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Abstract

Data from different agencies share data of the same individuals. Linking these datasets to
identify all the records belonging to the same individuals is a crucial and challenging prob-
lem, especially given the large volumes of data. A large number of available algorithms for
record linkage are prone to either time inefficiency or low-accuracy in finding matches and
non-matches among the records. In this paper we propose efficient as well as reliable
sequential and parallel algorithms for the record linkage problem employing hierarchical
clustering methods. We employ complete linkage hierarchical clustering algorithms to
address this problem. In addition to hierarchical clustering, we also use two other tech-
niques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-
routine to identify identical copies of records. We have tested our algorithms on datasets
with millions of synthetic records. Experimental results show that our algorithms achieve
nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time
complexities of these algorithms do not exceed those of previous best-known algorithms.
Our proposed algorithms outperform previous best-known algorithms in terms of accuracy
consuming reasonable run times.

Introduction

Health agencies keep track of patients’ health information and at the same time records of a
patient reside in multiple data sources. All the records of a patient may be needed to accurately
diagnose a disease or prescribe medicine for a disease for the patient [1, 2]. Disease evolution,
drug discovery and side effects of a drug may require analysis of health records across these
data sources [3, 4]. Record linkage, for example, can be used to merge records across educa-
tional databases, employment history, and family evolution to analyze an individual’s charac-
teristics. It has also applications in similarity detection in digital documents [5, 6], master data
management [7], social networking [8], historical research [9], gene expression [10-13], infor-
mation science [14], health psychology [15], data mining [16, 17], etc.

Record linkage [18] integrates records across multiple data sources as well as identifies rec-
ords pertaining to same individuals. Now-a-days millions of records are stored and maintained
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in data sources electronically. Connections among these records provide better understanding
of relationships of these data sources. Exact same records exist in multiple databases. Some-
times records get polluted unintentionally due to typing error, similarity in pronunciation, etc.
All of these issues make the record linkage problem very challenging and critical. Efficient algo-
rithms are inevitable to address this problem.

Fortunately, a large number of algorithms are available in the real world [19]. A naive algo-
rithm compares each pair of records to find matches. It may produce expected results but has a
high time complexity. Therefore algorithms have been devised to provide best possible results
within a manageable time. We have previously proposed single linkage hierarchical clustering
based solutions [20] for this record linkage problem. These algorithms provide very fast solu-
tions in finding clusters of individuals with a high accuracy.

In this paper we propose a complete linkage hierarchical clustering based solution for this
problem. Single linkage solution works fine for real life applications. But it has a chaining prob-
lem. We discuss the problem elaborately in this paper. Our newly devised algorithms not only
solve this chaining problem but also assure expected output. We also develop an efficient paral-
lel version of this algorithm. Our experimental results substantiate our claim.

Background and Significance

Record linkage [21, 22] identifies record matches across different data sets even if they have no
universal identifier. The problem is to group similar records so that each group contains all rec-
ords of one individual only. This problem is no more than trivial if the records do not get con-
taminated. Often errors are introduced unintentionally while typing, due to sound similarity,
etc. Every group of similar records can be thought of as a cluster. Every cluster should contain
only the records of a single person and it should contain all the records of this person. Several
types of clustering algorithms such as k-means clustering, fuzzy clustering, hierarchical cluster-
ing, graph-based clustering, etc. are widely available [23]. Our proposed algorithms are based
on hierarchical clustering [24]. This requires linkage criteria that define how distances are mea-
sured between any two clusters. Single linkage and complete linkage clustering are popular in
use. In single linkage, the distance between two clusters A and B is computed as the minimum
distance between a point (i.e., a record) in A and a point in B. In complete linkage, the distance
between two clusters A and B is computed as the maximum distance between a point in A and
a point in B. Therefore single linkage clustering can be thought of as the nearest neighbor clus-
tering and complete linkage clustering can be thought of as the farthest neighbor clustering. In
addition to defining the distance between two clusters, we also have to define the distance
between two records. There are many distance measures that can be used for the records. Edit
distance or Levenshtein distance calculates the number of insertions, deletions and substitu-
tions required to transform one string to the other. (We can think of every record as a string of
characters). Manhattan distance computes only the number of mismatches. There exist some
other distance calculation methods such as Euclidean distance, maximum distance, etc. We
have used complete linkage hierarchical clustering for our algorithms. These algorithms gener-
ally use edit distance, reversal edit distance and truncation edit distance calculation methods
although our algorithms can support any distance measure. Reversal edit distance and trunca-
tion edit distance also use edit distance calculation methods.

Related Works

A naive or brute force algorithm compares every pair of records and hence takes too much time.
There exist a large number of efficient algorithms [25, 26]. [27, 28] define data cleansing and
record linkage. They also present a literature survey for many proposed or developed
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methodologies for entity resolution and record linkage. A relational clustering algorithm uses
both attribute and relational information to integrate entities [29]. Discussions about deduplica-
tion quality and data linkage measurement involve different linkage processes and issues [30].
Limitations in record linkage algorithms have also been discussed in the literature [31]. The
EMH algorithm (based on expectation maximization) provides better decision rules employing
probability estimates [32]. There exist some other probabilistic methods for record linkage
problems [33, 34]. A hybrid Markov chain Monte Carlo algorithm calculates transitive linkage
probabilities across records and uses this information for post-processing procedures such as
logistic regression [35]. Relational probability model can solve the citation-matching problem
[36]. Records across multiple data sets may contain variations as well as errors [37]. Edit dis-
tance calculation has been used widely to compute variations between records [38]. Case patient
algorithm includes ‘Jaro—Winkler’, ‘Soundex’ and ‘weight matching’ for distance computation
[39]. Record linkage has also applications in record matching [40], text correction [41], sub-
string matching [42], etc. Relational dependencies among different fields improve record linkage
processes by reducing errors [43, 44]. Conditional models for record linkage problem can han-
dle varieties of features of input data sets independent of their dependencies [45, 46].

