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Abstract
Data-driven functional connectivity density (FCD) mapping is being increasingly utilized to

assess brain connectomics at rest in the healthy brain and its disruption in neuropsychiatric

diseases with the underlying assumption that the spatiotemporal hub distribution is station-

ary. However, recent studies show that functional connectivity is highly dynamic. Here we

study the temporal variability of the local FCD (lFCD) at high spatiotemporal resolution (2-

mm isotropic; 0.72s) using a sliding-window approach and ‘resting-state’ datasets from 40

healthy subjects collected under the Human Connectome Project. Prominent functional

connectivity hubs in visual and posterior parietal cortices had pronounced temporal

changes in local FCD. These dynamic patterns in the strength of the lFCD hubs occurred in

cortical gray matter with high sensitivity (up to 85%) and specificity (> 85%) and showed

high reproducibility (up to 72%) across sessions and high test-retest reliability (ICC(3,1) >

0.5). The temporal changes in lFCD predominantly occurred in medial occipitoparietal

regions and were proportional to the strength of the connectivity hubs. The temporal vari-

ability of the lFCD was associated with the amplitude of the low frequency fluctuations

(ALFF). Pure randomness did not account for the probability distribution of lFCD. Shannon
entropy increased in proportion to the strength of the lFCD hubs suggesting high average

flow of information per unit of time in the lFCD hubs, particularly in medial occipitoparietal

regions. Thus, the higher dynamic range of the lFCD hubs is consistent with their role in the

complex orchestration of interacting brain networks.

Introduction
The complex and time-varying operations of the human brain require a dynamic brain net-
work topology to support the context-dependent coordination of neural populations [1]. How-
ever, most studies on ‘resting-state’ functional connectivity (FC) assume that brain networks
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are stationary [2] and rely on short data acquisition [3]. Since this dynamic behavior enhances
the within-subject variability of the functional connectivity metrics [4], accounting for the
dynamic changes in connectivity could facilitate the development of FC biomarkers for clinical
applications in neurology and psychiatry [2] and could also reveal dynamic properties of brain
topology [5]. In addition, development of voxelwise approaches that capture dynamic FC
changes could help identify brain regions that are prone to high within-subject variability in
FC studies.

Functional magnetic resonance imaging (fMRI) studies on FC are based on image time
series collected at rest [6], in the presence of temporal changes in the degree of vigilance, mem-
ory, arousal and attention. During data acquisition, over periods of several minutes, the human
brain sequentially engages in a series of diverse free-streaming subject-driven cognitive states
supported by different brain networks [7–10], and previous studies have investigated the ori-
gins of the time-varying FC signals [11–13]. Dynamic connectivity patterns have been observed
using the sliding-window approach with seed-voxel correlation or with independent compo-
nent (ICA) analyses. These studies have identified significant temporal variability in lateral
parietal and cingulate cortices and in the default-mode network [5,14,15]. However, the tempo-
ral variability of the local functional connectivity density (lFCD), a graph theory metric, has
not been quantified.

Graph theory functional connectivity density mapping (FCDM) quantifies local degree, the
size of the local network cluster functionally connected to a brain network node, and is a pow-
erful voxelwise data-driven tool for exploring the topology of the human brain connectome
[16]. In contrast to seed-voxel correlation analysis [6], data driven FCDM is ideal for explor-
atory analyses because it quantifies the strength of the local functional connectivity hubs (net-
work nodes with high connectivity to nearby brain regions), in just a few minutes/subject [16]
and does not rely on a priory hypotheses. These characteristics make FCDM optimal for data
mining in large resting-state FC repositories [3,17]. We and others have shown the predomi-
nance of lFCD hubs in posterior parietal and occipital cortices [16,18] that are influenced by
age [19] and gender [20], stimulant drugs [21], fluid reasoning capacity [22], brain develop-
ment [23] and dopamine signaling [24]. FCDM is being increasingly utilized to assess brain
function at rest in neuropsychiatric populations. For instance, lFCD hubs are disrupted in
attention deficit hyperactivity disorder [17], cocaine addiction [21], non-epileptic seizures [25],
schizophrenia [23,26,27], congenital blindness [28] and traumatic axonal injury [29].

Whereas FC promises to have a major impact in neuroscience, its significant within-subject
variability might limit its potential as a clinical biomarker for neuropsychiatric diseases. We
hypothesized that temporal dynamics account for a significant fraction of the within-subject
variability in lFCD patterns.

Here we capitalize on datasets with unprecedented spatiotemporal resolution (2-mm iso-
tropic; 0.72 s) recently released by the Human Connectome Project (HCP; https://db.
humanconnectome.org/)[30], which offer a unique opportunity for mapping the temporal
variability of the lFCD hubs in the human brain with high spatial specificity [31]. Inasmuch
as the amplitude of the spontaneous signal fluctuations reflect the integrated coordination of
neuronal activity [32] we hypothesized that the temporal variability in the strength of the
lFCD, as measured by the standard deviation of the lFCD as a function of time, would be pro-
portional to the temporal variability in the amplitude of the spontaneous signal fluctuations
in the low frequency band (0.01–0.08Hz). We also predicted that the temporal variability in
the lFCD would be proportional to the magnitude of the FC.

