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Abstract

Northern hemisphere elementary circulation mechanisms, defined with the Dzerdzeevski
classification and published on a daily basis from 1899-2012, are analysed with statistical
methods as continuous categorical time series. Classification consists of 41 elementary cir-
culation mechanisms (ECM), which are assigned to calendar days. Empirical marginal
probabilities of each ECM were determined. Seasonality and the periodicity effect were
investigated with moving dispersion filters and randomisation procedure on the ECM cate-
gories as well as with the time analyses of the ECM mode. The time series were determined
as being non-stationary with strong time-dependent trends. During the investigated period,
periodicity interchanges with periods when no seasonality is present. In the time series
structure, the strongest division is visible at the milestone of 1986, showing that the atmo-
spheric circulation pattern reflected in the ECM has significantly changed. This change is
result of the change in the frequency of ECM categories; before 1986, the appearance of
ECM was more diverse, and afterwards fewer ECMs appear. The statistical approach
applied to the categorical climatic time series opens up new potential insight into climate
variability and change studies that have to be performed in the future.

Introduction

Weather and climate can be characterised only by a great number of physical parameters (e.g.
air temperature, air pressure, humidity etc.) forming a complex picture that is difficult to com-
prehend. These parameters are characteristic for particular points in atmospheric space, form-
ing extensive scalar and vector fields that consequently result in air mass movements and air
distribution patterns. In spite of modern measuring techniques and large data storage capacity,
it is not possible to obtain complete information for the characterisation of weather or a climate
state at a particular observation time or during a particular time period. Complete characterisa-
tion based on the entire set of relevant physical parameters is never possible, and other
approaches must be applied to characterise the status of the atmosphere in a particular region.
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An alternative approach to this deficiency can be the application of a qualitative or quantita-
tive classification scheme based on predefined classification categories. In such an approach,
particular categories represent the state of weather or climate in the whole region, and are
defined based on the large set of available quantitative and qualitative data. They transfer mul-
tivariate characteristics of weather or climate into one single categorical variable. Each category
represents a qualitative summary of all the physical parameters characterising the state of the
climate in the given time period.

In the literature, several classifications of climate can be found. They can be divided into
three large groups: a) subjective classifications, b) mixed classifications, and c¢) numerical classi-
fications [1,2]. According to many applications reported in the literature, the most frequently
applied approach is subjective classification, which can be established only by a skilful and
experienced interpreter who is able to analyse several pieces of available meteorological infor-
mation defined on the spatial scale (e.g. pressure maps, satellite images, synoptic maps, time
series of physical parameters etc.). The weak point of these classifications is the particular level
of subjectivity depending on the skills of the interpreter or the group of interpreters; conse-
quently much effort has been expended in establishing efficient numerical classifications. Sub-
jective classifications are interesting because they consist of long data sets, some of which span
for more than 100 years; consequently, they represent an important source of data for studying
climate variability and change in the 20" and the beginning of the 21° Centuries.

In the literature, various subjective classifications can be found defined at different scales,
from local to global hemispherical scale. Only a few classifications exist for the whole hemi-
sphere [1,3]; among them, the best known are the Russian classification approaches of Wan-
gengeim-Girs [4] and Dzerdzeevskii [5,6]. For certain time periods of several decades,
catalogues of these classifications on a daily basis have been established and published [7].

Statistically speaking, these classification catalogues represent time series of symbolic values that
can be defined as time series of categorical data type or categorical time series. For each time unit-
calendar date (e.g. day, week and month) one category is defined and the whole dataset is repre-
sented as a sequence of categories given in equal time intervals. Compared to rational data, categor-
ical data only have meaning, but they cannot be ranked, and no algebraic operations (e.g. addition,
multiplication etc.) can be performed on them. In the set of categorical data, only counting can be
performed and operations related to counts can be executed. In spite of these insufficiencies and
lack of information caused by the nature of categorical data, one can ask what the characteristics of
the whole categorical time series are. There is also a question of whether on the categorical time
series structure analyses, modelling, and forecasting, as in the usual rational climate type time series
(e.g. temperature, precipitation time series), can be performed. These questions are especially rele-
vant in studying categorical time series related to climate and weather, where it is well known that
rational time series experience various time trends and non-stationarity on shorter and longer time
scales. Understanding the relationship between climate variability and climate change is one of the
most important present-day scientific challenges; time series of atmospheric circulation pattern
categories can represent one possible dataset for studying these relations.

Here, continuous time series of categorical data defining elementary circulation mecha-
nisms (ECM) for the Northern hemisphere, according to Dzerdzeevskii and with the daily
interval published by Kononova [7] until 2012 (available at www.atmospheric-circulation.ru)
are analysed. Many of the statistical and structural characteristics of the Dzerdzeevskii time
series have already been detected in Kononova [7]. Her results are based mainly on counting
ECM categories and their frequency determination inside calendar years or months. In these
analyses, ECM time series are not treated as continuous but as an assembly of several separate
categories. Trends and characteristics detected by Kononova [7] were defined on the annually
and monthly counts that were identical to calendar dates.
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Here, the ECM classification of Dzerdzeevskii is considered as a continuous categorical time
series where, for each day, ECM category is assigned. Our analyses represent an additional and
new statistical data treatment to already existing analyses [7]. Contrary to that study, our treat-
ment of data is based on the concept of continuous categorical time series of ECM categories and
not on separate categories where their frequencies are observed at sub-periods (e.g. years or
decades). Statistical analysis is focused on the relationship between ECM categories in time series
where they are understood as a qualitative summary of atmospheric circulation mechanisms.
Based on understanding that the ECM classification on a daily basis forms continuous time series
of ECM categories, several research questions can be identified and hypotheses defined.