Blocking and indexing have been used extensively for faster computation by removing
many unnecessary pair comparisons [47-49]. Traditional blocking, sorted neighborhood
indexing, Q-gram-based indexing, suffix array-based indexing, canopy clustering, and string-
map-based indexing are popular blocking techniques for reducing comparison space. [50] pro-
poses Q-gram fingerprinting as a blocking technique. It transforms records into bit vectors and
filters pairs of bit vectors using multibit trees. FEBRL [51, 52], FRIL [53, 54], Intelliclean [55]
are well-known and widely used record linkage algorithms and tools. FEBRL uses three differ-
ent indexing methods namely standard blocking method, sorted neighbourhood approach, and
n-grams. It has a parallel implementation using MPI with python. FRIL is another good tool
for record linkage with many options. It employs nested loop join (NLJ) and the sorted neigh-
borhood method as search methods. Hierarchical clustering based solution has been popular
for record linkage [56-59]. Given the exponential growth in data sizes, parallel solutions are
inevitable [57-63]. Some efficient data integration algorithms have shown very high accuracies
[64, 65]. Recently developed single linkage hierarchical clustering algorithms outperform these
algorithms [20]. In this paper we propose sequential and parallel record linkage algorithms
that use complete linkage clustering. These algorithms offer improved accuracies and have the
potential of having a greater impact on real world applications.

Methods

We propose sequential and parallel record linkage algorithms, which use complete linkage
hierarchical clustering. These algorithms employ single linkage algorithms [20] as a prepro-
cessing step to generate intermediate clusters. Complete linkage method is applied within
each of these clusters. We employ some post processing steps to fine-tune the clusters thus
generated.

Sequential Algorithm

RLA-CL (Record Linkage Algorithm—Complete Linkage) works in several phases and each of
these phases consists of possibly multiple steps. Steps involved in RLA-CL are blackshown in
Fig 1.

RLA-CL first sorts the records and identifies duplications. As different data sets may have
different numbers and types of attributes, it takes pairs of data sets in which one of them has a
subset attribute types of the other. Then the algorithm sorts them using efficient radix sort on
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Fig 1. A flow chart describing all steps involved in RLA-CL.
doi:10.1371/journal.pone.0154446.g001
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common attributes. Exact matches will be adjacent in the sorted array. We do this sorting for
each pair of data sets meeting our required criteria. We accumulate all of them and eliminate
duplicates by merging them into the same clusters. This single phase removes many records
from further consideration and shrinks the data sets. A simple example may simplify the work-
ing process of this phase. Let A, B, and C be three input data sets. A has g, b, ¢, and d as attribute
fields, B has a and d and C has g, d, and e. Note that the attributes in B form a subset of the
attributes in A. Also, the attributes in B form a subset of the attributes in C. We sort A and B
together; we also sort B and C together. The attributes in A form neither a subset nor a superset
of the attributes in C. Thus we do not sort A and C together. After sorting the records of A and
B data sets, we accumulate duplicate records into clusters. We do the same process for B and C
data sets. Then the algorithm merges these two arrays of clusters obtained from merging A
with B and B with C data sets. This exact matching phase identifies all possible duplicates and
unifies them into clusters. Therefore the remaining phases of the algorithm have to handle
these reduced data sets only, which form a subset of the initial data sets. We have shown this
phase in Algorithm 1.

Algorithm 1 Find Exact Clusters
Input: Alist of records
Output: A set of clusters of identical records
1: procedure FinpExacTCLUSTER
2: foreachpairdataset{ X, ¥} do
if attributesyC attributesy then
Combine records from Xand Y;
Sort lexicographicallyusing radix sort;
Merge duplicate records by creatingclusters of identical records;
Remove duplicate records;
endif
9: endfor
10: Mergeclustersgenerated fromall pairs;
11: returnthesetof exact matchedclusters.
12: end procedure

O J o) U b W

Exact matching results in clusters of records. From each cluster we pick only one representa-
tive for further processing. In this way we make our algorithms independent of the number of
input data sets and they can identify similar records within a data set as well as across different
data sets.

Comparison between every pair of records is time consuming and impractical. Blocking
helps to reduce the number of pairs to be compared. We employ k-mers or k-substrings of an
attribute for blocking. If the blocking attribute contains only English letters, numbers, or
alphanumeric values, then we consider only 26%, 10X, or 36" blocks, respectively. Each block
has only those records having at least one k-mer of the blocking field in common. If /is the
length of the attribute of a record, then this record goes to (I — k + 1) blocks. If two records
belong to the same person and if an attribute slightly differs in these two records, then there
is a good chance that the two attribute instances will still have a common k-mer and hence
the two records will fall into at least one block together. We measure distances among records
in each block. We generally employ edit distance, reversal distance and truncation distance
calculation methods although every suitable distance calculation works perfectly with our
algorithm. Edit distance calculates the minimum number of insertions, deletions and substi-
tutions of characters needed to change one string to the desired one. If §; = “algrilhmss” and
S, = “algorithms”, then we can convert S; to S, using the following operations: insert ‘o’ at
index 3 of Sy, replace I’ to ‘t’ at index 5 and delete ‘s’ from index 9 of S;. This algorithm dis-
cards many calculations by checking when the distance surpasses the user-defined threshold
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value. Therefore we have to choose a suitable threshold value dependent on our input data
accuracy. Threshold value defines the maximum number of errors allowed in the input rec-
ords. For the above example if the threshold value is not less than 3, then the algorithm inte-
grates them into a single cluster. These steps have been shown in Algorithm 2.