We mapped the temporal evolution of the lFCD over a 14-min time interval using a sliding-
window approach and resting-state FC datasets from 40 healthy adults acquired under the
HCP. We quantified gray matter sensitivity and specificity and reproducibility across sessions
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of the variability of the lFCD as a function of time, while controlling for global effects by using
global signal normalization (GSN). We also assessed the effect of different thresholds in the
computation of the lFCD. We hypothesized that lFCD hubs in posterior parietal and occipital
gray matter would show the largest temporal variability in lFCD. To test the dynamic linear
association between the lFCD and the amplitude of the signal fluctuations as a function of time
in each individual we mapped the amplitude of the low frequency fluctuations (ALFF) in the
brain [33].

Methods

Subjects
Data were drawn from the publicly available repository of the WU-Minn HCP (http://www.
humanconnectome.org/). No experimental activity with any involvement of human subjects
took place at the author's institutions. The 40 participants (age: 31 ± 3 years; 31 females) of the
WU-Minn HCP Q1 data release included in this study provided written informed consent and
were scanned on a 3.0T Siemens Skyra unit equipped with a 32-channel radiofrequency head
coil according to procedures approved by the IRB at Washington University in St. Louis.

Datasets
Resting-state functional images were acquired while the participant relaxed with eyes open
using a gradient-echo-planar sequence with multiband factor 8, TR 720 ms, TE 33.1 ms, flip
angle 52 deg, 104 × 90 matrix size, 72 slices, 2 mm isotropic voxels, and 1200 timepoints
[34,35]. Scans were repeated twice using different phase encoding directions (left-right, LR,
and right-left, RL) in each of the two imaging sessions (REST1 and REST2). The “minimal pre-
processing” datasets, which include gradient distortion correction, rigid-body realignment,
field-map processing, spatial normalization to the stereotactic space of the Montreal Neurolog-
ical Institute (MNI), high pass filtering (1/2000 Hz frequency cutoff) [36], independent compo-
nent analysis-based denoising [37], and brain masking were used in this study. One hundred
and sixty ‘resting-state’ time series (2 sessions × 2 phase encoding directions × 40 subjects)
with 1200 time points (864s) and 2mm-isotropic voxels (whole brain coverage) were used in
this study. In addition we used the HCP’s gray and white matter parcellations of each subject’s
brain structural scans, to create a gray matter template. This template was used to assess the
gray matter specificity of the lFCD. The interactive data language (IDL, ITT Visual Information
Solutions, Boulder, CO) and a workstation with two Intel1 Xeon1 X5680 processors were
used in subsequent processing steps to compute dynamic lFCD and ALFF brain maps, for each
subject, session (REST1, REST2) and phase encoding direction (LR, RL).

Local degree
The lFCD at every voxel in the brain, x0, was computed as the number of voxels in the contigu-
ous functional connectivity cluster of x0 using a "growing" algorithm [16]. The Pearson correla-
tion was used to assess the strength of the functional connectivity, Rij, between voxels i and j in
the brain, and a correlation threshold Rij > 0.4, was selected to ensure significant correlations
between time-varying signal fluctuations at P< 0.0001, uncorrected. A voxel (xj) was added to
the list of voxels functionally connected with x0 only if it was adjacent to a voxel that was linked
to x0 by a continuous path of functionally connected voxels and R0j > 0.4. This calculation was
repeated for all brain voxels that were adjacent to those that belonged to the list of voxel func-
tionally connected to x0 in an iterative manner until no new voxels could be added to the list.

Dynamic Functional Connectivity

PLOS ONE | DOI:10.1371/journal.pone.0154407 April 26, 2016 3 / 22

http://www.humanconnectome.org/
http://www.humanconnectome.org/


Amplitude of fluctuations
The preprocessed time series were also used to map ALFFfor all voxels in the brain. Specifically,
the fast Fourier transform was used to compute the ALFF as the average of the power spec-
trum's square root in the 0.01–0.08 Hz low frequency bandwidth [33]. The Pearson linear cor-
relation was used to map for each individual time series the association between dynamic FC
metrics (ALFF and lFCD) as a function of time.

Sliding-window
To quantify the time-varying behavior of lFCD and ALFF over the duration of the scan, we
used a fixed rectangular time window with N = 100 image time points (72s). Data points within
the time window were used to calculate lFCD and ALFF patterns. The time window was subse-
quently shifted by N/2 (36s) and the lFCD and ALFF patterns were then recalculated. This was
repeated 23 times to cover the entire scanning window. A fixed rectangular time window with
N = 200 image time points (144s) was used to assess the effect of window length. In addition
Hamming windows,

hðnÞ ¼ 0:5 1þ cos
2pn
N � 1

� �� �
; ð1Þ

of lengths N = 100 (72 sec) and N = 200 (144 sec) time points were used to assess the effect of
sliding-window shape.

