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Abstract
Three conventional Bayesian approaches (BayesA, BayesB and BayesCπ) have been

demonstrated to be powerful in predicting genomic merit for complex traits in livestock. A

priori, these Bayesian models assume that the non-zero SNP effects (marginally) follow a t-
distribution depending on two fixed hyperparameters, degrees of freedom and scale param-

eters. In this study, we performed genomic prediction in Chinese Simmental beef cattle and

treated degrees of freedom and scale parameters as unknown with inappropriate priors.

Furthermore, we compared the modified methods (BayesFA, BayesFB and BayesFCπ)

with their corresponding counterparts using simulation datasets. We found that the modified

methods with distribution assumed to the two hyperparameters were beneficial for improv-

ing the predictive accuracy. Our results showed that the predictive accuracies of the modi-

fied methods were slightly higher than those of their counterparts especially for traits with

low heritability and a small number of QTLs. Moreover, cross-validation analysis for three

traits, namely carcass weight, live weight and tenderloin weight, in 1136 Simmental beef

cattle suggested that predictive accuracy of BayesFCπ noticeably outperformed BayesCπ

with the highest increase (3.8%) for live weight using the cohort masking cross-validation.

Introduction
Genomic prediction uses all available molecular markers as covariates in a linear regression
model to estimate genomic breeding values for quantitative traits. This has aroused a strong
interest on the explorations of genomic selection in animals and plants [1–5].

Currently, improving the accuracy of genomic breeding values has been recognized as a cru-
cial step for genomic improvement. Various Bayesian linear regression methods have been pro-
posed to improve the predictive accuracy in genomic selection such as BayesC [6], BayesCπ
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and BayesDπ [7]. To denote these Bayesian methods, Gianola et al. coined the term “Bayesian
alphabet” using the numbers of letters of the alphabet [8]. These methods are different in the
adoption of priors while sharing the same sampling model: a Gaussian distribution with a
mean vector represented by a regression on numbers of markers, typically SNPs, and a residual
variance s2

e . Bayesian Lasso used another distribution (Laplace) as the marker effect prior
assumption to predict genomic estimated breeding values (GEBVs) [9–11]. Other Bayesian
approaches such as BayesRS (sharing of information across populations model) [12] and
BayesTA, BayesTB, and BayesTCπ (threshold models) [13] were proposed to improve the
accuracy of genomic prediction.

BayesA assumes all SNPs have effects, and each SNP has its own variance, while BayesB
assume that the prior distribution of SNP effects are zero with probability π, and normally dis-
tributed with a zero mean and a locus-specific variance with probability (1- π) [14]. BayesCπ
treats π as an unknown parameter with a uniform (0, 1) prior distribution, and assumes all
SNP effects have a common variance [7]. These methods assume the variances of SNP effects
follow a scaled inverse chi-square prior distribution with degrees of freedom v, and a scale
parameter S2a. A general consensus reveals that the full-conditional posterior distribution of a
locus-specific variance adds only one to the degrees of freedom in BayesA as compared with its
prior assumption, while in BayesCπ it increases the value by the number of markers that have
effects in each iteration [8]. For BayesA, BayesB and BayesCπ, hyperparameter v is fixed (4.2 or
4), and S2a is usually derived from an assumed additive-genetic variance [15]. However, the two
fixed hyperparameters may vary in different genetic architecture [8]. Many studies have pro-
posed some alternative priors to estimate these two hyperparameters. For instance, Habier
et al. proposed BayesDπ by extending the BayesB method and treating Sa as unknown with
Gamma(1,1) [7]. Yi et al. developed a model to estimate two hyperparameters v and S2a by
assigning a uniform density on 1/v for the range (0,1] and a uniform distribution on S2a for the
range (0,A] with A being a large number in the extent of BayesA [16]. Yang et al. applied a
Gamma prior distribution on S2a with parameter αs = βs = 0.1, and specified v~p (v)/(v+1)-2

for both BayesA and BayesB [17], and they further used three alternative Markov Chain Monte
Carlo approaches based on Metropolis-Hastings to estimate these two hyperparameters [18].
To investigate the impact of variable degrees of freedom and scale parameters in Bayesian
methods for genomic prediction in Chinese Simmental beef cattle, we treated v and S2a as
unknown and gave inappropriate priors in our study. These modified methods were termed as
BayesFA, BayesFB and BayesFCπ, respectively.

