasma from Australian subjects (n = 14) aged between
22-60 years old. To assess ADP in the general population, IVIG preparations manufactured
from 2004 to 2010 (n = 17) by bioCSL (Parkville, Australia) were tested. To investigate the
presence of influenza-specific ADP after influenza infection, we evaluated paired sera samples
from three subjects who naturally contracted IVI. IgG from normal human serum (Sigma-
Aldrich) was used as positive control in all ADP assays. We purchased influenza seronegative
human IgG (MBL Bion, Des Plaines, IL) or used IgG purified from influenza-naive macaque
plasma (pre-infection samples from below) as negative controls.

Total IgG was purified from 50-200pl plasma or serum using Protein G HP Multitrap and
Antibody Buffer Kit (both GE Healthcare, UK) according to manufacturer’s instructions.
Eluted IgG was washed twice with PBS using 30k Amicon@®) Ultra-4 Centrifugal Filter Units
(Millipore, Billerica, MA). Total IgG concentration was measured by NanoDrop 2000 (Thermo
Fisher Scientific, Waltham, MA). IgG from human serum (Sigma-Aldrich, St. Louis, MO) was
used as positive control in all ADP assays.
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doi:10.1371/journal.pone.0154461.g004

Macaque plasma samples

We selected plasma from 6 pigtail macaques (Macaca nemestrina) infected with IAV in a previ-
ous study described by Reece et al [23]. Briefly, animals were inoculated intranasally with 10°®
PFU twice with both PR8 A(H1N1) A/Puerto Rico/8/1934 and X31 A(H3N2) A/HKx31 viruses
that expressed a SIV CTL epitope as part of previous SIV vaccine study [23]. Animals #19530,
#19351 and #B0508 were infected at week 0 and 9 with X31, and at week 4 and 17 with PR8.
Animals #26359, #B0517 and #B0526 were inoculated with PR8 at week 0 and 17; and with
X31 at week 4 and 9. We previously showed that all animals seroconverted to the IAV infec-
tions and shed virus was recovered early after infection [23]. Longitudinal plasma samples
were assessed to measure influenza-specific ADP pre and post influenza infection.
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Ethics statements

All human subjects provided written informed consent and subjects had the opportunity to
withdraw from the study at any time. The studies were specifically approved by the University
of Melbourne and Alfred Hospital research and human ethics committees.

Experiments on the macaques were approved by the University of Melbourne and CSIRO
Animal Health Animal Ethics Committees, approval number 1315. Samples were from the
same ethics committee-approved study previously described by our group [23]. All animals
were cared for by dedicated trained animal technicians and humanely euthanized at the end of
the experiments with a lethal dose of pentobarbitone IV. No disease or clinical symptoms
occurred during the study. Animals were housed at CSIRO animal health and held according
to Australian NHMRC animal welfare guidelines in group housing with cages 2.0 m high, 3.0
m long and 1.2 m wide. An environmental enrichment strategy for animals provided toys,
treats, fresh fruits and vegetables. Specifically, there were regular changes of equipment and
toys, facilities to allow swinging and jumping and engaging in activities from floor to ceiling,
wood chip substrates on the floor to provide opportunity for foraging, the use of puzzle feeders,
placement of food in different locations in the enclosures and access to partially partitioned
areas within the enclosures for rest and privacy. There was also access to mirrors and water
pools. They were socially housed in groups. Animals were monitored daily for health and wel-
fare. All procedures were carried out with sedated animals. Animals were anesthetized intra-
muscularly with ketamine (10 mg/kg) prior to any procedures.

Data analysis

Statistical analysis was performed using Prism GraphPad v5 (GraphPad Software, San Diego,
CA). Data were analyzed by one-way ANOVA followed by a Bonferroni’s comparison (Fig
2B), two-way ANOVA together with a Bonferroni comparison (Fig 3A-3C) and Pearson’s
product-moment correlation coefficient (Fig 2C and 2D). ADP values were considered positive
when above mean + twice SD for HIV-1 gp140.