Dynamic motion
Framewise displacements, FD, were computed for every time point from head translations
(dix, diy, diz) and rotations (αi, βi, γi) using a radius of r = 50 mm:

FDi ¼ jDdixj þ jDdiyj þ jDdizj þ rjDaij þ rjDbij þ rjDgij: ð2Þ

In order to assess the influence of head motion on the dynamic lFCD patterns the sliding-
window approach was used to quantify the average FD within each sliding-window frame. Spe-
cifically, correlation analyses were used to assess the linear association between dynamic FD
and lFCD or ALFF. These Pearson correlation maps from each subject were then normalized
using the Fisher’s transformation and used to test the association between the temporal vari-
ability of head motion and those of lFCD or ALFF.

Temporal variability
The temporal standard deviation (SD) of the time varying lFCD patterns was used to quantify
the variability of this measure as a function of time at each brain voxel.

Data processing pipelines
Six pipelines were implemented (Fig 1). Pipeline 1 included a multilinear regression approach
to minimize motion related fluctuations in the MRI signals [16]. 3D GSN was performed to
minimize global fluctuations and to account for linear and non-linear drifts in the MRI signal:

Sðx; y; z; tÞ ¼ Sðx; y; z; tÞ � 1000�M =
X
x;y;z

Sðx; y; z; tÞ; ð3Þ

whereM is the number of voxels within a brain mask and S(x, y, z, t) is the MRI signal from a
voxel at time t. Standard 0.08 Hz low-pass filtering was used to minimize physiologic noise of
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high frequency components. The strengths of ALFF and lFCD maps were computed as
described using the sliding-window approach. Then the SD maps were computed as described.
Spatial smoothing was not used in order to preserve the high spatial resolution of the
native datasets. The lFCD was evaluated in the whole brain using the whole brain mask
(227372 ± 2461 voxels; mean ± standard deviation). Five alternative pipelines avoiding GSN
with R0j > 0.3 (pipeline 2); R0j > 0.4 (pipeline 3); R0j > 0.5 (pipeline 4); using Hamming slid-
ing-windows (pipeline 5) or with a 0.15Hz low-pass filter (pipeline 6) were additionally imple-
mented to assess the effects of global signal fluctuations, correlation thresholds, sliding-
window shape and low-pass filtering parameters on the temporal variability of the lFCD at
high spatiotemporal resolution.

Fig 1. Image processing pipelines. Ten dynamic lFCDmaps and 4 dynamic ALFFmaps were computed for each subject, session, and phase encoding
direction using 5 different pipelines (see text). A total of 1600 lFCD and 640 ALFFmaps covering the whole brain (white matter and cerebrospinal fluid
regions were not masked out to assess the strength of the lFCD in these regions) with 2-mm isotropic resolution and 91×109×91 voxels were computed using
160 HCP datasets with “minimal preprocessing” [36] from the Q1 release. Smoothing was not used to preserve the high spatial resolution of the resting-state
functional datasets.

doi:10.1371/journal.pone.0154407.g001
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Grand mean global scaling
The mean SD in the whole brain of each individual was averaged across subjects and voxels

hSDi ¼ 1

LM

XS

k¼1

XL
i¼1

SDk
i ; ð4Þ

where L is the number of subjects andM is the number of voxels in the brain, and used as the
unique scaling factor, 1/<SD>, for a given pipeline. This scaling procedure allowed us to con-
trol for global differences associated with differences in thresholds, sliding-window shapes and
GSN conditions in statistical analyses. Similar grand mean global scaling was used for the
lFCD.

Sensitivity, specificity and reproducibility indices
We used three indices to benchmark the effect of global signal regression and correlation
thresholds on the temporal variability of the lFCD [31]:

Sensitivity ¼ MGM

Mtissue

X
i2ftissueg

SDiX
i2fbraing

SDi

; ð5Þ

which gauges the proportion of SD within the tissue of interest (i.e. cortical or subcortical gray
matter or white matter), normalized to gray matter volume (Mtissue/MGM);

Specificity ¼

X
i2fWMg

ε

X
i2fWMg

1
; ε ¼

1 if SDi �
1

M

X
k2fbraing

SDk

0 if SDi >
1

M

X
k2fbraing

SDk

; ð6Þ

8>>>><
>>>>:

gauges the proportion of white matter voxels with lower strength in SD than the whole-brain
average and was used to measure the true negative rate of SD. The gray and white matter parce-
lations provided with the Q1 release of the HCP dataset were used for these purposes; and

Reproducibility ¼ 1� 1

M

XM
i2 brain

abs
SDREST1

i � SDREST2
i

SDREST1
i þ SDREST2

i

� �
: ð7Þ

Reliability
The test-retest reliability of SD were evaluated for each imaging voxel using two-way mixed
single measures intraclass correlation [38],

ICCð3; 1Þ ¼ BMS� EMS
BMSþ ðk� 1ÞEMS

; ð8Þ

Specifically, each subject’s measurement (SD at each voxel) is assumed to be a random sam-
ple from a population of measurements. Case 3 (fixed effects) was selected because the mea-
sures were obtained in two different sessions (k = 2, REST1 and at REST2; “the raters”), which
are the only sessions of interest. Previous test-retest reliability studies on FC have also used
Case 3. In this work ICC was based on single measurements ICC(3,1), in order to be consistent
with previous test-retest reliability studies. ICC(3,1) was mapped in the brain in terms of
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between-subjects (BMS) and residuals (EMS) mean square values computed for each voxel
using the IPN matlab toolbox (http://www.mathworks.com/matlabcentral/fileexchange/
22122-ipn-tools-for-test-retest-reliability-analysis) and the SD maps corresponding to REST1
and REST2 sessions (k = 2) from all subjects (L = 40):