The scope of the paper is twofold. First, we intend to test categorical time series analyses
methods on the ECM time series and to detect its structure. In relation to this, the main
research questions are: whether a time series is stationary, and whether trends defined as non-
periodic and periodic are present. At the same time, new statistical methods for categorical
time series characterisation were introduced; randomisation of time series, moving dispersion
filters and density diagrams. Secondly, based on the detected structure of ECM time series,
changes of atmospheric circulation patterns of the Northern hemisphere during the 20™ Cen-
tury are illustrated. To the best of our knowledge, the methodology presented here has not yet
been applied to ECM data or to any other categorical climatic time series. Such an approach
has not yet been published.

Theory and Methods
Dzerdzeevskii Classification

A short description of the Dzerdzeevskii classification is now presented. For a more elaborate
description, see the summary papers in English[8,9], or the original literature in Russian [5-7].
The following description is given after Kononova [7], summarised in Brenc¢i¢ et al. [10].

The Dzerdzeevski classification characterises the entire Northern hemisphere and trajectories
of cyclones and anticyclones over specific regions. From the classification, 41 elementary circu-
lation mechanisms (ECM) are defined. In our analyses, ECM are defined as categories. They
differ in direction and quantity of blocking mechanisms and have different numbers of south-
ern cyclone outlets. Each ECM has a unique cyclone and anticyclone trajectory pattern that is
described within the classification. ECMs are grouped into 13 types and four groups. The first
group is defined as zoned; the second defined as zoned disturbance; the third defined as north-
ern meridional; and the fourth group is defined as southern meridional. In the zoned group
ECM categories I and 2 with the anticyclone on the North Pole and with two to four outlets
from the south cyclone and the same number of sectors without blocking are included. In the
zoned disturbance group types 3-7 are included. For this group high pressure on the Pole is
characteristic, as well as blocking over the entire Northern hemisphere. In the northern meridi-
onal group, types 8-12 are included. For this group, high pressure in the Arctic is characteristic,
and two to four blocking mechanisms with the same number of southern cyclone outlets. The
southern meridional group where only type 13 is present is characterised by cyclone circulation
and a front over the Arctic, where at high latitudes southern cyclones protrude into western
cyclones. In addition, in the ECM classification, small letters accompany numbers. The small
letter s stands for summer and w stands for winter. The letters 4, b, ¢, and d define the geo-
graphical location of blocking processes and southern cyclone outlets [8].

In addition to the 41 ECM original categories, two additional blank categories missing and
out of type were added. Missing category (HET in the original data series) is defined when the
classification for calendar date is missing. Category out of type (BT in the original classification)
is used when the interpreter was not able to obtain classification in accordance with the
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Dzerdzeevskii classification. These two blank categories were included in the ECM time series
for continuity. It would be better to interpolate these gaps of the ECM time, but no reliable pro-
cedure for the replacement exists.

From the frequency analysis that follows (see Results and Discussion sections), the most fre-
quent ECM categories are: 13s, 13w, 12a, 12bw, 11a in 10a. Short descriptions of their charac-
teristics are given based on Kononova [7] and they are represented graphically in Fig 1.

Processes of ECM type 13 are present during the whole year but with smaller frequency dur-
ing the winter than the summer. Seasonal changes of this type are the consequence of the chang-
ing temperature and pressure field above the continents and oceans. During this ECM, a wide
low-pressure depression is formed above the Arctic, which goes into a large part of the extra-
tropical latitudes of the Northern Hemisphere. At the same time, two large ocean subtropical
anticyclones are developed; in the Western hemisphere, the North Pacific High and over the
Atlantic Azores High, which goes towards Western Europe and into the middle of the Mediterra-
nean. ECM 13w appears mainly from September to May with the highest frequency in December.
13w is developed as a consequence of a relatively narrow strip of low pressure in the Arctic.
Above North America and Asia, extensive areas of high pressure with ridges in the W-E direction
are developed. A strong stationary anticyclone is developed over the whole of Eurasia.

All ECMs included in type 12 are characterised by three or four southern cyclone intrusions.
In the North Pole, a well developed anticyclone is formed and around the hemisphere several
cyclonic series are developed. The movements of these cyclones are parallel to trajectories with a
predominant north direction. ECM 12a is characterised by four Arctic intrusions and four intru-
sions of cyclones from the south. The positions of these intrusions are not fixed. Among the most
frequent Arctic intrusions is the one protruding towards the Atlantic and Western Europe.
Between Eastern Europe and Central Asia, a large intrusion of cyclones is present to the north.
ECM 12bw is characterised by three blocking processes and three cyclone intrusions; Arctic
intrusions are present in North America, the Atlantic Ocean and Eastern Asia. ECM 12bw very
often follows type 11 when the Arctic cyclone establishes conditions for a third intrusion. It
appears mainly from September to May with the highest frequency in February and March.

ECMs of type 11 are characterised by two processes of blocking and three intrusions of
southern cyclones. Blocking processes develop above North America and eastern Asia and join
above the Arctic; they form the winter basin of anticyclones. For 70% of the time, high air pres-
sure is present above Siberia, and consequently the flow of cold air is developed. With the
absence of an extensive stationary anticyclone over North America, an area of high air pressure
is developed, enabling the rise of air from the Polar basin towards the south. This is the most
representative process of the colder part of the year and includes four variants assigned a, b, ¢
and d. Among the most frequent is ECM 11a. In this case, the Siberian anticyclone covers the
entire area of Siberia and the eastern part of European Russia, its core being developed along
the river basin of the Lena. At its peripheries, intrusions of cold polar air are present, filling the
Siberian anticyclone and influencing its stationarity. On the western part of the globe, the Arc-
tic intrusion influences the central and eastern part of Northern America. Above the oceans,
intensive cyclonic activity is present and is related to cyclones on the Arctic front and to the
regeneration of polar frontal cyclones that intrude into the systems of the Icelandic, Aleutian
and Kamchatka depressions. Intrusions from the south appear in the eastern part of the Medi-
terranean in Europe and along the eastern shores of North America and Asia. ECM 11a
appears from September to May and is most frequent in January and February.