The objectives of this study were to: (1) investigate the impact of variable v and S2a on the
predictive accuracy for live weight, carcass weight and tenderloin weight in Chinese Simmental
beef cattle using three modified methods (BayesFA, BayesFB and BayesFCπ); (2) explore rela-
tionships between these two hyperparameters and genetic architecture especially for the num-
ber of QTL in simulation study; (3) compare the predictive accuracies among these methods
(GBLUP, BayesA, BayesB, BayesCπ, BayesFA, BayesFB and BayesFCπ) using cross-validation
scheme in Chinese Simmental beef cattle population.

Materials and Methods

Ethics statement
All animals were treated following the guidelines for the experimental animals established by
the Council of China. Animal experiments were approved by the Science Research Department
of the Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS) (Beijing,
China).
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Statistical Model
The general statistical model is as follow:

y ¼ Xbþ Zαþ e ð1Þ

Here, y is an N×1 (N = number of observations) vector of phenotypes, X is an incidence
matrix of fixed effects in b, Z is an N×P (P = number of SNPs) matrix of marker codes (geno-
types were coded as 0, 1 or 2). α is an P×1 vector of SNP effects. e is a vector of residuals. It is
assumed that y is conditionally independent and distributed as

ðyjb;α; s2
eÞ � NðXbþ Zα; Is2

eÞ ð2Þ

Prior specifications
The prior assumption for αj depends on the variance s2

j and the probability π. In BayesA and

BayesFA, all SNPs have effects and their prior distributions were normal distribution with
mean 0 and variance s2

j , and each SNP has a specific variance, i.e., s2
j � x�2ðv; vS2aÞ. s2

j denotes

that SNP j has its own variance, and each of these variances has a scaled inverse chi-square dis-
tribution with the parameters of v and S2a. In BayesB and BayesFB, two-component mixture
with one component being tð0; v; S2aÞ and the other component being a spike at 0 are provided,
i.e.,

ajjp; s2
j � ðiddÞ

(
0 wtih probability p

Nð0; s2
j Þ with probability ð1� pÞ

wherej ¼ 1; . . . ::; q

s2
j jv; S2a � ðiddÞvS2ax�2

v when s2
j > 0 ð3Þ

Here, π represents the proportion of SNPs with no associated genetic effects on the trait of
interest. BayesCπ and BayesFCπ also assume only a small proportion of SNPs have effects with
probability (1-π) and the variances of SNP effects s2

j ¼ s2
a, where s

2
a is the common variance of

all the SNP effects. In BayesA, BayesB and BayesCπ, S2a is normally derived from the Eq (4),

S2a ¼
ðv � 2Þ � Eðs2

j Þ
v

ð4Þ

where v is fixed value (4.2) [14].
In present study, two hyperparameters (v and S2a) was further treated as unknown with inap-

propriate priors. v was treated with gamma (4, 1) distribution in BayesFB, and exponential
(0.25) distribution in BayesFA and BayesFCπ. S2a was treated as unknown with the prior
gamma (1, 1) distribution in these modified methods, which was under same assumption as in
BayesDπ [7]. BayesFCπ treated π as unknown with uniform (0, 1).

Inference of model hyperparameters
Markov Chain Monte Carlo algorithms were used in the modified methods (BayesFA, BayesFB
and BayesFCπ) to sample the parameters. The posterior distribution of SNP effects imple-
mented in these modified methods were the same as those of BayesA, BayesB [14] and
BayesCπ[7]. The posterior distributions of the variances of SNP effects in BayesA and BayesFA
were scaled inverse chi-square distribution ½s2

j jv þ 1; ðvS2a þ a2j Þ=ðv þ 1Þ�. BayesFB used
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Metropolis Hastings algorithm to sample SNP effects and variances as in BayesB. And the pos-
terior distribution of the variances of SNP effects in BayesCπ and BayesFCπ were inverse chi-

square with degrees of freedom v + q and scale ðvS2a þ
Xq

j¼1

a2j Þ=ðv þ qÞ, where q was the num-

ber of SNPs fitted with non-zero effect in current iteration.
Full conditional posterior distribution of v in BayesFA and BayesFCπ (5a), and BayesFB