BMS ¼ 1

L� 1

XL
j¼1

Xk

i¼1

SDij �
1

L

XL
j¼1

Xk

i¼1

SDij

 !2

EMS ¼ 1

ðL� 1Þðk� 1Þ
Xk

i¼1

XL
j¼1

SDij �
1

k

Xk

i¼1

SDij

 !2

�
XL
j¼1

SDij �
1

k

XL
j¼1

Xk

i¼1

SDij

 !2
2
4

3
5
: ð9Þ

Note that ICC(3, 1) coefficients range from 0 (no reliability) to 1 (perfect reliability).

Between subject variability in SD and gray matter
We ran an additional analysis to assess the contribution of common and uncommon gray mat-
ter voxels to the individual differences in SD. Two gray matter masks were generated for each
subject pair, one showing common gray matter voxels (GM) between the two subjects and one
showing the combination of uncommon gray matter voxels (No GM) that are exclusive to each
subject. Two maps were computed, MBSDGM and MBSDNo GM, reflecting the average
between-subject differences in SD within each of these masks.

Randomness and entropy
The IDL algorithm KSTWO [39], which computes the Kolmogorov-Smirnov statistic and asso-
ciated probability that two arrays are drawn from the same statistical distribution, was used to
compare the distribution of the time-varying lFCD against that of a uniform random variable.
The time-varying lFCD datasets from the 2 sessions and 2 phase encoding directions were
concatenated to form 4D datasets with 92 time points and to increase statistical power. The
non-parametric Kolmogorov-Smirnov test was computed as a function of time for each voxel
in the brain. The probability that the lFCD data have random distribution was computed for
each subject and then averaged across subjects.

Shannon entropy was used to assess the amount of information in the time-varying lFCD.
Specifically, for each subject the 4 rfMRI time series were concatenated into a single time series
with 92 time points and entropy maps were computed according to

H2 ¼ �
Xn
i¼1

pi log2 pi;

where pi is the probability of lFCD = i.

Statistical methods
A full factorial design was used to compare metrics from different sessions (REST1 vs REST2),
phase encoding directions (LR vs RL), correlation thresholds (R< 0.3, 0.4 or 0.5), sliding-win-
dow shapes (rectangular vs hamming) and length (100 time points vs 200 time points), or GSN
(ON vs OFF). The statistical parametric mapping package (SPM8) was used for this purpose.
Statistical significance was set by a PFWE < 0.05, corrected for multiple comparisons at the clus-
ter level with the random field theory and a family-wise error correction with a cluster-forming
threshold of P< 0.001 and a minimum cluster size of 200 voxels.
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Results

lFCD
In most cortical regions the average lFCD across subjects was stronger than the whole brain
mean lFCD (Fig 2A). The lFCD patterns predominantly followed the shape of cortical gray
matter, and had minimal overlap with white matter and cerebrospinal fluid. However, inferior
ventral, orbitofrontal, anterior temporal and insular cortices and subcortical regions showed
attenuated lFCD, which might reflect the lower sensitivity of the 32-channels head coil in deep
brain regions [40].

Time-varying lFCD
The sliding-window analysis demonstrated that lFCD patterns varied as a function of time,
despite the high statistical significance of the static lFCD in the whole brain (Fig A in S1 File).
The single-subject data in Fig 3A exemplifies the dynamics of the lFCD over the course of the
14 min resting-state scanning and shows that lFCD time courses varied from region to region.
We used the temporal standard deviation, SD, to map the temporal variability of the lFCD (Fig
3). Across subjects, the variability of the lFCD as a function of time was high in medial occipital
and parietal cortices, angular gyrus, superior and inferior parietal cortex, and medial prefrontal
cortex, which are regions with high static lFCD. Specifically, in these regions SD was two times
higher than the whole brain mean (Fig 2B) and similar to the distribution of the static lFCD
(Fig 2A). The remarkable gray matter sensitivity, reproducibility and specificity of the SD (Fig
B in S1 File) were used as benchmark criteria to assess the effect of image preprocessing steps
on the dynamics of the lFCD.

Correlation threshold
The static (lFCD) and dynamic (SD) connectivity density patterns did not change significantly
as a function of the correlation threshold used for FCDM in any brain region (PFWE > 0.05; Fig
C in S1 File).

Global signal normalization
GSN did not change static and dynamic connectivity density patterns in cortical gray matter
regions (PFWE > 0.05) but increased them in cerebrospinal fluid (CSF), white matter, subcorti-
cal gray matter and cerebellum (PFWE < 0.05; Fig 4).

Sliding-window length and shape and low pass filter
There were moderate changes in the SD due to window shape and size (Fig D in S1 File), yet
these changes were not statistically significant in any brain region (PFWE > 0.05; Fig D in S1
File). Similarly, there were no significant differences in SD or lFCD between 0.15Hz low-pass
filtered datasets and 0.08Hz low-pass filtered datasets (Fig 4).