Algorithm 2 Perform Single Linkage Clustering
Input: A set of exact matched clusters anda thresholdvalue
Output: A set of single linkage clusters
1: procedure CovpuTESINGLELINKAGECLUSTER
2: Takearecordfromeveryexact matchedcluster as a representative;
3 In the next steps by a record we mean a representative record;
4 foreachattribute inauserdefinedattribute list do
5 Create blocks of records sharing the same k-mer;
6: foreachblockdo
7 Consider a graph where records are vertices and
8 connections among themare edges;
9 Connect twovertices if thedistance (edit distance is one of the

distance
10: calculationmethods) between themis at most the user defined
11: thresholdvalue;
12: end for
13: endfor
14: Removemulti-edges andself loops tomake the graph simple;
15: Findconnected components of this graph;

16: returnthe set of connected components in the above graph.
17: end procedure

If records are considered as vertices and distances not above threshold value as edges, then
we get an undirected graph. We remove multi-edges between pairs of vertices and self-loops to
convert it into a simple graph. We find all the connected components of the graph. These con-
nected components are intermediate clusters generated by single linkage clustering method.
This is the third phase of our algorithm.

Our next phases work on only records within each cluster. Every cluster typically contains a
small number of records integrated by single linkage clustering. Single linkage clustering often
traps in a chaining problem. Let A, B, and C be records, where A = “sweat, exercise, gymne-
sium” having status, type, and place as attributes, B = “sheat, gymnesium” with status and place
as attributes and C = “heat” having status as the attribute. Let the threshold value be 1. There-
fore A and B are in one cluster, and B and C are in another cluster, but the distance between A
and Cis 2, which is above the threshold value. According to our first three phases all the three
records should be considered in the same cluster. Complete linkage removes this problem. It
may merge A, Bin a cluster and B, C in another cluster or A, B in a cluster and C in another
cluster, and so on. It never merges A, B and C in a single cluster.

The fourth phase starts with considering every record in a cluster as a cluster having only
one record. Then the algorithm measures distances among each pair of clusters and populating
them in 2-d matrices. From these distances we generate a vector having minimum distances
from every single record cluster. The algorithm finds the minimum of them, and if this mini-
mum distance is not above the threshold value, then it merges these two clusters into one clus-
ter and updates the distance matrix and vector. When we calculate the minimum distance for a
cluster, we measure distances of the furthest elements between every pair of clusters having this
cluster at one side and take the minimum of them. This process continues till the minimum
distance does not surpass the threshold value. We eventually get clusters of records of individu-
als using complete linkage clustering.
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Algorithm 3 RLA-CL (Record Linkage Algorithm using Complete Linkage Clustering)
Input: Aset of data setsandaconfiguration file
Output: A set of complete linkage clusters
procedure RLA-CL
Find exact clustersusingAlgorithml;
Compute single linkage clusters by Algorithm2;
foreachsingle linkage cluster do
Consider every recordof the cluster as a single node cluster;
Generate a2 - dsquarematrix where eachentry contains the minimum
distancebetweenpairs of clusters; Each rowof thematrix corresponds
toacluster; Generate avector of minimumdistances for each cluster;
while thematrix hasmore than 1 rowdo
Merge clusters if theminimumdistance between themis nomore than
the
user defined thresholdvalue;
Update thematrix and vector;
endwhile
Check whethermerging is possible among the generated clusters;
Useaprioritylist toresolveambiguity in findingaperfect cluster
for each record;
end for
Merge these clusters with records fromexact matched clusters;
return these complete linkage clusters.
end procedure

The fourth phase easily eliminates the problem of merging all the records in a single cluster
generated by the chaining phenomenon. But which cluster should contain which records is
now a challenging task. We employ a post-processing phase to fine-tune the generated com-
plete-linkage clusters. We require a user-defined priority list of attributes to complete this
phase. We assign each priority attribute a score. We take one record from one cluster and
check in which cluster it matches the best. The error-free matching with higher priority attri-
butes, clusters having the highest number of priority attributes, etc. determine the destination
cluster. This process meets the user-expectations astonishingly in real world applications. Algo-
rithm 3 describes every step of the algorithm.