Results

Influenza-specific ADP assay

We modified an ADP assay previously developed to study HIV-specific immunity [19] to mea-
sure the ability of antibodies to mediate internalization of fluorescent particles coated with
influenza HA protein. The assay is illustrated in Fig 1A, where influenza seronegative human
serum IgG, seronegative macaque plasma IgG, plasma IgG from influenza seropositive healthy
adults, and plasma IgG from macaques experimentally infected with influenza are studied (rep-
resentative plots in Fig 1B and 1C). When the phagocytic THP-1 monocytic cells were incu-
bated with influenza seronegative samples, 10-11% of cells internalized at least one HA-coated
bead (right column, Fig 1C). In contrast, 42-49% of cells internalized one or more beads when
incubated with the influenza seropositive human or macaque samples. Thus, anti-HA antibod-
ies from influenza-immune sera/plasma mediate uptake of HA-beads.

Influenza-specific ADP in healthy human donors

To probe the ability of adult sera to mediate influenza-specific ADP we studied serum IgG
from 14 healthy, HIV-negative Australians during 2013-2014. As expected, the majority of
donors had HI-inducing antibodies to a variety of HINI strains, as well as a H3N2 strain but
not to H5N1 or H7N9 strains (Fig 2A).
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Serum IgG from all but one of the 14 subjects had appreciable ADP activity to recently cir-
culating H1 proteins and H3 protein (Fig 2B, left panel). We then evaluated ADP against HA
proteins from non-circulating H2, H4, H5 and H7 AV subtypes (Fig 2B, right panel). All sub-
jects had detectable ADP against both H5 and H2 HA proteins, but at generally lower levels
than that observed to H1 and H3 proteins. A subset of subjects also had weak ADP to a H4 pro-
tein (6 out of 14) and H7 protein (9 out of 14). Across the group, ADP was significantly higher
to the H2 and H5 HA tested proteins than to the negative control HIV gp140 (both
P < 0.0001).

The detection of ADP activity to non-circulating strains in the absence of HI activity to the
same strain, suggests that the antibodies are cross-reacting with shared epitopes induced by cir-
culating strains. To evaluate this further, we correlated the HI titres with ADP activity to the
HA protein from the same virus and found significant correlations (Fig 2C). To study the rela-
tionship between total HA-specific antibodies (rather than the subset of Nabs) with ADP activ-
ity we also performed IgG ELISA assays across 5 of the HA proteins studied. We found positive
correlations between HA-specific IgG levels and ADP activity for all 5 HA proteins studied
(Fig 2D). Overall this suggests that exposure to seasonal influenza strains (via infection or vac-
cination) is generating a subset of HI-inducing and total HA-specific antibodies that can cross-
react with non-circulating IAVs and mediate ADP.

ADP to influenza in IVIG preparations

To study sera across a large population base, we analyzed IVIG for ADP activity. Studying IVIG
before and after the spread of the HIN1pdm during 2009 allowed us to evaluate whether cross-
reactive ADP activity to HIN1 Pdm09 was prior to 2009. Indeed, ADP activity to the HA protein
of HIN1 PdmO09 was observed in all 8 IVIGs prepared prior to 2009 (Fig 3A). There was a sub-
stantial rise in ADP to H1 Pdm09 in IVIGs prepared post 2009, consistent with a subset of the
donors boosting their ADP activity to this protein following HIN1 Pdm09 infection. The rise of
H1 Pdm09-specific ADP was consistent across multiple experiments (illustrated in Fig 3A and
3B), as was background ADP levels to HIV-1 gp140. Interestingly, levels of ADP to seasonal
HINI and H3N2 HAs were modestly but significantly higher in IVIG preparations made post
2009 (Fig 3B), suggesting exposure to HIN1 Pdm09 may have broadened ADP activity.