(5b) were articulated as follows:

f ðvjELSEÞ / f ðs2
j jS2a; vÞf ðvÞ

¼
Yq
j¼1

ðvS2a=2Þv=2expð�
vS2a
2s2

j

Þ

Gðv=2Þ � ðs2
j Þ1þv=2

l � expð�lvÞ

/ ðv=2Þqv=2½Gðv=2Þ��qexpð�ZvÞ

Z ¼ 1

2

Xq

j¼1

lnðs
2
j

S2a
Þ þ 1

2

Xq

j¼1

ðS
2
a

s2
j

Þ þ l

ð5aÞ

f ðvjELSEÞ / f ðs2
j jS2a; vÞf ðvÞ

¼
Yq
j¼1

ðvS2a=2Þv=2expð�
vS2a
2s2

j

Þ

Gðv=2Þ � ðs2
j Þ1þv=2

� v3expð�vÞ

/ v3ðv=2Þqv=2½Gðv=2Þ��qexpð�ZvÞ

Z ¼ 1

2

Xq

j¼1

lnðs
2
j

S2a
Þ þ 1

2

Xq

j¼1

ðS
2
a

s2
j

Þ þ 1

ð5bÞ

In BayesFA, q was equal to the total number of SNPs (P), while in BayesFCπ and BayesFB, q
denotes the number of non-zero SNP effects in the current iteration. λ was set to 0.25. The pos-
terior distribution of v in BayesFB (5b) was similar to BayesFCπ and BayesFA.

To sample v in our modified methods, we applied efficient accept-reject [19,20] sampling
method. We supposed that f(x) was a target distribution function as a substitute for f(v|ELSE)
(5a). A value c was sampled from a standard distribution function g(x). The appropriate value
for v was determined by the probability of acceptance f(c)/M�g(c). M was the maximum value
of a function f(x)/g(x). Thus, the crucial step for sampling v was to obtain the maximum value
M.

According to the accept-reject algorithm, the target distribution was as follows,

f ðx; q; ZÞ ¼ ðx=2Þqx=2½Gðx=2Þ��qexpð�ZxÞ ð6Þ

Z ¼ 1

2

Xq

j¼1

lnðs
2
j

S2a
Þ þ 1

2

Xq

j¼1

ðS
2
a

s2
j

Þ þ l � 1

2
qþ l ð7Þ

And proposal distribution was

gðx; yÞ ¼ yexpð�yxÞ ð8Þ
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Here θ> 0 is the parameter of the exponential distribution. A probability density function
was constructed by taking the logarithm of f(x)/g(x).

Qðx; y; q; ZÞ ¼ ln½f ðx; q; ZÞ�=gðx; yÞ
¼ ðqx=2Þlnðx=2Þ � qln½Gðx=2Þ� þ ðy� ZÞx � lnðyÞ ð9Þ

The first derivative of x and θ was

@Qðx; y; q; ZÞ=@x ¼ ðq=2Þ½lnðx=2Þ þ 1� cðx=2Þ� þ ðy� ZÞ ð10Þ

@Qðx; y; q; ZÞ=@y ¼ x � 1=y ð11Þ

Where ψ(x) was a Digamma function and ψ(x) = dln[Γ(x)]/dx.
The maximumM was calculated using Eqs (10) and (11) equal to zero. With θ = 1/x

obtained from the Eq (11), we defined h(x) using the substitution of θ in Eq (10).

hðxÞ ¼ @Qðx; y; q; ZÞ=@x ¼ ðq=2Þ½lnðx=2Þ þ 1� cðx=2Þ� þ 1=x � Z ð12Þ

Given that ln(x / 2) + 1 − ψ(x / 2) was a decreasing function, we could find h(x) was a
decreasing function. The range of function (12) was provided below.