SD-to-lFCD ratio
The spatial distribution of SD matched that of lFCD patterns (Fig 2A and 2B) suggesting that
hub regions with high lFCD have prominent temporal dynamics. Thus the mean magnitudes
of lFCD and SD across subjects were highly correlated across brain regions (Fig 2). The SD-to-
lFCD ratio was used to normalize SD measures by the amplitude of the lFCD independently
for each subject (Fig 2C). In order to assess the relationship between lFCD and SD, image vox-
els were sorted by the strength of the rescaled lFCD and averaged into bins of lFCD = 0.1,
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Fig 2. Temporal variability at the group level. Average distributions of strength (lFCD; A) and standard deviation (SD; B) of the lFCD as well as their ratio
(C) across subjects showing brain areas where these metrics had higher values than twice (A and B) their whole brain averages, superimposed on axial
(right), sagittal (middle) and coronal (left) views of the cortical and subcortical gray matter template developed using the HCP structural scans (pipeline 4).
lFCD, SD and SD/lFCD ratio maps were computed for each subject and averaged. Note that voxels in white matter and cerebrospinal fluid were not excluded
and that the imaging threshold (twice the whole brain average) was the only criterion used to display the patterns. The scatter plot (D) demonstrates the lack
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independently for lFCD, SD and for the SD-to-lFCD ratio (Fig 2D). Whereas SD and lFCD
showed strong linear association across voxels, the SD-to-lFCD ratio did not show significant
linear effects with lFCD (Fig 2D), regardless of GSN conditions and correlation thresholds
used to compute the dynamic lFCD patterns (Fig E in S1 File). Note that the SD-to-lFCD ratio
(coefficient of variation) should capture connectivity that was highly variable due to factors
other than hubness.

lFCD vs ALFF
The sliding-window analysis demonstrated a linear association between lFCD and the ampli-
tude of the spontaneous fluctuations in the brain. Specifically, brain regions with higher lFCD
than the whole brain average exhibited time-varying lFCD patterns that were synchronous
with time-varying ALFF patterns (Fig 5). The Pearson correlation used to map the linear asso-
ciation between lFCD and ALFF (Fig 5B) revealed correlation patterns that overlapped with
the cortical gray matter regions housing the most prominent lFCD hubs in each individual (Fig
3C). These temporal correlation patterns had normal distribution across voxels and were
highly reproducible across sessions (Fig 5C and 5D) and phase encoding directions (not
shown). The average lFCD-ALFF temporal correlation maps across subjects revealed a strong

of association between the relative temporal dynamics (SD/lFCD) and the strength of the lFCD hubs. Image voxels were sorted by the strength of the
rescaled lFCD and averaged into bins of lFCD = 0.1, independently for lFCD, SD and for the SD-to-lFCD ratio.

doi:10.1371/journal.pone.0154407.g002

Fig 3. Temporal variability at the individual level. (A) Exemplary series of dynamic lFCDmaps (in voxels; i.e. without grand mean global scaling) from a
typical resting state HCP dataset superimposed on an axial view of the T1 weighted brain structure (top) and lFCD time courses (colored lines) corresponding
to four different voxels from gray matter regions (colored arrows). The standard deviation (SD; in voxels) maps in B and C quantify the temporal dynamics of
the lFCDmetric in the brain for a single individual. Pipeline 4.

doi:10.1371/journal.pone.0154407.g003
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linear association between time-varying patterns of lFCD and ALFF (Fig 5E). Specifically,
insula as well as occipital, posterior and superior parietal and dorsolateral prefrontal cortices
and premotor areas showed high temporal correlation between the time-varying lFCD and
ALFF metrics.

Effects of head motion
The average head motion during the 14 minutes long resting-state scans did not differ
between MRI sessions or phase encoding directions across subjects (P > 0.2, paired t-test;

Fig 4. Effect of GSN. Average lFCD (A) and SD (C) maps across subjects with (G) and without (NG) GSN, with 0.08Hz or 0.15Hz low-pass filtering, and their
statistical differences (two-sided t-score; B and D) superimposed on axial (right), sagittal (middle) and coronal (left) views of the cortical and subcortical gray
matter template developed using the HCP structural scans.

doi:10.1371/journal.pone.0154407.g004
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Fig 5. Dynamic association between lFCD and ALFF. Typical single subject data (A-D) showing (A) exemplary time courses from a voxel in primary visual
cortex (black arrow in C) for lFCD (red) and ALFF (blue) and their correlation as a function of time (B), as well as the spatial distribution of their temporal
correlation coefficients in the brain (C and D), which after Fisher’s transformation (histograms) had normal distribution (red Gaussian curve fits). (E)
Distribution of the average ALFF-lFCD correlation coefficients across subjects superimposed on three orthogonal views of the gray matter template.

doi:10.1371/journal.pone.0154407.g005
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hFDi = 0.176 ± 0.05 mm). The 72s-rectangular sliding-window analysis revealed that the
time-varying FD had a temporal standard deviation of 0.02 ± 0.01 mm, which did not differ
between sessions or phase encoding directions (P> 0.71) and was smaller than the standard
deviation of the static FD (i.e., average FD within a session) across subjects (P< 0.001). Pear-
son correlation was used to assess the linear association of FC and lFCD or ALFF patterns as
a function of time for each subject. A t-test of the Fisher’s z-transformed correlation maps
demonstrated that increases in FD slightly increased lFCD in occipital, temporal motor and
premotor cortices and insula, and ALFF in the occipital cortex (PFWE < 0.05; Fig 6A). The
partial correlations used to remove the effect of head motion in the linear association between
time-varying patterns of lFCD and ALFF showed that head motion effects on the association
between lFCD and ALFF were not statistically significant (P> 0.05, uncorrected; Fig 6B).