We next evaluated whether ADP to HA proteins from rarely circulating IAV subtypes was
present in IVIG samples (Fig 3C). We detected substantial levels of ADP to H2 and H5 HA
proteins, low level ADP to a H4 HA and negligible ADP to a H7 HA protein. IVIG prepara-
tions made post 2009 had modestly but significant higher levels of ADP to H2, H4 and the H7
HA proteins tested (Fig 3C).

To evaluate whether the small increase in ADP activity observed in post-2009 IVIG samples
was also reflected in levels of total HA-specific IgG levels, we performed IgG ELISA assays on
the 17 IVIG samples to a range of HA proteins (Fig 3D). Although there was a slight increase
in H1pdm-specific IgG levels in post-2009 samples, we did not observe an increase in HA-spe-
cific IgG levels to other HA proteins and none of the differences were statistically significant.
This suggests that HIN1pdm infections amongst the IVIG donors led to an overall enhanced
functional HA-specific ADP response without a significant increase in total HA-specific IgG
levels.

Influenza-specific ADP after experimental influenza infection of
macaques

Analysis of influenza-specific antibodies in adult humans is complicated by the unknown num-
ber of previous exposures to influenza. We therefore studied sera samples from 6 macaques
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experimentally infected serially with HIN1 (PR8) and H3N2 (X31) strains from a previously
trial [23]. Infections with PR8 or X31 are indicated with arrows in Fig 5. We previously
reported the animals seroconverted by HI and shed IAV in their respiratory tracts [23]. For
each macaque we studied ADP levels and HI titres to both X31 (Fig 5A and 5C) and PR8 (Fig
5B and 5D).

Overall, ADP activity tended to mirror HI activity. The onset of ADP activity generally
occurred simultaneous to the HI antibodies and was to the homologous infecting influenza
subtype. That is, when X31 was the initial infection, X31 ADP and HI occurred earlier than
PR8 ADP and HI (Fig 5A and 5B) and vice versa when PR8 was the initially infecting virus,
PR8 ADP and HI occurred first (Fig 5C and 5D). However, there were instances when HI activ-
ity was detectable earlier after infection than ADP activity, particularly to X31 after an initial
infection with X31 (Fig 5A). In several animals, weak but detectable ADP activity persisted
when HI antibodies were no longer detected (e.g. Fig 5A and 5C middle panels to X31 and Fig
5B lower, D middle and lower panels to PR8). This may reflect higher levels and/or lower
decay rates of ADP-antibodies compared to HI antibodies.

Antibody-mediated uptake and clearance of live IAVs

The above studies analyzed the phagocytosis of HA-coated fluorescent beads which may not
perfectly represent the phagocytosis of whole live IAVs. We studied sialidase-treated THP-1
cells for uptake of opsonized IAV. We measured intracellular NP levels after 6 hours by flow
cytometry as a read out of virus uptake (illustrated in Fig 4A). An example of Auckland Pdm09
virus (HIN1 A/Auckland/1/2009) opsonized with pre and post infection macaque sera IgG
shown in Fig 4B, which shows high levels of intracellular NP only within THP-1 cells exposed
to post-infection sera IgG. The rise in uptake of opsonized live IAV (1:100 serum IgG dilution)
by THP-1 cells was consistent across all 6 macaque IgG samples studied, with a mean fold
increase in viral NP detection of 3.1 (range 1.8-5.1 fold increase) when post infection IgG is
used. As expected, sialidase treatment reduced the background uptake of IAV's through sialic
acid either in the absence of IgG or in the presence of pre-infection macaque IgG (white and
gray bars in Fig 4C). This provides evidence that this functional ADP assay primarily measures
phagocytic uptake of IAV mediated by antibodies rather than other receptor mediated entry.
The effect of sialidase on influenza-uptake of THP-1 cells in the presence of pre-infection
macaque IgG was consistent across the 6 macaques studied, with a mean fold reducing in NP
signal of 2.1 (range 1.7-2.7).

