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Abstract

The risk of acquiring a chronic disease is influenced by a person’s genetics (G) and expo-
sures received during life (the ‘exposome’, E) plus their interactions (GxE). Yet, investiga-
tors use genome-wide association studies (GWAS) to characterize G while relying on self-
reported information to classify E. If E and GxE dominate disease risks, this imbalance
obscures important causal factors. To estimate proportions of disease risk attributable to G
(plus shared exposures), published data from Western European monozygotic (MZ) twins
were used to estimate population attributable fractions (PAFs) for 28 chronic diseases.
Genetic PAFs ranged from 3.4% for leukemia to 48.6% for asthma with a median value of
18.5%. Cancers had the lowest PAFs (median = 8.26%) while neurological (median =
26.1%) and lung (median = 33.6%) diseases had the highest PAFs. These PAFs were then
linked with Western European mortality statistics to estimate deaths attributable to G for
heart disease and nine cancer types. Of 1.53 million Western European deaths in 2000,
0.25 million (16.4%) could be attributed to genetics plus shared exposures. Given the mod-
est influences of G-related factors on the risks of chronic diseases in MZ twins, the disparity
in coverage of G and E in etiological research is problematic. To discover causes of dis-
ease, GWAS should be complemented with exposome-wide association studies (EWAS)
that profile chemicals in biospecimens from incident disease cases and matched controls.

Introduction

As the world’s population ages, mortality increasingly reflects the ravages of complex chronic
diseases, particularly cancer and heart disease [1]. A person’s risk of succumbing to a chronic
disease is linked to his or her genetics (G) and exposome (E, representing all exposures during
life) plus GxXE interactions. Although geneticists and epidemiologists have debated the impor-
tance of G and E as causes of chronic diseases, it is clear that both factors affect disease risks [2,
3]. However, most etiologic research has focused on genetic causes and has relegated exposures
to secondary roles. For example, when queried on Feb. 6, 2016, there were 566,685 PubMed
citations for the keywords “disease causes AND genetics” compared to 71,922 citations for
“disease causes AND exposure”, a ratio of about eight to one.

This genome-centric view of causation is motivated by the technologic ability to detect and
manipulate genes, and fosters the notion that genetic factors are necessary determinants of dis-
ease that operate in a causal background of diverse exposures [4, 5]. Certainly, technologies
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spawned by the human genome project led to stunningly comprehensive genome-wide associa-
tion studies (GWAS) that investigated genomic variability across thousands of diseased and

healthy subjects. Yet, because more than 2,000 GWAS rarely reported relative risks greater
than 1.2 [6, 7], geneticists are turning to whole-genome sequencing in searches for ‘missing

heritability’ [8, 9]. This motivation stems, at least in part, from calculations of heritability that
do not differentiate disease variation arising from genetic factors and shared exposures [10].

In contrast to GWAS, the epidemiology of causal exposures still relies on self-reported and
geographic information plus a few targeted measurements [11, 12], much as it did a century
ago. Nonetheless, data from the World Health Organization (WHO) has attributed nearly half
of global mortality to a handful of exposures (Table 1), mainly particulate air pollution (includ-
ing indoor smoke and occupational exposure) (14% of all deaths), tobacco smoking and sec-
ond-hand smoke (13%), high plasma levels of sodium (6%), and alcohol use (which is generally
protective but can be harmful with high consumption) (5%) [13]. There is also strong epidemi-
ologic evidence that genetically-stable populations experience profound alterations in cancer
incidence across generations and with migration that logically reflect changing exposures [3,
14, 15]. Thus, the empirical evidence promotes the notion that exposures are necessary deter-
minants of disease that operate in a causal background of genetic diversity. However, compared
to GWAS, the universe of exposures that has been investigated for associations with chronic
diseases essentially consists of airborne particulate matter plus a set of about 300 environmen-

tal chemicals and nutrients [16].

To investigate the global influence of genetic factors on chronic-disease risks, data from

cohorts of monozygotic (MZ) twins in Western Europe were compiled to estimate population

Table 1. Global deaths attributed to exposure-risk factors for chronic diseases.