We can explain the above algorithm using a simple example. Data set A has 3 records
{“Cade”, “Bale”, 05011976}, {“Cade”, “Bolt”, 05021986}, and {“Thor”, “Glenn”, 12011990}, and
data set B has 2 records namely {“Thor”, “Glenn”, 12011990} and {“Cade”, “Balt”, 05011976}.
Both of these data sets have first name, last name and date of birth attributes. Let the blocking
field be first name; comparing attributes be the first name and last name; the priority field be
date of birth; and the threshold value be 1. RLA-CL first accumulates these five records and
sorts. It finds four exact matched clusters. Only one cluster {{“Thor”, “Glenn”, 12011990},
{“Thor”, “Glenn”, 12011990}} has two records having the same first name and last name. Then
the algorithm creates blocks on the first name for all of the four representative records. After
blocking and constructing linkages, we find 2 clusters. One is {{*Thor”, “Glenn”, 12011990}}
and the other is {{“Cade”, “Bale”, 05011976}, {“Cade”, “Bolt”, 05021986}, {“Cade”, “Balt”,
05011976}}. The post processing phase finds an inconsistency: the “Balt” record may go with
the “Bolt” record or the “Bale” record since the edit distance value in both cases is 1 and the
threshold value is 1. To break this tie, the priority field date of birth helps us to combine the
“Balt” record with the “Bale” record. Aftre expanding exact matched records we get 3 clusters
{{“Thor”, “Glenn”, 12011990}, {“Thor”, “Glenn”, 12011990}}, {{“Cade”, “Bale”, 05011976},
{“Cade”, “Balt”, 05011976}}, and {{“Cade”, “Bolt”, 05021986}}.
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Analysis

We analyze the time complexity by aggregating time complexities of all the steps. Step 1 calls
radix sort for at most D*/2 data sets, where D is the number of data sets. If D = 10, which is
very high for real world applications, the sorting algorithm is called at most 50 times. As radix
sort is a linear time algorithm, this step consumes a linear amount of time on the number of
records contained in those pairs of data sets. Step 1 reduces the number of records significantly
in practical applications. Let the initial number of records be N and this reduced number be N'.
K-mer blocking is typically done on alphabet, number or alphanumeric values which generates
26,10 or 36" blocks, respectively. If a record length is L, then it should be in (I - k + 1) blocks.
To calculate blocking information of all the records, step 2 takes at most (' — k + 1)N’ time,
where ! is the maximum length of any blocking attribute. Step 3 is the most time consuming
step as it measures distances between records in every block. Let b be the number of blocks, b,
the average number of records in these blocks and L be the maximum aggregated length of
common attributes of records. Then this step takes O(bb,’Lt) time, which can be written as
O(b,N'Lt) as bb, = O(N'). Step 4 scans through the generated graph and finds connected
components. This step takes linear time in the number of records and connections, which is
O(N'). Steps 6 and 7 work on individual clusters that contain small numbers of records. If the
number of these clusters is C and each cluster may contain O(D) records, then these steps take
O(D*C) time that may be thought of as O(DN"), where DC = O(N'). We see that step 3 domi-
nates the running time. Overall the running time is O(b, N'Lt), where b, is the average number
of records in a block (in step 3), N is the number of clusters by exact matching, L is the maxi-
mum aggregated length of the common attributes of records and 7 is the user-defined threshold
value.

Parallel Algorithm

We observe that the above RLA-CL algorithm has several phases, and almost all of these phases
have independent working processes. For example, the distance calculation is done within each
block. Therefore processors can perform linkage calculations independent of the others. Some
steps are difficult to be parallelized optimally. For them we provide experimentally optimized
solutions. Some steps are trivial to parallelize. Here we propose the PRLA-CL (Parallel Record
Linkage Algorithm—Complete linkage) algorithm. One processor handles the input, output
and collaboration with the other processors and is called the master processor and all the other
processors are referred to as slave processors.

Algorithm 4 PRLA-CL Parallel Record Linkage Algorithm using Complete Linkage

Clustering
Input: Aset of data setsandaconfiguration file
Output: A set of complete linkage clusters
1: procedure PRLA-CL
2: TheMaster reads data fromthe input files;

3: TheMaster broadcastsdata;

4: foreachprocessordo

5: Determine which pairs of data sets shouldbe sorted;

6: Remove duplicates andmerge records;

7: endfor

8: TheMaster collects andmerges all exactmatchedclusters;

9: TheMasterdistributesnearlyuniformly representative records toeach
processor;

10: foreachprocessordo

11: Createblocks of records sharing the same k-mers;

12: endfor
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13: TheMastercollectsandmergesall blockinginformation;

14: TheMasterdistributesblockliststoall theprocessorsnearly
uniformly;

15: foreachprocessor do

16: foreachblockinblock listdo

17: Construct a graph where the records are vertices and the

connections

18: among themare edges;

19: Connect twovertices if thedistance (edit distance is one of the

20: distance calculationmethods) between themis at most the

21: user defined thresholdvalue;

22: end for

23: endfor

24: TheMaster accumulates edge lists fromeach processor;

25: TheMaster finds connected components using these lists just aswe do

26: inAlgorithm3;

27: TheMasterdistributes clustersdatauniformly toall the processors;

28: foreachprocessordo

29: Performcomplete linkage clustering and post processing

30: (same as inAlgorithm3) ;

31: endfor

32: TheMaster collects theseclusters;

33: TheMastermerges these clusterswith records frominitial exactmatch-
ingclusters;

34: returnthese complete linkage clusters.

35: end procedure

As displayed in Algorithm 4, after receiving data from the master, every processor selects
pairs of data sets such that attributes of one data set cover all the attributes of the other data set.
Then we accumulate records from each pair. Every processor sorts a specific range of records
lexicographically. This range is chosen according to a prefix value of concatenated attributes of
each record. If we choose the first 2 characters from each record, there are 676 combinations. If

676

we have p processors, then every processor can keep track of records starting with o character

combinations. The master collects and merges all the exact match records. Then the master
chooses a representative from every exact matched group. Then it sends nearly an equal num-
ber of records to each of the slave processors. The slave processors generate blocks of records
sharing some common k-mers. The master collects this blocking information. It then sorts
blocks according to the number of records they contain. Then the master groups some blocks
and aggregates squares of the numbers of all records in that group. The master does this group-
ing in such a way that all the groups have almost the same aggregate value. Then each processor
finds the edge lists. The master collects them and finds connected components. Then the mas-
ter splits these connected components equally among all the other processors. All of them com-
pute the complete linkage clusters within each component. The master gathers all the clusters
and expands every representative record by all of its exact matched records.