We utilized this functional live IAV phagocytosis assay to study serum IgG samples from all
6 macaques before and after IVI. We studied phagocytosis to both one of the homologous
infecting viruses (PR8) and a heterologous H1 virus (HIN1 Pdm09; A/California/04/2009; Fig
4D). Prior to infection, serum IgG mediated minimal uptake of the homologous PR8 virus in
all 6 macaques. Post-infection IgG showed low levels of virus uptake at high levels of IgG but as
the IgG was titrated out to low levels (>1:540 dilution), there was substantial virus uptake and
NP* THP-1 cells in all animals. This is consistent with homologous PR8-specific NAbs block-
ing virus uptake at low IgG dilutions. The phagocytosis-mediating antibodies are still present
at higher dilutions and mediate uptake of the homologous virus as the NAbs are diluted out.

Such an effect should not of course be seen in the absence of NAbs so we also analyzed NP
signal of sialidase treated THP-1 cells with opsonized HIN1 Auckland Pdmo09 (Fig 4D right
panel). Compared to PR8 infection, background NP levels in THP-1 cells were higher with
Auckland PdmO09 infection when IgG from influenza naive macaques was studied, presumably
reflecting the greater sensitivity of THP-1 infection to this HIN1 PdmO09 strain. However,
there was a substantial increase in antibody-mediated virus uptake in all 6 post-infection IgG
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Fig 5. ADP in pigtail macaques infected with IAVs. Hl titres (grey open symbol; dotted line) and ADP
activity (black filled symbol; solid line) of 6 pigtail macaques infected twice with X31 (H3N2 A/HKx31) and
PR8 (H1N1 A/Puerto Rico/08/1939). Grey arrows indicate influenza strain and time of infection which is
summarized above the panels—the macaques in the top panels (A, B) were first infected with X31 and
macagues in the bottom panels were first infected with PR8 (C, D). X31 and PR8 immune responses for each
macaque are illustrated on A, C and B, D respectively. All ADP responses were corrected subtracting

influenza-naive macaque (mean of 3 animals) background.

doi:10.1371/journal.pone.0154461.g005
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samples. There was no inhibition of uptake at high IgG concentrations, as was seen with PRS,
consistent with the lack of heterologous NAbs. Thus, this functional ADP analysis showed sub-
stantial cross-reactive ADP antibodies to HIN1 Pdm09 capable of mediating virus uptake into
the monocytic cell line in sera IgG from macaques only infected with PR8 and X31 strains. It is
notable that, although present, these HIN1 Pdm09-specific ADP antibodies titrated out more
rapidly than the PR8-specific ADP antibodies.

Clearance of opsonized IAV by THP-1 cells

The above studies showed substantial Ab-mediated virus uptake into THP-1 cells. However
Fc-receptor bearing cells such as monocyte/macrophages are not generally supportive of high
levels of IAV release [24-26]. To formally assess whether the THP-1 cells can take up IAV in
an Ab-dependent manner but not release progeny virus to infect other cells, we transferred
supernatants from THP-1 cells infected with the heterologous HIN1 Auckland Pdm09 virus
for 20 hours onto susceptible MDCK cells (illustrated in Fig 6A). This 20 hr infection assay (as
compared to the 6 hr assay described above) also showed higher levels of NP detection in
THP-1 cells when IgG from macaques after influenza infection was studied (Fig 6B left panel).
However, almost no viable virus was released into the supernatants over this time frame, as
shown by the low NP levels of MDCK cells using the supernatants from the infected THP-1
cells (Fig 6B, right panel). As a positive control, we showed that supernatants from infected
A549 cells resulted in a robust infection of MDCK cells as expected.