lim
x!0

hðxÞ ¼ þ1 ð13Þ

lim
x!þ1

hðxÞ ¼ q=2� Z ð14Þ

In Eq (7), Z � 1
2
qþ l, when x tended to positive infinity, h(x)� 0 was obtained through Eq

(14). A value that made h(x) equal to zero with the range less than zero to positive infinity
should be existed. This value was assumed to be x

�
that was used to obtain the maximum value

M, hence the function Q(x,θ;q,η) obtained the maximum value M with x being equal to x
�
, and

θ was equal to 1 / x
�
. To calculate x

�
, we used the algorithm of exponential dichotomy [21].

Full conditional posterior distribution of S2a in BayesFA, BayesFB and BayesFCπ was built in
the same way as for BayesDπ. BayesFCπ used the same full conditional posterior distribution
of π (16) as in BayesCπ.

f ðS2ajELSEÞ / ðS2aÞqv=2expð�
vS2a
2

Xq

j¼1

1

s2
j

Þexpð�S2aÞ

ðS2ajELSEÞ � Gammað1
2
vqþ 1; 1=ðv

2

Xq

j¼1

1

s2
j

þ 1ÞÞ
ð15Þ

ðpjELSEÞ � BetaðP � qþ 1; qþ 1Þ ð16Þ

Simulation study
Simulation population structure: All starting with a base population of 100 animals (50 males
and 50 females), 2000 non-overlapping historical generations with the same population size
denoted as generation -1999 to generation 0 were simulated. In the base population and each
historical generation, 50 males randomly mated with 50 females, and each mating produced
two offspring (1 male and 1 female). Six additional generations were simulated after the 2000
historical generations, which formed generation 1 to generation 6. The population size was
expanded from 100 to 2000 in generation 1. The process involved 50 males and 50 females
from generation 0 randomly mating, and 40 progenies (20 males and 20 females) were
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produced by each mating pair. Then 50 males were randomly selected from the 500 males as
the sires of the next generation, and different population sizes of females (250, 500, and 1000)
were used as dams in generations 1–5. Finally, three population sizes (500, 1000 and 2000)
from generations 2 to 6 were obtained by each male randomly mating 10 females, and each
female produced two offspring. The simulation program was same to that of previous study
[13].

Genomic structure: The frequently used mutation-drift equilibrium (MDE) model was
applied to simulate whole-genome data. Five chromosomes were simulated, and each con-
tained 1 Morgan with 2000 SNPs that were randomly located in the genome. There was a
potential quantitative trait locus (QTL) between two SNPs, so 10000 SNPs produced 9995
potential QTL in total. The true QTL effects, just as the allele substitution effects, were drawn
from standard normal distribution as typically done [14,22]. To evaluate the predictive accura-
cies of modified methods, we set different scenarios by the number of QTL (5, 50, 200 and 500)
and heritability (0.1, 0.3, 0.5, and 0.8).

In simulation, genotypes and true breeding values (TBVs) were assigned to each animal
from generation 1 to 6. Phenotypic records were assigned only to animals in generation 1
(experimental group), and the animals in generation 2–6 were validation groups. Finally, forty-
eight combinations were obtained by different genetic architecture considering reference popu-
lation size, number of QTL and heritability. Among them, 10 replicates were simulated for
each scenario.

Real dataset
The resource population was established in Ulgai, Xilingole League, Inner Mongolia of China.
All the young Simmental beef cattle were born between 2008 and 2013. After weaning, Sim-
mental cattle were moved to Beijing Jinweifuren cattle farm for fattening and put under the
same feeding and management conditions. Each animal was measured for growth and develop-
mental traits on time until its slaughter when they were 18 to 24 months of age. Live weight
was measured after 24 hours of fasting. During the period of slaughter, carcass traits and meat
quality traits were measured according to the Institutional Meat Purchase Specification for
fresh beef guidelines. Three response variables (carcass weight, live weight and tenderloin
weight) were analyzed in this study. Systematic environment factors including farm, year of
measurement and age at slaughter (seasons) effects were adjusted in the mixed linear model.
Genetic parameters were calculated using residual maximum likelihood method in animal
model using G matrix [23].