Gray matter sensitivity
The sensitivity index, which captures the proportion of SD within a tissue of interest, was
higher for cortical grey matter than for white matter and subcortical gray matter (including
cerebellum). The sensitivity index in cortical gray matter reached maximal value (85 ± 3%) for
SD maps computed without GSN and using a correlation threshold of 0.5 (Fig 7A). The use of
GSN or lower correlation thresholds significantly reduced the SD gray matter sensitivity index
(P< 10−9; paired t-test, df = 39). The SD sensitivity index did not differ between LR and RL
runs or between the REST1 and REST2 sessions.

Reproducibility
The lFCD-SD patterns computed without GSN had reproducibility index of 67 ± 6% across ses-
sions which did not significantly differ as a function of correlation thresholds (Fig 7A). GSN,
improved the reproducibility of the SD maps to 72 ± 4% (P< 10−13; paired t-test, df = 39).
Voxelwise analysis contrasting REST1 and REST2 did not show statistically significant SD dif-
ferences between sessions in any brain region.

Specificity
The specificity index of the lFCD-SD patterns was better than 85% across threshold and GSN
conditions (Fig 7A), sessions and phase encoding directions (not shown). The specificity index
gradually improved with higher correlation thresholds and with the lack of use of GSN
(P< 10−10, paired t-test, df = 39).

Reliability
Intraclass correlation analyses of test-retest datasets demonstrated the high reliability (ICC
(3,1) > 0.5) of the SD in cortical regions (Fig 7B). Whole-brain test-retest reliability of
SD slightly improved with higher correlation threshold (ICC(3,1) NG

R>0.5—ICC(3,1)
NG

R>0.3 = 0.009 ± 0.0004, mean ± SE) and with GSN (ICC(3,1) GR>0.4—ICC(3,1)
NG

R>0.4 = 0.045 ± 0.0006).

SD variability in relation to gray matter
Since the folding patterns of cortical gray matter are highly variable across individuals [41] we
assessed the inter-individual lFCD differences in relation to the folding patterns of cortical gray
matter for all pairs of subjects. Cortical gray matter and SD patterns overlapped for each indi-
vidual but varied across individuals. On average across all potential pairs of subjects, the corti-
cal gray matter patterns of two randomly selected subjects overlapped in 55600 ± 2000 voxels
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Fig 6. Effects of headmotion on FC dynamics. (A) Mean Fisher’s z-score values (top row) and their statistical significance across subjects superimposed
on three orthogonal views of a gray matter template (t-test; bottom row), demonstrating the linear correlation between framewise displacements (FD) and the
FCmetrics (lFCD and ALFF) in the brain as a function of time. (B) Three orthogonal views showing the distribution in the brain of the group mean Fisher’s z-
scores from partial correlation analyses (“Motion removed”; top row) and from standard Pearson correlation analyses (“With motion”; bottom row).

doi:10.1371/journal.pone.0154407.g006
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(mean ± standard deviation) in which the MBSDGM in SD was 1.644 ± 0.815 times higher than
the whole brain mean (NG, R> 0.5). For voxels which did not overlap in cortical gray matter
for the two subjects (55500 ± 1800 voxels) the MBSDNo GM in SD was 1.646 ± 0.767 times
higher than the whole brain mean. The MBSD measures within overlapping and non-overlap-
ping gray matter areas showed significant correlations across subjects (r2 = 99, Fig 8C). This
observation was not affected by different lFCD-thresholds, GSN conditions or phase encoding
directions (Fig G in S1 File). Thus, inter-individual differences in temporal variability of lFCD
were not significantly associated to inter-individual differences in the spatial distribution of
cortical gray matter.

Randomness and entropy
In most brain regions the cumulative distribution function of the time-varying lFCD differed
from that of the random variable (Fig 8A). Brain regions with increased static lFCD also dem-
onstrated increased entropy (Fig 8B–8D).