Analysis

This parallel algorithm distributes most of the work uniformly across all the processors. Major
portions of them have been performed independently. Therefore communication cost is negli-
gible with respect to the computational cost. Some steps have to be explained elaborately.

Step 1 takes O(N) time to read N records from D data sets and broadcast them. We see
from the sequential algorithm that some pairs of data sets should be sorted to find duplicate
records. In PRLA-CL, every processor determines those pairs of data sets. To compare among

PLOS ONE | DOI:10.1371/journal.pone.0154446  April 28,2016 9/21



@’PLOS ‘ ONE

Record Linkage Using Complete Linkage Clustering

records, we concatenate common attributes of those records. We take the first 3 characters
from each concatenated string. There may be s = 267, 10> or 36° divisions of records if the char-
acters are from English alphabet, number or alphanumeric values, respectively. Every processor
sorts s/p divisions and removes duplicates by generating exact matching clusters. Although
each processor does not get the same amount of records, the overall task is almost the same
and the consumed time is really negligible compared to the other computations. Experimental
results verify this statement. Therefore, if 5, is the maximum number of records of one division,
then step 2 takes O(ss, /p) time which is O(N/p), where ss, = O(N). In step 3 every processor
performs blocking on N'/p records which uses O(N'(L — 1 + 1)/p) time. In [20] we see some
efficient techniques to distribute blocks among the processors. Step 4 consumes O(bpbpn2Lr)
time, where b, is the average number of blocks in a processor and b,,, is the average number of
records in a block. Step 5 is straightforward as the master handles the collected data and finds
the connected components in linear time in N’ and number of connections, which is O(N’). In
step 6 the master distributes clusters in the same way it did for blocking in step 4. Every proces-
sor gets almost the same amount of workload to find complete linkages among the records. We
assume that C is the number of intermediate clusters. Therefore, each processor does work in
O(D*C/p) or O(DN'/p) time. We see that the parallel algorithm has been perfectly paralle-
lized. Experimental results show almost linear speed-up.

Results

We have implemented RLA-CL in C++ and PRLA-CL in C++ with MPI library. We deployed
them on a HPC cluster having processors of 12 Intel Xeon X5650 Westmere cores and 48 GB
RAM.

FEBRL [51, 52] is a popular record linkage system. It generates clusters of very high accu-
racy. TPA(FCED) [64] achieved a similar accuracy with much less time. From Table 6 of [64]
we see that TPA(FCED) took 203 ms in an experiment, whereas FEBRL needed 1284 ms. We
outperformed TPA(FCED) by devising a novel RLA algorithm [20]. The implementation
attained the same accuracy while being several times faster. The RLA paper integrated and ana-
lyzed some experimental results on real and simulated data sets. Those results exposed its effi-
ciency and accuracy in real as well as simulated data sets. Those real data sets contained a very
low percentage of errors. RLA algorithm works really fine on real data sets. But yet we see it
achieved not more than 98% accuracy for real data sets. Accuracy on simulated data sets varies
widely due to a broad ranges of errors. In our experiments we count the possible traps of TPA
(FCED) and RLA algorithms and show how RLA-CL finds the expected output. We will also
show how blocking information affects its performance. We will evaluate efficiency of record
linkage algorithm using complete linkage hierarchical clustering over single linkage clustering.
We have employed only simulated data sets, which contain much more errors than normal, to
verify our statements of efficiency and accuracy of RLA-CL.

Generation of Simulated Data Sets

We generated three types of synthetic data sets. The first type has a data set of 1 million rec-
ords. We made 10 copies of this data set. Then we introduced one insertion, deletion, or substi-
tution error in the last name attribute of every record with a 15% probability. This means that
around 15% of all the records in a data set have one mismatch from its original record. These
data sets have the first name and SSN attributes along with some other attributes. We have
taken an equal number of records from each data set in our experiments. If the number of rec-
ords is 1 million, every data set contributes 100,000 records. SSN is a unique attribute for every
record. We compute the accuracy using this attribute. This type is used to compare
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performances among TPA(FCED) [64], RLA [20] and RLA-CL implementations. The second
type of data sets were generated from the previous 1 million records. We copied this data set
two more times. Then we inserted, deleted, or substituted one symbol in the last name of each
record. This means that every record has at least one mismatch from its original record. We
used four original data sets, and these two data sets three times. The third type is used for ana-
lysing different aspects of RLA-CL. The original data set has 1,600,000 records. We generate
three copies of this data set. We remove different attributes from each data set. Then we intro-
duce one insertion, deletion, or substitution error in the last name of every record. We analyze
how RLA-CL works for different numbers and types of attributes. We have then cloned all of
these three data sets.