Risk factor

Tobacco smoking

Indoor smoke

Ambient particulate pollution

Diet high in sodium

Alcohol use

Diet low in seafood omega-3 fatty acids
Lead exposure

Second-hand smoke

Diet low in polyunsaturated fatty acids
Diet high in trans fatty acids
Occupational chemicals

Drug use

Ambient ozone pollution

Diet low in calcium

Vitamin A deficiency

Iron deficiency

Residential radon

Zinc deficiency

TOTAL

Attributed deaths

5,695,349
3,478,773
3,223,540
3,104,308
2,735,511
1,389,896

674,038
601,938
533,603
515,260
373,738
157,805
152,434
125,594
119,762
119,608
98,992
97,330
23,197,479

Percent of global deaths

11.28
6.89
6.38
6.15
5.42
2.75
1.33
1.19
1.06
1.02
0.74
0.31
0.30
0.25
0.24
0.24
0.20
0.19
45.9

Data were obtained from World Health Organization estimates of exposures affecting 50,506,784 global
deaths in 2010 [13]. (Because of possible correlations across risk factors, attributed deaths and

percentages may overestimate true values).

doi:10.1371/journal.pone.0154387.1001
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attributable fractions (PAFs) for 28 chronic diseases, including prominent cancers, cardiovas-
cular diseases, neurologic diseases, lung diseases, and autoimmune diseases. Because pairs of
MZ twins have essentially identical genomes and also share many exposures [10], especially in
early life, these PAFs estimate proportions of cases that would theoretically be prevented if
interventions were able to remove particular combinations of genotypes and shared exposures
[17,18]. To further evaluate the impacts of G and E on the risks of chronic diseases, PAFs from
MZ twins were linked with mortality statistics from Western Europe to estimate the numbers
of deaths attributable to genetic factors and shared exposures for ischemic heart disease and
prominent cancers.

Materials and Methods

Data for estimation of PAFs were obtained from publications of disease phenotypes in large
MZ-twin cohorts, i.e. [19-35], some of which had been curated by Roberts et al. [36]. Virtually
all of the data were from Western European twins, primarily Swedish, Danish, and Finnish.
The 28 diseases included nine types of cancer, cardiovascular diseases (heart disease and
stroke), neurological diseases (Parkinson’s disease, Alzheimer’s disease, dementia, and
migraine), lung diseases (chronic obstructive pulmonary disease and asthma), obesity-associ-
ated diseases (Type-2 diabetes and gallstone disease), autoimmune diseases (rtheumatoid
arthritis, Type-1 diabetes, and thyroid autoimmunity), genitourinary diseases (general dysto-
cia, stress urinary incontinence, and pelvic organ prolapse), and three other syndromes
(chronic fatigue, irritable bowel syndrome, and gastroesophageal reflux). The following data
were extracted from each study: gender, number of MZ twin pairs (Nt), number of concordant
MZ pairs (Nc), and number of discordant MZ pairs (Np). Each PAF (%) was estimated as P*
(RR-1)/RR, where P = 2N¢/(2Nc+Np)*100 represents the proportion (%) of case twins with an
affected co-twin and RR = [2N/(2N¢c+Np)]/[Np /(Np+2N1-2(Nc+Np)] is the associated rela-
tive risk. If statistics were reported for both male and female twin pairs, then PAFs were esti-
mated for the combined datasets. Since all of the studies were reported around the year 2000
for twins from Western Europe, mortality statistics for Western Europeans in that year were
obtained for ischemic heart disease and relevant cancers from the WHO Global Burden of Dis-
ease Database [37, 38]. To estimate deaths attributable to genetics and shared exposures, the
number of deaths for each disease type were multiplied by the corresponding PAF from MZ
twins.

Results and Discussion

Statistics from studies of MZ twins are summarized in Table 2. Estimated G-related PAFs ran-
ged from 3.4% for leukemia to 48.6% for asthma with a median value of 18.5% and interquar-
tile range of 9.9% to 24.2%. This indicates that fractions of cases attributable to genetics plus
shared exposures tend to be modest, with three fourths of the phenotypes having PAFs less
than 25%. In fact, G-related PAFs for only two phenotypes were greater than 40%, i.e. thyroid
autoimmunity (42%) and asthma (49%).