For ECMs categories included as type 10 two blocking processes and two entrances of
southern cyclones are distinctive. Blocking processes are present at the same time above East-
ern Europe and Central America, but they differ according to their structure and power in the
vertical direction. Intrusions above Europe very often have higher vertical intensity and
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Fig 1. Most frequent ECM maps of the Northern hemisphere (arrows—cyclone trajectory, L-areas of cyclonic activity, H-areas of anticyclone
activity) [7].

doi:10.1371/journal.pone.0154368.g001
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intrusion above America at the beginning in its low and thin frontal part; in the second half it
spreads into higher parts of the atmosphere. Intrusions of southern cyclones flow over America
and Far East. In both variants of type 10, the positions of cyclonic processes are at different
places. Processes of this type develop during seasonal changes of air state above the continents,
which influences their distribution and persistence. ECM 10a appears when anticyclones are
established above the continents, but not above the oceans. Intensive intrusions above Europe
create a stable anticyclone that joins with the Siberian anticyclone. An area of high air pressure
is formed above the Arctic and travels towards Eurasia and America. Intrusions above America
are represented in the central end eastern part of the continent. In the northwestern part of
America, cyclone activity related to the Aleutian depression is developed. The latter fills up
with southern cyclones rising along the Far East of Asia. At the same time along the northern
part of western Siberia, cyclones related to the narrow depression move and fill up with cyclone
intrusions from Kazakhstan and central Asia. Cyclonic activity is also strong in the area of
Atlantic Ocean and goes toward the east, covering the western and central part of Europe. At
the same time it is connected to the well-developed Icelandic depression that, with polar and
frontal cyclones, originates in the temperate zone, developing along the northern coastal area
of America. ECM 10a appears during the whole year with highest frequency in May and April.

Mathematical Background

Preliminaries. Contrary to the classical time series analyses of rational data time series,
theory of categorical time series is not fully elaborated. Works on categorical time series are
widely scattered among various fields, and practically no systematic monographic descriptions
of categorical time series characteristics are known to the author. One exception is the mathe-
matical monograph of Weif8 [11]. Newly formulated concepts include moving dispersion fil-
ters, density diagrams, and randomisation of time series for seasonality detection. It is quite
possible that they are defined under a similar mathematical definition and appear somewhere
else in the literature, but at the time of paper preparation this is not known.

Categorical time series definition. A categorical variable is defined when X takes one of a
finite number of unordered categories, say by, . . ., b,,. As an example part of our ECM time
series can be given: . .. 13s, 13s, 12a, 13s, 12a, 12a, 11a, . . .

The range of X is coded asv = {0, . . ., m}. A categorical random variable with the range v =
{0, ..., m} has the following probabilistic characteristics

PX=0)=1-)" P(x=j) (1)

=1

with marginal probabilities

re=P(X = i) € (0;1) @)
and the whole distribution determined by parameter m is m;,. . ., 7, [12]. A discrete categorical
time series is a set of data {X;: t =1, .. ., T} that is one of possible realisations of the categorical

stochastic process (X;)iy The categorical process (X;) with the range v can be represented by
binary vectors

Y, € {0,1}"" (3)

with
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Defining cumulated sums

t
Ct:= s=1 Ys (5)
C,,;is number of X, where s = 1,.. ., t, ..., T where T'is total time length of categorical time
series X, [12].

Empirical marginal probabilities p; are defined as

n n

P=7=x (6)
where n, is the total number of b, observations and T is introduced because the total length of
the categorical time series is equal to the total number N of observations in empirical X;.

Stationarity detection. As in rational data time series, stationarity can be the characteris-
tics of a categorical time series. WeifS and Gob [13] define weak and marginal stationarity of
categorical time series. Stationarity of categorical time series can be indirectly detected to the
rate evolution graph, which is a simple tool for checking marginal stationary. The rate evolu-
tion graph of (X,)y is a multiple line plot of all component series C,; where all C,; are plotted
simultaneously on one chart. Slopes of C;; graphs are estimates of corresponding marginal
probabilities 7;. If (X;)y is marginally stationary and at most moderately serially dependent,
then graphs of C,; are approximately linear in ¢ [11,12]. If at least one i of the graphs C;; is not
approximately linear, the whole categorical time series is non-stationary; the greater the num-
ber of nonlinear category graphs, the higher the deviation from the stationarity.

Location and dispersion measures. For categorical variables, the only possible measure of
location is mode Mo that in symmetrical distributions of rational data is equal to other mea-
sures of location. It is defined such that p; > p; for any i,j in v and cannot be uniquely defined
(e.g. uniform distribution).

For categorical data, various dispersion measures can be used. In social sciences they are
known under the common name index of qualitative variation. Among dispersion measures
for categorical variables, Weif8 and G6b [13] suggest the application of the Gini index, entropy
and Chebycheff dispersion. They can be defined as follows:

Gini index
vo(X)= T (1= ) )
Entropy
vp(X)=— ﬁ (Zini In ni) (8)
Chebycheft dispersion
ve(X)i= = —= (1 — max; ) (9)

Empirical dispersion measures are defied alternatively by replacing 7; in the equations
above with p;. Intuitively, dispersion measures of categorical variables can be understood as a
reflection of the X outcome uncertainty. They are defined in the range (0,1). In the case of uni-
form distribution their value is 1; in this case, intuitively maximal uncertainty about the out-
come of X is present. In the case of one-point distribution, their value is 0 and intuitively
maximal certainty about the outcome of X is applicable.

Among dispersion measures, the Gini index is most frequently applied in various fields and
has appeared under very different names. Much efforts has been expended in its explanation
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and understanding. The Gini index is the standardised likelihood of categories in categorical
time series falling in the same category. It can be interpreted also as the ratio of variance of
expanded binomial distribution to the variance of a binomial distribution [14]. The easiest con-
cept to understand it is as a measure of “unalikeability,” as explained by Kader and Perry [15].
According to this concept, the distribution of categories in the categorical variable is more alike
when counts of similar categories are equal or similar compared to the case when counts are
very different. From this point of view, uniformly distributed categories have vg = 1, meaning
that counts of all categories are equal. The Gini index can also be understood similarly as the
coefficient of variation in rational data [16].