ADP in serum IgG from humans recently infected with HIN1 Pdm09

To study humans naturally infected with influenza, we obtained paired sera samples from 3
adults with probable recent HIN1 Pdm09 infection. All subjects had an influenza-like illness, a

Supernatant transfer at 20 hours post- infection.
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Fig 6. Influenza virus is not released from THP-1 cells after antibody-mediated virus uptake. (A) The
assay setup. Sialidase treated THP-1 cells and untreated A549 cells were infected with PR8 virus (M.O.I. of
10). Virus was previously opsonised or not with IgG from either naive or influenza infected macaques. IgG
was diluted 1:1000 to avoid neutralization of virus. Cells were washed twice to eliminate excess virus and
antibodies from supernatant. After 20 hr of culture at 37°C, supernatant was transferred to MDCK cells. THP-
1 pellets and resuspended A549 cells were fixed, permeabilized, labelled with anti-NP antibody and analysed
by flow cytometry. 20 hr later, infection rate in MDCK was measured with intracellular NP staining. (B)
Confirms antibody-mediated uptake of the PR8 virus by the THP-1 cells using sera post PR8 infection. (C)
Shows the ability of supernatant from the antibody-mediated infection of THP-1 cells, or control THP-1 or
A549 cells in the absence of antibody, to infect MDCK cells. Data are representative of n = 3 independent
experiments.

doi:10.1371/journal.pone.0154461.g006
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Fig 7. ADP in three humans with symptomatic HIN1 Pdm09 infection. (A) Serologically characteristics
for early and late time points after an influenza-like iliness. (B) Comparison of ADP titres for the 3 subjects pre
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negative control ADP for an influenza naive macaque. (C) Ability of antibodies to mediate uptake of live IAV
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Infection was compared using a matched virus strain to the infection (H1N1 Auckland Pdm09) and a
mismatched strain (H1N1 PR8). Dotted line represents uptake of live virus in the absence of IgG.

doi:10.1371/journal.pone.0154461.g007

rise in complement-fixing (CF) antibodies to IAV, and a rise in HI titre to HIN1 Pdm09 in the
absence of a rise of HI titre to other circulating influenza strain (Fig 7A).

We performed ADP assays on the paired serum IgG samples to H1 Pdm09 and a seasonal
HIN1 New Cal HA protein first using the bead-based assay (Fig 7B). In all 3 subjects ADP to
H1 Pdm09 was low in the pre-seroconversion sample but rose substantially in the sample post
infection (Fig 7B, upper panel). ADP to HIN1 New Cal HA protein was higher at baseline in
all 3 subjects, consistent with the circulating nature of this virus prior to the circulation of the
HIN1 PdmO09 virus (Fig 7B). Interestingly, in Subject 1 and to a lesser extent in Subject 3, there
was also a boost in ADP to this seasonal HA tested (H1 New Cal) after the HIN1 PdmO09
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infection, consistent with the stimulation of cross-reactive ADP antibodies by the HIN1
Pdm09 infection.

The above work studied the uptake of HA-coated beads in humans recently infected with
HINI Pdm09. We then studied the ability of these paired sera IgG to mediate ADP of homolo-
gous (HIN1 Pdm09) and heterologous (PR8) live IAVs in the functional assay developed for the
macaque studies in Fig 4. For the HIN1 Pdm09 (Auckland Pdm09) virus, we saw a low level of
functional ADP prior to seroconversion that was substantially boosted after seroconversion (Fig
7C top panels). As for the homologous virus studies in the macaque sera experiments in Fig 4, we
saw inhibition of infection in the presence of homologous NAbs (out to dilutions of 1:360-1080)
but high levels of ADP out to dilutions of 1:9720. For the heterologous HIN1 virus PR8, all 3 sub-
jects had levels of functional ADP that were boosted by the HIN1 Pdm09 infection (Fig 7C,
lower panels). This illustrates that cross-reactive functional ADP are generated in humans follow-
ing influenza infection. In subject 1, the subject with the highest levels of baseline ADP activity to
both HIN1 Pdm09 and PR3, we also observed that PR8-specific ADP was inhibited at high sera
concentrations. This suggests that cross reactive PR8-specific NAbs also developed following the
HIN1 Pdm09 infection, as has been previously observed in mice [27, 28].