Fig 1 displays the cumulative distribution for the 28 phenotypes with symbols representing
disease categories. Although there was variability within a given category, cancers tended to
have the lowest PAFs (median = 8.26%) while neurological (median = 26.1%) and lung
(median = 33.6%) diseases had the highest PAFs. Although these are apparently the first esti-
mates of PAFs derived exclusively from MZ twins, Hemminki and Czene reported familial
PAFs for cancers in the Swedish-Family Cancer Database (10.2 million individuals) [18] that
are consistent with these results.
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Table 2. Data sources and statistics for estimation of population attributable fractions (PAFs) in monozygotic twins.

Disease

Bladder cancer

Breast cancer (female)

Colorectal cancer

Leukemia

Lung cancer

Ovarian cancer (female)
Pancreatic cancer

Prostate cancer (male)

Stomach cancer

Thyroid autoimmunity

Type 1 diabetes

Type 2 diabetes

Gallstone disease

Alzheimer’s disease

Dementia

Chronic fatigue
Gastroesophageal reflux disorder
Irritable bowel syndrome
Coronary heart disease death
Stroke-related death

General dystocia (female)

Pelvic organ prolapse (female)
Stress urinary incontinence (female)
Migraine

Rheumatoid arthritis

Asthma

Parkinson disease

Chronic obstructive pulmonary disease

Country Nt Nc Np P (%) RR PAF (%) Ref.
Sweden, Denmark, Finland 15,668 5 189 5.03 8.28 4.42 [19]
Sweden, Denmark, Finland 8,437 42 505 14.3 4.60 11.2 [19]
Sweden, Denmark, Finland 15,668 30 416 12.6 9.35 11.3 [19]
Sweden, Denmark, Finland 15,668 2 103 3.74 11.3 3.41 [19]
Sweden, Denmark, Finland 15,668 18 296 10.8 11.4 9.89 [19]
Sweden, Denmark, Finland 8,437 3 125 4.58 6.13 3.83 [19]
Sweden, Denmark, Finland 15,668 3 123 4.65 11.8 4.26 [19]
Sweden, Denmark, Finland 7,231 40 299 21.1 9.94 19.0 [19]
Sweden, Denmark, Finland 15,668 11 223 8.98 12.5 8.26 [19]
Denmark 284 7 17 45.2 14.3 42.0 [20]
Finland 4,307 3 20 23.1 99.1 22.8 [21]
Finland 4,307 29 113 33.9 25.3 32.6 [21]
Sweden 11,073 112 956 19.0 4.16 14.4 [22]
Sweden 398 2 8 33.3 32.7 32.3 [23]
Sweden 398 3 16 27.3 13.2 25.2 [23]
Sweden 3,229 181 792 31.4 2.10 16.4 [24]
Sweden 2178 95 370 33.9 3.48 24.2 [25]
Norway 1,252 14 97 22.4 5.49 18.3 [26]
Sweden 3,644 250 875 36.4 2.46 21.6 [27]
Denmark 3,852 35 316 18.1 4.20 13.8 [28]
Sweden 928 40 173 31.6 2.93 20.8 [29]
Sweden 3,376 34 157 30.2 12.6 27.8 [30]
Sweden 3,376 13 87 23.0 17.6 21.7 [30]
European Union 9,077 382 1377 35.7 415 271 [31]
Finland 4,137 9 64 22.0 28.1 21.2 [32]
Denmark 5,084 257 447 53.5 11.0 48.6 [33]
Sweden 8,590 9 151 10.6 12.0 9.76 [34]
Sweden, Denmark 7,747 18 149 19.5 20.0 18.5 [35]

Legend: N, total twin pairs; N, concordant twin pairs; Np, discordant twin pairs; P, proportion of case twins with an affected co-twin (%); RR, relative risk.

doi:10.1371/journal.pone.0154387.1002

Since heart disease and cancer are the two leading causes of mortality in Western Europe
(and worldwide), the contributions of genetics plus shared exposures to incidence of these dis-
eases were estimated as summarized in Fig 2. Assuming that the populations of MZ twins that
were used to derive PAFs are reasonable surrogates for Western Europeans in the year 2000,
then 0.25 million of the 1.53 million cancer and heart-disease deaths (16.4%) can be attributed
to G-related factors.