The other two dispersion measures [11, 12] are more difficult to interpret. Studies concern-
ing them are sparse. These two measures have been used as additional indicators that help to
discern certain patterns not clearly visible with the Gini index. Entropy vg is a measure used in
information theory and is a function that rises monotonically with p;. As defined in (8), less
specific information is available when vg is close to 1 and more accurate information is avail-
able when vg is close to 0. At the value of vg~1, information is dispersed among all categories,
and at a value of vg~0 information is concentrated in only one category. The Chebycheff dis-
persion vc is based only on the category with maximum frequency and consequently with the
highest empirical marginal probability. It does not focus on the probability distribution and its
shape, which are somehow included in the other two measures. The inequality vg > v is valid.

Moving dispersion filters. With the analogy of moving filters (e.g. moving average, mov-
ing median etc.) that are used for noise removal and long-term trend detection in time series,
moving Gini index Mvg, moving entropy Mvg and moving Chebycheff dispersion v filters
were all introduced and are defined as follows.

Moving Gini index

ig(X) =" (1 -3 p?) (10)

Moving entropy

1 i+T
MVE(Xt) = _ﬁ (ZP1 lnpi> (11)

Moving Chebycheft dispersion

Mye(X,) = =~ (1~ max|"' ) (12)

T is length of the filter window; in our analyses applied as t = 365 days. X, is taken at the
middle of the filter and half of the categories are before the X, and half of them after. Moving
dispersion filters were used to detect trends and changes in dispersion at the annual level t.

Trend and seasonality detection. In rational data time series analyses, various trend defi-
nitions exist. Among the simplest are linear trends and trends defined by nonlinear regression
functions. Time series describing natural phenomena are very frequently seasonally dependent.
In rational data time series analyses, they are described by periodic functions (e.g. sine and
cosine). No such trend detection is possible for categorical time series. However, in the analyses
of ECM time series, one can be interested in the appearance of time-dependent change of ECM
categories’ frequency, and in the appearance of the seasonality in the long-term pattern of
ECM time series. By the definition of Dzerdzeevskii, several ECM categories are seasonally
dependent (e.g. summer appearance 7as, 7bs, 13s, 8bs, 8ds, 12bs, 12cs,; winter appearance 7aw,
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7bw, 8bw, 8cw, 8dw, 12bw, 12cw, 13w) where the period is annually defined. Therefore, it is
expected that annually dependent patterns will appear inside the ECM time series. Conse-
quently, our seasonality analyses were focused on the annual period of 365 days. Other possible
cycles remain to be detected with further investigations.

Indirectly trends in the categorical time series can be detected with rate evolution graphs
(see the subsection on stationarity). Trends can also be detected with moving dispersion filters
(see above). In addition, several other approaches were applied in our analysis. The indicator
diagram [17] represents the time-dependent appearance of the particular category indicated as
a presence Y; = 1 or absence Y; = 0. From the density of presences, one can detect time-
dependent trends. This can be detected also with the event density p, defined as

T

_ni_ZiY‘J

Pe=—"="_—
T T

(13)

where T is observation window, in our case again 365 days. p, is applied similarly as moving
dispersion filters resulting in continuous graph of p. for a particular ECM category. These
graphs are defined as density diagrams.

The appearance of seasonality can be detected on the whole time series or based on the
hypothesis of seasonal period with the help of mode. Due to the nature of weather and climate
and characteristics of Dzerdzeevskii classification, the expected period of a season is 365 days.

Seasonality based on the whole time series was detected with the empirical autocorrelation
function with a similar approach as that applied to rational data time series analyses. For further
information on the autocorrelation function, see one of the many textbooks dealing with the
topic [18]. The autocorrelation function was calculated on the series where to each of ECM, a
non-repeatable random number between 1-43 was assigned. This procedure is called randomisa-
tion of categories. Several of such time series were constructed; for each, the empirical autocorre-
lation function was calculated. They were put on the same diagram and their behaviour was
observed to detect seasonality appearance. For detecting the average behaviour of autocorrelation
for each time lag, the average was calculated and the average empirical autocorrelation function
drawn. At this stage of analyses, our interest is only in the statistical significance of calculated
empirical autocorrelations at the annual period of 365 days. Such analysis opens several theoreti-
cal questions related to the inversion relations between spectrum, variogram and autocorrelation
of time series, but they remain open for further investigations and applications.

Mode analysis was performed based on the annual cycle hypothesis. The ECM time series
was divided into periods of 365 days such that {Xy: X, ;, ..., X,,; ... X, 365} where y denotes cal-
endar years from the start of ECM time series in 1899 to the end in 2012. In our case, mode
X5012,i}- The diagram of successive
{Mo: Mo, . .., Mo, . . ., Moses} appearance was drawn to detect seasonal patterns, and the mar-
ginal frequency of the ECM categories inside the Mo was calculated.

was calculated for each successive i such that Mo; {X;g99;

Calculations

All calculations were performed in a spreadsheet using macro procedures written by the
author. The only exception is the calculation of the empirical autocorrelation function per-
formed in the R environment with the function acf in the R package stats [19].

Data Preparation

ECM data are available at www.atmospheric-circulation.ru and for the period between 1899-
2008 they are published elsewhere [7]. ECM classes are given for each particular day; all
together in the time series starting in January 1899 and ending in December 2012, there are

PLOS ONE | DOI:10.1371/journal.pone.0154368 April 26,2016 9/24


http://www.atmospheric-circulation.ru/

" ®
@ ’ PLOS ‘ ONE Statistics of Atmospheric Elementary Circulation Mechanisms

Table 1. Marginal empirical probabilities of ECM categories.