In total, 1173 Simmental cattle were genotyped with Illumina Bovine 770K SNP BeadChip.
Before statistical analysis, SNP quality control was pre-processed as following: PLINK v1.07
[24] software was used to select SNPs based on minor allele frequency (>0.05), proportion of
missing genotypes (<0.05), Hardy-Weinberg equilibrium (p>10−6). After quality control, any
missing genotypes were replaced with the average value (on a 0–2 scale) for each SNP, and the
final data consisted of 1136 Simmental cattle and 697,769 SNPs in the autosomes.

Cross-validation procedure
To assess the predictive accuracies of modified methods in our study, we explored cross-valida-
tion methods using real data. Overall, 1136 Simmental cattle were divided into a reference and
validation population. Phenotypes of the animals in the validation set were masked to be
unknown. Two cross-validation methods were used to select the reference population [25].
The first method was fivefold cross-validation (random masking), in which genotyped cattle
were first random divided into five groups. The whole procedure was repeated 10 times. Each
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time, the data excluded one group to reference on the remaining four groups to estimated
marker effects, which were used to predict GEBVs of individuals from the validation popula-
tion. Therefore, four-fifth populations (n = 909) were randomly sampled as the reference set,
and the remaining one-fifth (n = 227) of the population as the validation set. This resulted in
every cattle having predicted GEBVs obtained without using its own information. The second
method was to select animals based on their years of birth (cohort masking). Animals that
were born before 2012 were taken as the reference population (n = 824) and the animals born
in 2012 and 2013 as the validation set (n = 312). To evaluate the accuracy of prediction, we esti-
mated the correlation between GEBVs and true genetic values in validation subset following
previous study [26].

Estimation of SNP effects and hyperparameters
We treated two hyperparameters as unknown and estimated them in both simulation and real
data. Markov chains were run for 50,000 cycles of iterations. The first 10,000 were discarded as
burn-in. In BayesB and BayesFB, 100 additional cycles of Metropolis Hastings sampling were
performed for the variances of marker effects. In the modified methods, every MCMC cycle
consisted of Gibbs sampling and accept-reject sampling steps. Scale parameter was sampled by
the Gibbs sampling process, and degrees of freedom were acquired by efficient accept-reject
scheme. A stable estimation was obtained in these sufficient iterations and little improvement
could be made in higher settings. All the samples of SNP effects and the two variable hyper-
parameters were averaged after burn-in to obtain the estimates. In simulation, π was defined as
the number of QTL divided by the total number of loci in BayesB, BayesFB, BayesCπ and
BayesFCπ. In the real analysis, π was set as 0.996 for BayesB and BayesFB, and 0.8 for BayesCπ
and BayesFCπ.

Calculation of GEBVs
GEBVs for animals were calculated as the sum of all SNP effects, according to their marker
genotypes. The GEBV of animals was calculated as

gEBVi ¼
X

Zijaj ð17Þ

Zij was a genotype for SNP j of animal i, and αj was the posterior mean of the j-th SNP
effect.

Results

Simulation study
Estimation of SNP effects. To compare the difference of SNP effects estimated by the six

Bayesian models, we calculated the absolute SNP effects (Fig 1). We found the absolute simu-
lated QTL effects ranged from 0 to 0.38, when reference population size was 1000, the number
of QTL was 200 and heritability was 0.5. While the absolute estimated SNP effects varied from
0 to 0.12 for BayesA, 0–0.14 for BayesFA, 0–0.30 for BayesB, 0–0.31 for BayesFB, 0–0.25 for
BayesCπ, and 0–0.20 for BayesFCπ. BayesFB acquired highest absolute SNP effects value than
other methods.