Because comprehensive exposure data were not collected in the twin studies, it is not possi-
ble to directly estimate E-related PAFs or contributions to disease risks from GXxE interactions.
But given the modest values of G-related PAFs reported here, it is reasonable to infer that the
combined effects of non-shared exposures (E) and GxXE would be greater than those of G
alone. This conjecture is supported by results of structural equation modeling by Lichtenstein
et al. [19], who reported that non-shared exposures in monozygotic and dizygotic twins
accounted for between 58% and 82% (median = 62%) of the variation in 12 types of cancer.
Nonetheless, the hypothesized dominance of E and GXE on chronic-disease risks is at odds
with a recent paper by Tomasetti and Vogelstein who found a strong correlation between can-
cer risks and total numbers of stem-cell divisions in various tissues, and concluded from this
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Fig 1. Population attributable fractions (PAFs) for 28 disease phenotypes estimated from studies of monozygotic twins. Sources of data and
statistics are summarized in Table 2.

doi:10.1371/journal.pone.0154387.g001

that ‘bad luck’ accounts for about two thirds of the variation in cancers [39]. In refuting this
conclusion, Wu et al. pointed out that the bad-luck hypothesis is illogical because: it equates
correlation with causation; it is inconsistent with the epidemiological evidence; and it requires
that mutation signatures of cancers be correlated with age, which is rarely the case [15]. Recog-
nizing that both intrinsic random errors and E-related factors can influence cancer risks, Wu
et al. then applied models to the same data used by Tomasetti and Vogelstein [39], which
allowed E-related factors to be estimated after adjustment for intrinsic random errors. Results
indicated that E-related factors typically explained more than 90% of cancer risk, consistent
with the small genetic PAFs observed for cancers in MZ twins (median = 8.26%).

Conclusions

Because the human genome project planted the seeds for genome sequencing and large-scale
omics technologies [5], it was inevitable that these methods would be used to search for causes
of major diseases, and almost 2,000 GWAS have been reported [6]. Yet, the matrix of disease-
associated genetic variants does not explain much heritability [7, 9]. Indeed, Yang et al. pre-
dicted that between 20 and 50 causal genetic variants would be required to explain half the bur-
den of a common disease, depending on the frequency of each variant and risk ratio of the
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Fig 2. Numbers of Western-European deaths in 2000 estimated for ischemic heart disease and nine cancer types (1.53 million total deaths from
these causes). The contributions attributed to genetics plus shared exposures are based on the population attributable fractions (PAFs) estimated from
Western European monozygotic twins (Table 2).

doi:10.1371/journal.pone.0154387.9002

genotype [17]. The small genetic PAFs estimated here from studies of MZ twins (Table 2 and
Fig 1) cast further doubt on the notion that our inherited genomes are the primary causes of
chronic diseases. Nonetheless, the genome can influence disease outcomes through GxE inter-
actions, and may also contribute through epistasis and heritable epigenetic effects that are as
yet unknown. Thus, investigations of causes of chronic diseases should continue to consider
genetic factors as part of a balanced strategy that characterizes both E and G with high
resolution.

One avenue for discovering E-related risks would be to extend the data-driven approach
embodied in GWAS and conduct exposome-wide association studies (EWAS) [40] via untar-
geted analyses of chemicals in blood (the ‘blood exposome’) [16]. Since disease processes can
alter the blood exposome through dysregulation of systems biology, it is important that EWAS
be conducted with archived biospecimens collected prior to diagnosis from incident cases and
matched controls in prospective cohort studies. This makes it possible to distinguish chemical
signatures of potentially causal exposures from those generated by progression of the disease
(reverse causality) [40, 41].

A good example of this data-driven approach for EWAS is given by Wang et al. [42] who
found 18 chemical features (out of more than 2000 detected) that were associated with cardio-
vascular disease in samples totaling only 75 incident cases and 75 matched controls. Three of
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the features were identified as choline and its metabolites, betaine, and trimethylamine-N-
oxide (TMAO), with TMAO exhibiting the strongest disease risk in follow-up studies [43, 44].
Since TMAO is a product of joint microbial and human metabolism of choline, the positive
association between plasma TMAO and disease risk points to possible involvement of the gut
microbiota in the etiology of cardiovascular disease. It is interesting that a study of colorectal
cancer by Bae et al. [45] also found a positive association between plasma TMAO and disease
risk, again suggesting involvement of the gut microbiota.
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