No. ECM N pi No. ECM N pi No. ECM N pPi
1 13s 2866 0.0688 16 12bs 1017 0.0244 31 9b 589 0.0141
2 11a 2719 0.0653 17 12d 1016 0.0244 32 1b 570 0.0137
3 13w 2477 0.0595 18 5b 914 0.0220 33 2a 535 0.0128
4 12a 2235 0.0537 19 4c 849 0.0204 34 8ds 497 0.0119
5 12bw 1859 0.0446 20 2b 842 0.0202 35 5d 433 0.0104
6 10a 1802 0.0433 21 11c 794 0.0191 36 2c 425 0.0102
7 9a 1405 0.0337 22 6 770 0.0185 37 8bw 423 0.0102
8 8a 1365 0.0328 23 11d 720 0.0173 38 8bs 385 0.0092
9 4b 1312 0.0315 24 7bw 715 0.0172 39 4a 336 0.0081
10 3 1298 0.0312 25 12cs 696 0.0167 40 8bc 287 0.0069
11 11b 1271 0.0305 26 5a 678 0.0163 41 8cw 246 0.0059
12 10b 1233 0.0296 27 8adw 676 0.0162 42 5c 215 0.0052
13 12cw 1224 0.0294 28 out of type 602 0.0145 43 missing 31 0.0007
14 7aw 1106 0.0266 29 1a 597 0.0143
15 7as 1019 0.0245 30 7bs 590 0.0142

doi:10.1371/journal.pone.0154368.1001

41,639 data entries, representing 114 years. In the whole dataset, only 31 missing data entries
are present. The missing data represent a very small share of the entire dataset but, to maintain
continuity of the time series, these data were interpreted as a special category. Following this in
the data series there are 43 categories. The original data were checked with various sorting pro-
cedures for consistency; typing errors were corrected and data entries were reordered where
necessary. Great effort was made to remove inconsistency in data; however original ECM clas-
sifications [7] were not questioned. For the scope of this paper, the original ECM classifications
given in Cyrillic script were transcribed into Latin script as defined in the classification table of
Kononova [7].

Results
Descriptive Statistics

The number of data for each ECM category and their corresponding marginal empirical proba-
bilities are represented in Table 1 and illustrated in Fig 2. In Fig 2, two parts of the diagram are
clearly visible. The first is represented by ECM categories 13s, 11a, 13w, 12a, 12bw and 10a and
the second is represented by the rest of the ECM categories. Between these two groups, a sharp
drop in empirical marginal probabilities is seen. For the other categories, empirical marginal
probabilities fall nearly proportionally from category 9a to category 5¢ with the smallest mar-
ginal empirical probability. Category missing represents a small share at the end of the diagram,
showing that it is not part of the patterns and trends in the whole ECM time series. The first
larger group of ECM categories is represented by 33.5% of the whole dataset. The most fre-
quent observations are in the category 13s with a share of 6.9%, followed by the category 11a
with a share of 6.5%.

The overall dispersion measures for ECM time series are: Gini index = 0.99, entropy = 0.94
and Chebysheff dispersion = 0.95.

Stationary and Trend Detection

In Fig 3, the rate evolution graph of ECM time series is represented by two diagrams; the illus-
tration is divided for greater clarity because a relatively large number of categories is present in
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Fig 2. ECM categories sorted by marginal empirical probabilities.
doi:10.1371/journal.pone.0154368.g002

the whole time series. The values in the diagram are given as cumulative counts that are pro-
portional to empirical marginal probabilities.

Both diagrams of evolution rate graphs obey the basic supposition of weak stationarity,
where it is required that graph with the time evolution should be approximately linear. The
shapes of categories with the highest marginal probabilities (Table 1) are convex as well as con-
cave, illustrating that their evolution had changed.

The horizontal curve illustrates no change during the time period (Fig 3); in this period, the
category is not present. Such behaviour is typical for categories with small marginal probabili-
ties, showing that they appear only occasionally.

Trends in the appearance of ECM categories were observed also on the indicator diagrams
represented in Fig 4 and in the density diagram represented in Fig 5, where categories with
highest empirical marginal probabilities are illustrated. The window length for density dia-
grams is 365 days. Diagrams show the non-regular distribution of ECM categories’ time
appearance.
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doi:10.1371/journal.pone.0154368.9003

Moving Dispersion Filters

On Fig 6, moving dispersion filter calculations are represented for the whole ECM time series.
From the diagrams, two distinctive periods are apparent. The first goes from the start of the
observation period in 1899 until 1986, when the behaviour of the moving dispersion filters
changes profoundly. In the first period, fluctuations of the dispersion measures are small; the
Gini index is particularly stable. In this period, for the other two measures, fluctuations of val-
ues are slightly higher. In the second period from 1986 until the end of the observation period
in 2012, the fluctuations of the dispersion measures are much higher. To compare the behav-
iour of the different periods, two histograms on an annual basis were calculated and are pre-
sented in Fig 7. On the left histogram for the period from 25.8.1928 to 24.8.1929 with the
median date of 23.2.1929 is represented. This period was chosen as the period when the fluctu-
ation of dispersion measures was small and the Gini measure nearly stable. On the right dia-
gram, the period from 30.11.1988 to 29.11.1989 with the median date of 31.5.1989 is
represented where for the median date the lowest dispersion measures were calculated for the
whole ECM time series. Differences in the shape of both histograms are apparent. The
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Fig 4. Indicator diagrams for ECM categories with highest empirical marginal probabilities.

doi:10.1371/journal.pone.0154368.9004

distribution of sorted counts of categories for the left diagram falls nearly monotonously, and
eight ECM categories are missing. The histogram on the right is much more irregular. Catego-
ries 13s and 13w are much more frequent than the other categories, and 19 ECM categories are
missing. The left histogram is close to the triangular distribution where uncertainties of the cat-
egories’ appearances are slightly lower than for the uniform distribution. The right diagram
approaches more closely with the high frequencies of categories 13s and 13w to a point distri-
bution, and has a smaller dispersion as well as a higher certainty for the outcome of particular
ECM categories.