Discussion
Here we assess for the first time the temporal dynamics of the lFCD, a graph theory metric of
functional organization in the human brain. Specifically, using a sliding-window approach in
resting-state fMRI data collected with high spatiotemporal resolution (2-mm isotropic; 0.72 s),

Fig 7. lFCD dynamics: Gray matter specificity and test-retest reliability. (A) Average sensitivity index for SD in subcortical and cortical gray matter and
white matter, and average reproducibility and specificity indices across subjects for each of the processing pipelines in Fig 1. (B) Two-way mixed single
measures intraclass correlation ICC(3,1) maps at 2-mm isotropic resolution depicting regional variability in test-retest reliability for SD (pipeline 4). (C) Scatter
plot showing the linear association of the mean between-subject SD-differences (MBSD) across voxels in overlapping (No GM) and non-overlapping (GM)
gray matter for all potential pairs of subjects (pipeline 4). Error bars are standard deviations.

doi:10.1371/journal.pone.0154407.g007
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Fig 8. Randomness and Entropy. Statistical maps from Kolmogorov-Smirnov test (see methods) averaged across subjects, highlighting brain regions
where the cumulative distribution function of the time-varying lFCD differed from that of a uniform random variable (A). Average entropy across subjects
superimposed on B) lateral and medial views of the brain surface andC) three orthogonal views of the brain. The color bar displays the average entropy, H,
across subjects relative to the maximal entropy, Hmax = log2(92), effectively attained with the concatenation of 4 time series (4 × 23 temporal windows) from
each subject.D) Exponential saturation of H with lFCD in typical subject data.

doi:10.1371/journal.pone.0154407.g008
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we reveal pronounced temporal variability in lFCD in visual and posterior parietal cortices
encompassing the default-mode network regions. The temporal variability in lFCD was
restricted to gray matter and temporal changes in lFCD were associated to temporal changes in
ALFF.

The present study provides evidence that the temporal dynamics of the lFCD is synchro-
nous with the temporal dynamics of ALFF. This dynamic association, which predominantly
occurred in medial occipitoparietal regions, is consistent with the temporal dynamics observed
for the connectivity of posteromedial cortex seeds [42,43]. Different from previous studies that
reported temporal variability in the strength of the functional connectivity of large ROIs in the
posteromedial cortex (a 12-mm diameter sphere located in ventral precuneus [43] or four
6-mm diameter spheres located in dorsal precuneus [42]), the present study quantifies tempo-
ral variability of functional connectivity at 2-mm isotropic resolution. In addition, we docu-
ment for the first time gray matter sensitivity and specificity, and the reliability of the temporal
variability of the hubs.

The strength and the temporal variability of the lFCD as well as its association with ALFF
were maximal in occipital and medial parietal regions. These brain regions have the highest
metabolism in brain [44,45], which presumably supports the energy requirements of higher
communication rate in these regions [46]. The probability distribution of time-varying lFCD
could not be explained by randomness using the Kolmogorov-Smirnov test. Shannon entropy
also suggests that processes other than random processes play a role in the temporal variability
of lFCD. Specifically, we found that in posterior and medial occipitoparietal networks the lFCD
had high entropy which increased in proportion to the strength of the hubs (Fig 8), suggesting
high average flow of information in these regions.

lFCD gauges the strength of the local functionally connectivity hubs, regions with high
degree, which are energy demanding [46] and target of neuropsychiatric disorders with dis-
rupted energetics for which there is evidence of impaired energy generation (ie mitochondrial
dysfucnction) as has been shown for Alzheimer’s, autism, schizophrenia alcoholism, attention-
deficit hyperactivity disorder and aging energetics [17,19,47–54]. We assessed the temporal
variability of the hubs using the sliding-window approach and quantified the temporal changes
in the strength of the hubs using the temporal SD of the lFCD, similar to previous studies that
quantified the temporal variability of the seed-voxel correlation patterns [15]. This work dem-
onstrates for the first time that cortical lFCD hubs, which are densely located in occipitoparietal
cortices, show significant temporal variability.

Similar dynamic changes have been observed in previous studies using seed-voxel correla-
tions or ICA that reported temporal dynamics in functional connectivity metrics in lateral pari-
etal and cingulate cortices and in the default-mode network [5,14,15] at significantly lower
spatial resolution. The sharper connectivity patterns in the present study reflect the higher spa-
tial resolution and faster sampling rate of the HCP datasets that resulted in lFCD patterns with
greater sensitivity in relation to showing gray matter specific effects at the individual and group
levels (preserved by the lack of spatial smoothing) and with reduced physiologic noise artifacts.
Thus, the time-varying lFCD patterns were restricted to gray matter regions, regardless of the
phase encoding direction used to collect the multiband echo-planar datasets as well as the pro-
cessing approaches used to compute lFCD (e.g. correlation thresholds or GSN conditions).

This is the first study to quantify dynamic changes in functional connectivity capitalizing on
the high spatial resolution of the HCP datasets. Specifically, the temporal variability (SD) in
the strength of the lFCD hubs occurred in cortical gray matter with high sensitivity (up to
85 ± 3%) and high specificity (> 85%), and showed high reproducibility across sessions (up to
72 ± 4%). Furthermore, the SD patterns in cortical regions showed moderate to high reliability
(ICC(3,1)> 0.5), suggesting lower within-subject than between-subjects variability. Whereas,
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for each individual the high lFCD-SD mapped onto cortical gray matter, the MBSD in SD was
not sensitive to the amount of overlap in the gray matter across subjects, suggesting that the
between-subject variability in the dynamics of lFCD does not reflect only between-subject vari-
ability in brain anatomy.