Discussion

Influenza infection remains a significant disease affecting worldwide health. The presence of
specific influenza NAbs consistently correlates with efficacy of viral clearance [29-34]. The role
of non-NAbs to IAVs that mediate antiviral functions through Fc receptors on innate immune
cells is not yet fully understood. Increasing evidence points to a role for ADCC antibodies, act-
ing via CD16 Fc receptors, in assisting in the control of influenza infection [10, 13, 14, 16, 35,
36]. However, to our knowledge, there has only been one brief report investigating ADP anti-
bodies acting via CD32 receptors in mice [18] and no previous reports in humans or non-
human primates. We modified a HIV-specific ADP assay to measure influenza HA-ADP and
found that influenza HA-specific ADP was readily detected to multiple HA subtypes in both
sera IgG from healthy adults and in IVIG preparations. Of particular interest is the ADP to the
avian HA protein H5 and H7 since these viruses are considered to have a high pandemic
potential. We speculate that pre-existing ADP (as well as ADCC [10, 13]) to H5 could assist in
partial control of infection with this virus. The presence of ADP in IVIG towards H5 and other
non-circulating strains such as H2 and H4 suggests that studies are warranted to assess a
potential role for existing IVIG preparations in assisting in the control of future pandemics.

Our observations raise the question as to how cross-reactive ADP antibodies develop? Our
studies of humans and macaques infected or vaccinated with IAVs offers some insights. In
IVIG preparations prior to, and after, the 2009 HIN1 Pdm09 pandemic there was an expected
rise in H1 PdmO09-specific ADP. However, there was also a small but significant rise in ADP to
many of the heterosubtypic HA proteins tested. Natural infections of humans with HIN1
Pdmo09 resulted in a rise in functional ADP at 2-3 weeks to not only H1 Pdm09 but also to
other HIN1 viruses. If should be cautioned however that we have studied only a limited num-
ber of subjects with HIN1pdm acute influenza infection to date and the initial sera IgG sample
was during the early infection phase. In sera IgG from both experimentally infected macaques
and naturally infected humans we observed that uptake of live heterologous IAVs into the
monocytic cell line was increased. We speculate that the multiple prior lifetime exposures of
human adults to [AVs permits a scenario where low-level cross-reactive ADP responses can be
boosted by subsequent heterologous infections.

Our studies do not imply that ADP-inducing antibodies are protective against influenza
infection and future in vivo studies are needed to assess this. Definitive studies are difficult at
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present in the absence of influenza-specific monoclonal antibodies with only ADP function.
Our studies on antibody-mediated live IAV uptake into a monocytic cell line suggests that
these cells are capable of clearing influenza in vitro. Further development of ADP assay using
primary monocyte/macrophages will be of interest. We acknowledge, however, that by mediat-
ing enhanced influenza infection, ADP could potentially be harmful in some influenza infec-
tion settings, particularly if the strains can replicate efficiently in CD32+ cells or if there is high
level CD32 expression on non-immune cells in the respiratory tract. The isolation or engineer-
ing of human monoclonal antibodies that mediate only particular functions (neutralization
and/or ADCC and/or ADP) and their study in Fc-receptor engineered mice or in macaques
should assist further in elucidating a role for functional antibody responses in controlling influ-
enza infection. We also note that complement fixation functions and other antibody functions
could also contribute to the control of influenza infection.

It is not known if available or investigational influenza vaccines induce specific ADP activ-
ity. Humans with multiple exposures to IAVs may have low-level ADP responses that can be
boosted by even suboptimal vaccines. Recent evidence suggests that influenza vaccination
tends to primarily boost pre-existing B cell responses [37]. We are currently studying whether
standard vaccines can boost or broaden influenza-specific ADP responses. Our data in the
report highlight a difficulty in assessing functional ADP assays, since homologous neutralizing
antibodies compete to prevent influenza virus phagocytosis when high antibodies are studied.

In conclusion, we characterized influenza-specific ADP activity in the serum IgG from
humans and macaques exposed to IAV. We detected broadly cross-reactive ADP responses in
healthy humans and in pooled human sera IVIG preparations. Further analysis of the protec-
tive capacity of ADP responses against IAV is warranted.
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