Sequential Algorithm

We have categorized our experimental results into three sections. The first section shows that
RLA-CL outperforms RLA and TPA(FCED) in terms of accuracy and removes the chaining
phenomenon. The number of blocks and types of blocking fields affect the running time and
accuracy of RLA-CL. We explain them in the second section. In the third section we distribute
the running time of RLA-CL and show that it does not take much time than RLA, the best-
known algorithm in this category. We have divided the output data into four categories to mea-
sure accuracy. Type I includes perfect clusters. Each cluster contains all the records of an individ-
ual and does not contain any record from other individuals. Every cluster of Type II has records
of only one individual, but does not include all of them. All the records of an individual mixed
with some records of the other individuals are included in Type III category. A Type IV cluster
has some records from one individual mixed with some records of the other individuals. Here
we see that Type I clusters are the most preferred. A Type IV cluster is a truly incorrect cluster.
Therefore we prefer more records in Type I category and less records in Type IV category.

Table 1 compares our newly devised RLA-CL algorithm with the previously best-known
RLA algorithm as well as TPA(FCED). Number of records ranges from 100 thousands to 1 mil-
lion across the five data sets. We have used the first name as the blocking field and Social Secu-
rity Number as the accuracy testing attribute. We have used the edit distance calculation
method on the first name and last name attributes. We have set 2 as the threshold value and 3
as the value of k.

From Table 1 we see that RLA-CL takes almost the same time as RLA. RLA and TPA
(FCED) produced the same number and types of clusters. But we see TPA(FCED) takes much
more time than RLA and RLA-CL. The RLA paper explained the inverse relationship between
the multiplicity of exact matched records and the running time of RLA. The RLA-CL algorithm
includes RLA as a preprocessing step. After preprocessing is done, the generated clusters are of
small size. Therefore complete linkage among the small number of records in every cluster con-
sumes a small amount of time. Even for 1 million records RLA-CL spends only 13 seconds
more than RLA. These few seconds do complete linkage clustering and post-processing of all
the single linkage clusters. Fig 2 shows this time comparison. These results show that RLA-CL
provides almost 100% Type I clusters whereas RLA and TPA(FCED) produce around 96%-
98% Type I clusters. If we consider 1,000,000 records of 100,000 individuals, RLA-CL only
misses perfect clusters of 241 individuals whereas RLA and TPA(FCED) do not find accurately
all the records of 1981 people. This difference occurs because of the chaining problem of single
linkage clustering. We have shown this blackType I accuracy comparison in Fig 3.

We have seen four types of accuracy in Table 1. Accuracy can also be calculated in terms of
receiver operating characteristics (ROC). For the case of two classes, ROC-based accuracy is
defined as (the number of true positives + the number of true negatives)/(the total number of
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Table 1. A comparison among TPA(FCED), RLA and RLA-CL on simulated data sets (generated with a low error rate).

No Of Records

100,000

200,000

400,000

600,000

800,000

1,000,000

Algorithm

TPA(FCED)
RLA
RLA-CL
TPA(FCED)
RLA
RLA-CL
TPA(FCED)
RLA
RLA-CL
TPA(FCED)
RLA
RLA-CL
TPA(FCED)
RLA
RLA-CL
TPA(FCED)
RLA
RLA-CL

doi:10.1371/journal.pone.0154446.1001

Time Record Category(%)
Type | Type Il Type lll

31.01 97.38 0.00 2.62
2.15 97.38 0.00 2.62
3.08 99.88 0.01 0.11
122.77 93.76 2.86 3.26
7.77 93.76 2.86 3.26
10.4 99.05 0.73 0.20
432.5 95.88 1.84 2.19
26.56 95.88 1.84 2.19
32.15 99.45 0.44 0.10
878 96.92 1.39 1.63
54.50 96.92 1.39 1.63
62.54 99.61 0.32 0.07
1503.53 97.57 1.09 1.29
87.66 97.57 1.09 1.29
97.62 99.70 0.25 0.05
2157.46 98.02 0.89 1.05
129.54 98.02 0.89 1.05
141.17 99.76 0.20 0.04

records). We extend this definition of accuracy to more than two classes as follows. Each
is associated with a user who has a majority of records in this cluster. We say that this us

Type IV

0.00
0.00
0.00
0.12
0.12
0.02
0.09
0.09
0.01
0.06
0.06
0.00
0.05
0.05
0.00
0.04
0.04
0.00

cluster
er

owns this cluster. A record in any cluster is labeled as correct if it belongs to the owner of this
cluster. Now we compute the accuracy as (the number of records with correct labels)/(the total
number of records). Note that this definition of accuracy is a natural extension of ROC-based

accuracy to more than two classes.

RLA-CL achieves more than 99.9% accuracy and TPA(FCED) and RLA achieve around

97%—99% accuracy for these data sets (shown in Table 2). Fig 4 also shows these results
graphically.

e=pmoR|A el RIA-CL ==A==TPA(FCED
2000
1800
1600 7
1400
1200

1000

Time in sec

800

600
400 A

200
0 -
100 200 400 600 800 1000

Records in thousand

Fig 2. A comparison of running times of TPA(FCED), RLA and RLA-CL on simulated data sets
(generated with a low error rate).

doi:10.1371/journal.pone.0154446.9002
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Fig 3. A comparison of Type | accuracies of TPA(FCED), RLA and RLA-CL on simulated data sets
(generated with a low error rate).

doi:10.1371/journal.pone.0154446.g003

We have also included results for the second type of data sets in Table 3. These data sets
contain a very high error rate. Even for these data sets, RLA-CL shows almost 100% accuracy
in finding perfect clusters.