For closer inspection, dispersion measures for distinctive periods were drawn on the dia-
grams represented on Fig 8. The scales of the left and right diagram are not equal, because the
shape of the moving dispersion curve is important. Both curves experience periodicity, how-
ever with different amplitudes. They are smaller in the left diagram than in the right diagram.
In both cases, the periodicities are on the annual scale and are not persistent across the whole
observation scale. On the left diagram, periodicities are observed for the period from 1899-
1924 and from 1932-1944. In between, the values of dispersion measures are stable. More dis-
tinctive periodicity is observable on the right diagram. However, again, periodicity is not
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doi:10.1371/journal.pone.0154368.9005

persistent for the whole period and there is a more stable period with slight periodicity starting
in 2002 and ending in 2012. There is also a strong negative trend in the moving dispersion
curve. The step-like shape of the Chebycheff moving dispersion curve is the consequence of its
definition [12].

Seasonality Detection

Seasonality presence in ECM time series was detected with the empirical autocorrelation func-
tion (acf) on randomised ECM categories and with mode analysis. For each observation period,
empirical autocorrelation functions were calculated for 20 randomisations and for the maxi-
mum time lag of 800 days; slightly longer than two years. In the diagrams, the first lags with
much higher autocorrelations are not shown.

On Fig 9, acf realisations are presented for all randomisations and for the whole observation
period from 1899 until the end of 2012. The seasonality pattern is clearly visible with higher
correlations at lags of one and two years. Correlations for these lags are significantly greater
than zero. In the diagram, some acf are completely out of seasonality pattern and are shifted to
slightly higher correlations. It is interesting that all acf positive correlations exist at lags of one
and two years, but at lags of 0.5 and 1.5 where negative correlations are expected, the dispersion
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doi:10.1371/journal.pone.0154368.9g006

of correlation values is higher than at the annual lags. At these lags, some correlations are even
positive and significantly different to zero.

Realisations of acf were calculated also for sub-periods detected with moving dispersion fil-
ters (Fig 8) and illustrated in Fig 10. The left diagram is for the period of 1919-1943 and the
right diagram is for the period of 1987-2012. The differences are clearly visible between both
diagrams. For the left diagram, the seasonality pattern and its periodicity are hardly observed;
only some discrepancies as expected with randomisation procedures are observed at lags of
one and two years. A much more clear seasonality pattern is observed for the latter period on
the right diagram. Higher correlations at lags for one and two years are clearly visible; some of
them are relatively high. In this case, also negative correlations at lags of 0.5 and 1.5 years are
detectable, which is the seasonal pattern usually expected in climatic variables defined on the
rational scale (e.g. time series of daily temperatures). Comparison between these two diagrams
confirms observations from the moving dispersion filters, where the amplitudes of periodicity
observed were smaller in the earlier period than in the later period.

With the attempt to clear out the average seasonal acf behaviour, average acf are shown in
Fig 11. Average acf curves are different as expected from the diagrams before (Figs 9 and 10).
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The smallest correlations are detected for the data period from 1919-1944. In this case, the acf
curve highly fluctuates around zero; only slight changes are present at lags of one and two
years, showing weak periodicity. The curve for the whole data period from 1899-2012 has acf
with more clear seasonality pattern at lags of one and two years but at lags 0.5 and 1.5 years,
correlations are zero. The most profound seasonality pattern is visible for the acf of the period
of 1987-2012. High correlations are visible at lags of one and two years; at lags of 0.5 and 1.5
years, correlations are negative. Comparison between all three acf curves confirms observations
from moving dispersion filters, where a different level of periodicity was observed along the
whole ECM series and where periodicity in certain time periods appears and disappears, related
to different time-dependent dispersion of ECM categories.
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Fig 9. Empirical autocorrelation function for the whole dataset: 1899-2012.

doi:10.1371/journal.pone.0154368.9g009

By mode analyses for each of the Julian days, modus were detected. They are represented on Fig
12 where only those modus categories with higher than 0.015 marginal probabilities are illustrated.
Marginal empirical probabilities on an annual cycle are also illustrated in Table 2. The most fre-
quent modes are the same ECM categories as those in the whole time series. They are clearly dis-
tributed by the seasonal pattern. Summer ECM category 13s appears as a modus from the
beginning of June until the end of September. ECM category 11a appears in winter from the end of
October and until the end of February. In this period, category 11a is replaced sometimes by 13s
and rarely by 12bw. For spring months, modus is in 12a category. Irrespective of how many catego-
ries in modus diagram are vertically distributed, the seasonality pattern is clearly visible.

Discussion
ECM as Categorical Time Series

Dzerdzeevskii and co-workers [5,6] defined 41 ECMs with which they classified elementary cir-
culation mechanisms of the atmosphere in the Northern hemisphere. In addition, the category
out of type when it is not possible to apply one of established ECM:s is defined. Frequency
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doi:10.1371/journal.pone.0154368.g010

analysis has shown that out of type represents only a minor part of the whole dataset (Table 1)
and, consequently, information about atmospheric circulation in the period between 1899-
2012 can be understood as continuous. At the same time from the out of type frequency, it fol-
lows that within the ECM classification approach nearly all possible patterns of atmospheric
circulation for the Northern hemisphere are included.

If classification is given for each particular calendar day and time series of these classifications
is formed, then it is possible to observe how different ECM:s are distributed in time, how they are
related to each other, and how the time series behaves as a whole. One may ask whether relations
between different ECMs are time-persistent or whether they change during the course of time
such that the time-dependent behaviour of the whole ECM time series changes.