The temporal variability of the lFCD hubs was consistent with the proposed dynamic
changes in network efficiency [1] and with results from previous studies that have documented
lower functional connectivity and lower variability of the dynamic functional connectivity in
patients with schizophrenia compared to control subjects [55]. In cortical gray matter the tem-
poral variability of lFCD was proportional to the strength of the lFCD hubs (SD/lFCD ~1), sug-
gesting that these regions are both highly connected and highly dynamic. This also suggests
and that random processes may play a role in the temporal variability of the lFCD (random
variables with higher mean are expected to have higher standard deviation) which might not
be compatible with the existence of meaningful lFCD 'states’. At the cortical gray-white matter
boundary, however, the strength of the hubs (i.e., amplitude of lFCD) did not fully account for
the temporal variability in lFCD (SD/lFCD> 1). In these regions the lFCD was highly variable
due to temporal noise, not purely due to hubness, suggesting that factors other than chance
influenced the dynamics of lFCD in these regions.

A large SD may not necessarily reflect a highly dynamic signal (a random variable could
have large SD but yet be classified as stationary). Using a non-parametric Kolmogorov-Smir-
nov test, we show that the time-varying lFCD is not a random variable in most brain regions,
which supports the dynamic nature of these temporal fluctuations. We were not aware of a
suitable statistical tool to test whether dynamic lFCD changes reflect the existence of ‘states’,
and the time-varying lFCD in this study is not suitable for the detection of “lFCD states”. Our
initial estimates suggest that detection of different “lFCD states” would require one order of
magnitude longer scanning time (several hours) than those acquired under the HCP due to
the high entropy of this dynamic metric. This study does not quantify the dynamics of lFCD
in cerebellum and subcortical regions because the low sensitivity of the HCP datasets prevented
lFCD quantification in deep brain regions, even at low correlation thresholds (R< 0.1;
P> 0.16). In contrast to cortical regions, imaging deep brain regions do not benefit signifi-
cantly from the use of multichannel coil arrays such as the 32-channel head coil used under the
HCP. Furthermore, since the MRI signal is proportional to the voxel volume, a 66% signal-to-
noise ratio (SNR) decrease is expected for 2-mm compared to 3-mm isotropic resolution.
T1-relaxation also reduces SNR at high temporal resolution, because at TR = 0.72s and assum-
ing T1 = 1s, the recovery of the longitudinal magnetization is 50%. Thus, white (random)
rather than physiologic (nonrandom and proportional to SNR) noise could dominate the noise
in cerebellum and subcortical regions, preventing observation of physiological signals in these
regions at high spatiotemporal resolution. We were unable to quantify regional variations in
T2-decay because the HCP datasets do not include T2 maps and were collected using single-
echo multiband EPI. Since the time-varying lFCD findings in this study reflect BOLD signal
fluctuations that are sensitive to T2-decay, part of the variability across regions could be attrib-
uted to differences in T2-decay.

To limit the effect of spurious connectivity fluctuations (false positives), our approach relied
on a sliding-window technique with lengths of 72s and 144s, approximately the longest wave-
length composing the BOLD signal [56,57]. Whereas Leonardi recommended choosing a win-
dow length exceeding the longest wavelength composing the BOLD signal, usually assumed to
be ~100s, Zalesky showed that non-stationary fluctuations in functional connectivity can in
theory be detected with much shorter window lengths (e.g. 40s), while maintaining nominal
control of false positives. We did not observe significant differences in the dynamics of lFCD
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between sliding-windows of different lengths (72s versus 144s) or shapes (rectangular versus
Hamming) (PFWE > 0.05).

The data-driven nature of the proposed method allows quantification of dynamic properties
of the functional connectivity and is fully compatible with voxelwise statistical approaches fre-
quently used in neuroimaging. We also studied the effect of GSN on the dynamics of lFCD in
gray matter because GSR is frequently used to control for scanner instabilities in resting-state
functional connectivity. However global signal fluctuations could reflect true electrophysiologi-
cal activity [58] and GSR may lead to spurious anti-correlations [59–61]. In this study, GSR
increased reproducibility and reliability of SD in cortical gray matter, but spuriously increased
SD in white matter and subcortical regions, which might confound results in these regions
[62]. In addition the present study demonstrates the robustness of the SD to the correlation
threshold and low-pass filter cut-off frequency used in the computation of lFCD. Besides
neurophysiological factors, scanner noise and motion may lead to temporal variability in the
lFCD index. While the present work does not dissociate the sources of temporal variability in
lFCD in detail, future work may complement these findings by providing a more in-depth
understanding of factors contributing to temporal changes in functional connectivity indices.

Overall, this work demonstrates temporal changes in data-driven functional connectivity
metrics at high spatiotemporal resolution that are proportional to the strength of the connec-
tivity hubs and the amplitude of the spontaneous MRI signal fluctuations in the brain. Whereas
the biological origin of the dynamic connectivity changes remains unclear they occurred pre-
dominantly in gray matter, particularly occipitoparietal hubs, with high specificity, reproduc-
ibility and reliability.

Supporting Information
S1 File. Supporting statistical data analyses for “Temporal changes in local functional con-
nectivity density reflect the temporal variability of the amplitude of low frequency fluctua-
tions in gray matter”.
(DOCX)
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