Sometimes one attribute may be error prone than the others. Blocking on that field pro-
duces blocks that may not hold all the records of same individuals. Multiple blocking attributes
assure better results. We have explored this issue by employing three different experiments.
One uses social security number (SSN) and the last name (LN) as blocking attributes, the sec-
ond one uses only SSN and the last one uses only LN as the blocking attribute. We have used
5-mer on SSN, a numeric attribute, and 3-mer LN, which contains only English alphabet.
Table 4 shows these comparisons in terms of running time and accuracy. We have used 6 data
sets where 3 data sets have exact clone so that we could remove half of the records only after
the exact matching phase.

Table 2. blackComputation of accuracy of TPA(FCED), RLA and RLA-CL on simulated data sets (generated with a low error rate).

No Of Records Algorithm Records With Correct Labels Accuracy in %
100,000 TPA(FCED) 97880 97.88
RLA 97880 97.88
RLA-CL 99949 99.95
200,000 TPA(FCED) 194910 97.46
RLA 194910 97.46
RLA-CL 199836 99.92
400,000 TPA(FCED) 392930 98.23
RLA 392930 98.23
RLA-CL 399835 99.96
600,000 TPA(FCED) 592100 98.68
RLA 592100 98.68
RLA-CL 599835 99.97
800,000 TPA(FCED) 791680 98.96
RLA 791680 98.96
RLA-CL 799836 99.98
1,000,000 TPA(FCED) 991500 99.15
RLA 991500 99.15
RLA-CL 999836 99.98

doi:10.1371/journal.pone.0154446.1002
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Fig 4. A comparison of accuracies of TPA(FCED), RLA and RLA-CL on simulated data sets (generated
with a low error rate).

doi:10.1371/journal.pone.0154446.g004

Experiments that do blocking on LN take very little time for a small number of records. But

Table 3. A comparison among TPA(FCED), RLA and RLA-CL on simulated data sets (generated with a very high error rate).

the running time increases rapidly for higher number of records. LN has an average length of
5. Therefore every record on an average goes to 3 blocks. For 100,000 records, 300,000 records
are stored in 263 or 17576 blocks. Every block holds around 17 records on an average. But
when we have 3,200,000 records, we have 17576 blocks to keep 9,600,000 records. Each block
has to store on an average 546 records. We know that the distance calculation occurs among
records densely within every block. This is the most time consuming phase of our algorithm.
On the other side SSN uses 5-mers for blocking. Therefore every record goes to 5 blocks. For
100,000 records 105 or 100,000 blocks hold 500,000 records, which is 5 per block on an
avearge. For 3,200,000 records this number is 160. But the most compelling reason is that some

No Of Records Algorithm Time Record Category(%)
Type | Type Il Type lll Type IV
100,000 TPA(FCED) 31.11 96.36 0.00 3.64 0.00
RLA 3.07 96.36 0.00 3.64 0.00
RLA-CL 4.21 99.86 0.06 0.08 0.00
200,000 TPA(FCED) 119.62 92.49 2.89 4.58 0.04
RLA 11.16 92.49 2.89 4.58 0.04
RLA-CL 14.51 99.54 0.30 0.12 0.04
400,000 TPA(FCED) 421.24 94.83 1.91 3.23 0.03
RLA 39.15 94.83 1.91 3.23 0.03
RLA-CL 46.67 99.69 0.23 0.06 0.02
600,000 TPA(FCED) 898.64 96.07 1.46 2.44 0.03
RLA 77.95 96.07 1.46 2.44 0.03
RLA-CL 88.66 99.77 0.18 0.04 0.01
800,000 TPA(FCED) 1507.45 96.91 1.16 1.91 0.02
RLA 129.79 96.91 1.16 1.91 0.02
RLA-CL 143.19 99.82 0.15 0.03 0.00
1,000,000 TPA(FCED) 2171.43 97.47 0.95 1.56 0.02
RLA 193.85 97.47 0.95 1.56 0.02
RLA-CL 209.45 99.85 0.12 0.02 0.01
doi:10.1371/journal.pone.0154446.1003
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Table 4. A comparison of runtime and accuracy using SSN-LN, SSN and LN as blocking fields.

No Of Records

100,000

200,000

400,000

800,000

1,600,000

3,200,000

Algorithm

SSN-LN
SSN

LN
SSN-LN
SSN

LN
SSN-LN
SSN

LN
SSN-LN
SSN

LN
SSN-LN
SSN

LN
SSN-LN
SSN

LN

doi:10.1371/journal.pone.0154446.1004

Time Record Category
Type | Type ll Type lll Type IV
111.51 100,000 0 0 0
107.71 89,866 10,134 0 0
5.56 80,476 19,524 0 0
252.46 199,988 4 8 0
237.83 179,972 20,020 8 0
16.20 161,522 38,470 8 0
537.83 399,952 16 32 0
480.49 359,656 40,320 24 0
48.47 322,612 77,372 16 0
1064.43 799,904 32 64 0
822.92 719,474 80,472 48 6
169.08 644,204 155,758 32 6
2657.35 1,599,832 56 112 0
1912.80 1,439,608 160,290 96 6
622.12 1,290,514 309,424 48 14
6422.64 3,199,676 96 192 36
4261.62 2,877,986 321,824 152 38
2379.88 2,583,536 616,340 88 36

combinations of letters are more frequent than the others. This makes some blocks much larger
than the others. But for numerical values every block is almost equally populated. The time
needed for two attributes is the summation of these two attributes. We have depicted this sce-
nario in Fig 5. Blocking attribute has a greater impact on accuracy. Our generated records con-
tain errors either in the SSN or the LN. Therefore many blocks may not be able to hold records
of the same individuals. But if we take blocking of two attributes, we get around 100% Type I
clusters. Blocking on SSN achieves 90% and blocking on LN gets 81% Type I clusters. SSN has
a better performance as each record goes to 6 blocks compared to 3 blocks for the LN attribute.
Fig 6 displays the impact of blocking attributes over blackType I accuracy.