In spite of the fact that ECM time series is categorical, several characteristics of time series
as in the case of rational time series can be detected. As is the case in rational time series where
a particular time series is one of the realisations of a stochastic process, the same can be under-
stood in the case of categorical time series; first is the realisation of rational stochastic process,
and the second is the realisation of the categorical stochastic process. This process is usually
understood as a model of physical processes or phenomena. When this process or phenomena
are reflected and realised in a particular rational time series (e.g. average daily air temperature,
daily precipitation, average daily wind speed etc.) with statistical analyses, their various charac-
teristics can be observed and detected. Such characteristics of the time series are descriptive sta-
tistics, frequency analyses, presence of stationarity and non-stationarity, ergodicity, and trends;
whether they are periodic or non-periodic. With a similar approach, categorical time series of
ECM can be observed. However, in this case, conceptually different processes are observed, as
is the case with rational time series where physical parameters are observed in one measuring
point or they are assembled over certain areas. The ECM time series represents the state of
atmospheric circulation patterns across the entire Northern hemisphere at once on a particular
day. Furthermore, the particular ECM reflects and summarises the whole set of all possible
physical parameters that have consequence in the certain atmospheric circulation pattern. Cer-
tain ECMs summarise all information about atmosphere circulation characteristics on the par-
ticular day for the entire Northern hemisphere. With the observation of ECM time series, we
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Fig 11. Average autocorrelation—-comparison between different observation periods.

doi:10.1371/journal.pone.0154368.9g011

indirectly observe how the entire assembly of parameters influencing atmospheric circulation
patterns changes during the course of time.

The atmosphere is dynamic system and therefore it is expected that ECMs will alternate in
time. If this alternation and time pattern of consecutive ECM:s is stable, this reflects stable
hemispherical atmosphere circulation; if the patterns of ECM sequences change with time,
hemispherical atmospheric circulation is not persistent.

Distribution Analysis of ECM Categories

The categorical histogram (Fig 2) and frequency counts (Table 1) of the entire ECM time series
illustrate unevenly distributed ECM categories; some are more frequent than others. This
results in the histogram having a triangular shape and is also reflected in the high dispersion
measures. High dispersion measures are usually the result of the uniform distribution, but cur-
sory experimental simulation shows that for the triangular distributions, dispersion measures
are also high and positioned in the interval between 0.9-1.0. When the differences among
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marginal probabilities are small, as in our case, the values of dispersion measures are closer to
the value of 1.0 than 0.9. From the theory of dispersion measures, it follows that for ECM time
series, the uncertainty expected for each of the categories is high and that ECM categories are

[15] very much alike.

From the descriptive statistics, it follows that 33.5% of the entire ECM time series is repre-
sented by only six ECMs and that the marginal empirical probabilities illustrated in Fig 2 form
two groups. This group profoundly influences stationarity and trends of the entire ECM time
series. The non-stationary behaviour is reflected in the rate lines of ECM categories in the rate
evolution diagram (Fig 3). Lines of ECMs with highest marginal probabilities are predomi-
nantly convex as well as concave. Such lines illustrate that the time evolution of these ECMs
has different rates. Convex shapes show that at the beginning of observation period they were
relatively frequent, but at later periods their number started to decline. A typical representative
of such behaviour is the rate curve of category 11a which was until the middle of 1980s the pre-
dominant category in ECM time series. On the contrary, the concave curves illustrate that at
the beginning their frequency was relatively small, but improved during the course of time.
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Table 2. Marginal empirical probabilities on an annual cycle.

ECM N p:
13s 112 0.3068
11a 102 0.2795
13w 62 0.1699
12a 48 0.1315
12bw 15 0.0411
12bs 6 0.0164
3 5 0.0137
4b 5 0.0137
11b 2 0.0055
10a 2 0.0055
1a 2 0.0055
12cs 1 0.0027
1b 1 0.0027
5b 1 0.0027
9a 1 0.0027

doi:10.1371/journal.pone.0154368.t002

Typical representatives of such behaviour are the curves of ECM categories 13s, 13w and 124,
which start to predominate in the second half of the 1980s.

In same cases rate evolution graphs are nearly linear; however this does not mean that they
reflect some kind of the stationarity. If one of the categories in the whole categorical time series
experiences a convex or concave shape of the rate evolution graph, the series is non-stationary.
Due to the continuity of time series change in the rate of one category, it also causes the change
of the rate in other categories. From the rate evolution graphs, it can be concluded that time
series of ECM categories are non-stationary with strong time-dependent trends.

Relations between most frequent ECMs are also illustrated in Fig 4 with the indicator dia-
gram and in Fig 5 with the density diagram. At the start of the observation period, the ECM
categories of 13s and 13w appeared only occasionally and their density was nearly negligible.
The appearance of category 13s is less frequent than category 13w. Their densities start to rise
in the middle of 1940s and then their density appearance is similar until the period 1980-2000,
after which it slightly decreases. Category 11a shows a higher appearance at the beginning of
the observation period and its density decreases slowly through the whole observation period.
Similar time-dependent behaviour is observed with the category 12bw; however it is slightly
more regular than category 11a time dependence. Grouping in short time periods is observed
for category 12a, which shows higher densities in 1960s, then decreases and abruptly starts to
rise from on the 1990s onwards and is very high—the highest among all categories at the end of
the observation period. Again, different behaviour is observed for category 10a. Grouping of
events is again observed at this time from the start of the observation period until 1920 and
again in the period between 1930-1960. For category 10a again short grouping is observed
around 1980. For this category, short time grouping of the events is distinctive.

From the observations with the window length of 365 days, it follows that two types of trend
behaviour are present. The first is a monotonic time-dependent trend, which increases as in
the case of categories 13s, and 13w or decreases as with categories 11a and 10bw. The second is
density growing on the short timescale, reflecting grouping of the category in the certain time
period; this is characteristic for categories 12a and 10a. Similar categorisation of time-depen-
dent trends detected with observations of indicator diagrams and density diagrams can be
detected also for other categories with smaller empirical marginal probabilities that are not
shown in Figs 4 and 5, but are not as important as the first six ECMs and are therefore not listed.
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Time-Dependent Changes

The time-dependent pattern of ECM time series depends not only on the most frequent ECM,
but also on the whole set of categories in the given time period. This is illustrated with moving
dispersion filters (Fig 6) and with closer investigation of distribution diagrams for certain peri-
ods (Fig 7). Changes in ECM time series structure are the result of time-dependent processes of
atmospheric circulation and are reflected in different time-related appearances of certain ECM
categories.

The behaviour of moving dispersion curves shows the appearance and disappearance of the
periodicity in the air circulation pattern of the Northern hemisphere. At some periods the
behaviour of the air circulation pattern is periodic. In winter months, dispersion measures are
higher, showing similarity with the triangular empirical distribution of ECM categories; in
summer, dispersion measures are smaller, showing empirical distributions more close to point
distribution. For other periods when the dispersion measures are higher, no periodic behaviour
is present in the time series. This means that during these periods, the empirical distribution of
ECM series is close to the triangular distribution model. The appearance and disappearance of
periodicity can be explained by the relation between ECMs, which is according to their charac-
teristics seasonally dependent (e.g, those with marks w-winter and s—summer) and ECM:s that
appear during the whole year. When periodicity is clearly expressed, seasonally dependent
ECMs prevail, and where there is weak seasonality present or where ECMs do not appear for
the whole year, they are dominate over seasonally dependent ECMs.

Based on the ECM classification, Kononova [7,9] separates the total available record
between 1899-2012 into three distinctive epochs. Her classification is based on counting proce-
dures and on expert interpretation of the available record. In the first epoch between 1899-
1916, northern meridional processes are predominant. In the second epoch between 1916—
1956, zoned processes are predominant; and in the last epoch from 1957 until the present, the
predominant processes are southern meridional. This final epoch is further divided into four
sub-epochs. The first is defined between 1957-1969 and is characterised by a simultaneous
increase in duration of northern and southern meridional processes. The second sub-epoch
between 1970-1980 is characterised by an increase in the duration of zoned processes. In the
third sub-period between 1981-1997, a prolonged duration of southern meridional processes is
present. In the final sub-epoch between 1998-2012, the duration of meridional southern pro-
cesses is shortened and that of meridional northern processes is prolonged.

In comparison to conclusions from Kononova [7,9], from our statistical analysis similar
conclusions cannot be reached. The milestones defined by her cannot be identified in our
analysis. From our calculations, it follows that those most frequent ECMs that have the high-
est weight on the dispersion measures calculations are related only to meridional circulation.
ECM 11a, characterised by the northern meridional circulation, was more frequent at the
beginning of 20" Century. At the end of 20™ Century ECMs 13s and 13w that have southern
meridional circulation are predominant. In the recent years, the frequency of 124, again
northern meridional, is increasing. ECMs characterised as zoned are less frequent and subor-
dinate and therefore do not influence the dispersion measures. In the entire time series, the
most frequent zoned ECM is 4b, counting only the ninth most frequent among all categories
(Table 1).

The most important milestone that can be discerned from our calculation of dispersion
measures (Fig 6) is the year 1986, which is positioned between Kononova’s sub-epoch of 1981-
1997 when (according to her) southern meridional processes are predominant. Until 1986, dis-
persion diagrams (Fig 6) do not show significant differences. A significant change in dispersion
measures appears after 1986. Between 1986-2012, the ECM time-dependent pattern
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profoundly changes. On a short time scale, fluctuations of dispersion measures become pro-
found, and change from low to high values, indicating that the distribution of ECM is no longer
stable and changes on relatively short time periods. In the period after 1986, ECM time series
become less diverse with the appearance of a smaller number of ECM categories. Before 1986,
relations between different ECMs are persistent; after this year, they changed and were no lon-
ger stable. In this latter period predominant ECMs have much higher frequencies than other
ECMs with lower frequencies, and the distribution of ECMs became more of a point shape dis-
tribution than before 1986, when its shape was more triangular. In the period after 1986, the
behaviour of atmospheric circulation abruptly changed, and the diversity of different circula-
tion patterns diminished when some kind of grouping of ECMs appeared.

If ECM categories are a reliable description of elementary circulation patterns, such a sharp
change in dispersion measures behaviour illustrates a profound change in atmospheric circula-
tion. Before 1986, the atmospheric circulation was more diverse with many more elementary
circulation patterns present than after that year, when the frequencies of certain ECMs dimin-
ished significantly or even completely disappeared. In spite of the fact that moving dispersion
filters and periodicity diagrams are not measures of chaotic behaviour, it seems form moving
dispersion filters that the ECM time series after 1986 becomes more chaotic, and that the num-
ber and frequency of ECMs were no longer stable but changed with time. This is an important
conclusion pointing to changes in global climatic regime.

Conclusions

The concept of categorical time series analyses seems promising in studying time series of cli-
matic categories, as illustrated by the Dzerdzeevskii classification of Northern hemisphere ele-
mentary circulation mechanisms. However, more detailed and thorough study is needed in the
tuture. The research should be geared towards two directions. The first should be directed
towards establishing a mathematical background of categorical time series analyses for applica-
tion in practical studies. In the second direction, structural characteristics of ECM time series
must be related to physical processes. At first sight, categorical time series analysis is perhaps
not as important as time series analysis of other climatic time series (e.g. air temperature data).
However, for rational climatic parameters time-dependent trends, periodicity and non-statio-
narity are their important characteristics helping to understand climatic behaviour. The same
can be true also for categorical ECM time series; this study represents the first step in this direc-
tion. In our research we have tackled some general explanations of the underlying processes,
but more work is needed. A wide field of investigation opens also on other classifications simi-
lar to Dzerdzeevskii and their time series. The approach presented here offers quantification of
the whole ECM time series regardless of categories, and therefore represents a possible way to
study relations with other climatic parameters of rational data type, as well as a comparison to
other climatic-dependent phenomena.
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