Table 5 distributes the running time of RLA-CL when SSN has been used as the blocking
field. Exact matching is required to remove exact duplicates. Linear time radix sorting
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£
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Fig 5. A comparison of running time for variations of blocking attributes.
doi:10.1371/journal.pone.0154446.9005
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Fig 6. A comparison of Type | accuracy for variations of blocking attributes.

doi:10.1371/journal.pone.0154446.9006

algorithm does this step efficiently. Approximate clustering is the most time consuming phase
that includes linkage calculation steps. We find clusters as connected components with almost
no time. These three portions are required for both RLA and RLA-CL. The later one requires
some extra time to find complete linkages. We see from the table that this value is negligible
compared to approximate cluster time. We have shown these distributions in Fig 7.

Parallel Algorithm

We have run our parallel algorithm on 3.2 million and 6.4 million records blocking on the last
name (LN) attribute. Our parallel experiments have been tested on at most 32 cores of 4 nodes,
each node having 8 cores.

Fig 8 shows the running time on different number of processors. We get almost linear
speedup. These speedups have been drawn in Fig 9. We see that the most time-consuming part
is the single linkage calculation among the records within individual blocks. Different blocks
have different numbers of records. Even if two blocks have the same number of records, they
may need different time as the time needed depends on matching of records as well as record
lengths. We have distributed the runtime of PRLA-CL in Table 6. Detailed time distribution of
different tasks of parallel RLA such as broadcast time, communication time, time spent by the
master, blocking time, merge time, edgelist calculation time, etc. have been described in [20].
In Table 6 we have included communication time, which aggregates broadcast, communication
and merge time, exact matching time, approximation clustering time that covers the generation
of blocks and calculation of linkage time, finding connected components time and complete
linkage time, which includes complete linkage and post-processing time. The first row shows
the running time of the same data for the sequential algorithm.

Table 5. Distribution of running time when blocking on SSN field.

No of Records ExactCIT
100,000 0.77
200,000 1.90
400,000 3.62
800,000 6.36
1,600,000 13.92
3,200,000 29.59

doi:10.1371/journal.pone.0154446.1005

Approx CI T Conn Comp T Comp Link T Total Time
105.34 0.01 1.59 107.71
232.25 0.03 3.65 237.83
468.84 0.06 7.97 480.49
803.65 0.08 12.83 822.92

1870.60 0.17 28.11 1912.80
4172.79 0.35 58.89 4261.62
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Table 6. Distribution of running time on multiple cores.

Proc Comm
Seq 0
0
2 0.87
0.91
8 1.08
16 5.27
32 7.87

doi:10.1371/journal.pone.0154446.t006

Exact

55.31
55.87
28.35
15.03
7.40
4.18
2.39

Approx Conn Comp Comp Link Total Speedup

9218.79 0.68 116.19 9390.97 -

9219.32 0.69 115.98 9391.86 1.00

4655.38 0.63 59.22 4744.45 1.98

2403.09 0.65 31.23 2450.91 3.83

1226.59 0.70 17.01 1252.78 7.50
647.63 0.64 9.33 667.05 14.08
343.41 0.63 5.57 359.87 26.10

We have achieved 7.5 speedup for 8 cores in a single node, 14.1 for 16 cores across 2 nodes
and 26.1 for 32 cores of 4 nodes. Table 6 also shows that communication time is very negligible
as most of the steps of the parallel algorithm are easily parallelized. Therefore communication
is needed after each phase only. These speedups are great as they are almost linear, but we can
improve these speedups if we can ensure a better uniform distribution of blocks among the
processors in terms of needed calculation time.

Discussion

From the results section we see that the single linkage clustering algorithm suffers from the
chaining problem. RLA-CL overcomes this problem by employing complete linkage clustering.
Accuracy performance of our new algorithm sometimes depends on the number and type of
blocking attributes. There is a trade-off between time spent and accuracy. Stable fields should
be chosen as blocking attributes. The value of k also affects the running time and accuracy. If
we use 4-mers instead of 3-mers, there will be more blocks. Each block will contain less records
on an average and therefore it will cost less than before. But a 4-mer creates less substrings of
records which will decrease the accuracy. RLA-CL works on different numbers and types of
attributes. It does post-processing on complete-linkage clusters based on priority-list attributes.
Another major factor that has a great impact on efficiency and accuracy is the threshold value.
RLA applies a constant as well as a proportional threshold value and provides those results.
Our new algorithm works in the same way. We can apply different threshold values on the
training data sets to find out the perfect threshold value for these data sets. There is no univer-
sal threshold value for all types of data sets. Errors introduced in the data sets also have an
effect on the threshold value and the performance of the algorithms. If the error rate is low, a
threshold value of 1 works fine most of the time.

Conclusions

Our newly developed record linkage algorithms using complete linkage clustering outperform
previous best-known algorithms in this category. They produce more accurate results than the
others. The exact matching phase sometimes shrinks much-cleaner real data sets a lot by
removing duplicate records. Our experiments show that the post-processing phase generates
more accurate results. Our parallel algorithm achieves almost linear speedup that can be
applied over millions of records on hundreds of processors. Therefore our proposed algo-
rithms, RLA-CL and PRLA-CL provide the best solution for record linkage problems.
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