Accuracies of GEBVs in generation 1–6. To estimate the predictive accuracies of the
modified methods comparing with their counterparts, we analyzed the simulation datasets
with different genetic architectures. Generally, the predictive accuracies of BayesFA and
BayesFCπ performed better than their counterparts in all generations. However, the predictive
accuracies between BayesFB and BayesB were very similar. In generation 1 with population
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size of 1000, different number of QTL and heritability, the mean accuracies of GEBVs esti-
mated by GBLUP generated the lowest accuracy (Table 1). In contrast, BayesFA and BayesFCπ
improved the predictive accuracy by 0.2–2.5% and 0.2–1.5%, respectively, when compared
with their counterparts. Meanwhile, in generation 2–6 with population size of 1000, QTL of
200, and heritability of 0.5, BayesFA and BayesFCπ improved the predictive accuracies by 0.6–
1.7% and 0.4–1.1%, respectively (Table 2).

Effect of heritability and QTL on prediction. To evaluate the effects of heritability and
QTL on predictive accuracy, we simulated four different heritabilities (0.1, 0.3, 0.5 and 0.8) and
numbers of QTL (5, 50, 200 and 500). In Table 1, when the genetic architecture of QTL was the
same, we observed the predictive accuracies dropped with a decrease in heritability. On the
other hand, the predictive accuracies increased along with decreasing the number of QTLs
under the same heritability. Furthermore, for a small number of QTL (QTL = 5) and low-heri-
tability (h2 = 0.1), the predictive accuracies improved with the highest (2.5% and 1.5%) for
BayesFA and BayesFCπ compared to their counterparts, respectively. Additionally, the predic-
tive accuracies for high (h2 = 0.8) and medium (h2 = 0.5) heritability were not robust than
those for low heritability.

Inference on key hyperparameters. For simulated data, QTL effects were drawn from the
standard normal distribution. These were produced by the process of recombination over
thousands of generations in terms of the relationships between the number of QTL and v or S2a.
It was difficult to surmise the “true” value of key hyperparameters. However, we found that
estimates of S2a were inversely related to the number of QTL for BayesFB and BayesFCπ (Fig 2).
Under population size of 1000, QTL of 200 and heritability of 0.5, the estimates of S2a for the
three modified methods were different, with posterior median at 7e-5, 0.008, 0.01 and the 95%
posterior interval of [5e-5, 1e-4], [0.0048, 0.012], [0.0073, 0.025] in BayesFA, BayesFB,
BayesFCπ, respectively. Histograms of the posterior samples for the degrees of freedom
obtained by the modified methods with population size of 1000 and heritability of 0.5 were
shown in Fig 3. These values were markedly different when QTL = 200, with the posterior
median at 2.6, 4.3, 118.54 and 95% posterior interval of [2.25, 2.9], [2.6, 7.2], [14.9, 451.9] in

Fig 1. Absolute value of simulated true QTL effects and SNP effects estimated using six Bayesian
models from a randomly selected replication (population size = 1000, number of QTL = 200, h2 = 0.5).
The absolute values of the SNP effects were estimated using BayesA, BayesFA, BayesB, BayesFB,
BayesCπ, and BayesFCπ, respectively.

doi:10.1371/journal.pone.0154118.g001

Table 1. Predictive accuracies of GEBVs estimated using GBLUP and six Bayesianmethods in generation 1 with a population size = 1000, different
number of QTL and heritability.

QTL = 5 QTL = 50 QTL = 200 QTL = 500

h2 0.1 0.3 0.5 0.8 0.1 0.3 0.5 0.8 0.1 0.3 0.5 0.8 0.1 0.3 0.5 0.8

GBLUP 0.715 0.834 0.888 0.95 0.626 0.798 0.87 0.945 0.568 0.772 0.858 0.942 0.526 0.762 0.854 0.941

BayesA 0.780 0.879 0.921 0.967 0.621 0.789 0.868 0.948 0.566 0.777 0.863 0.942 0.532 0.768 0.856 0.94

BayesFA 0.805 0.902 0.937 0.983 0.637 0.807 0.877 0.954 0.579 0.790 0.871 0.949 0.549 0.773 0.858 0.943

BayesB 0.766 0.894 0.923 0.975 0.631 0.793 0.883 0.948 0.565 0.790 0.865 0.944 0.554 0.766 0.855 0.939

BayesFB 0.768 0.898 0.928 0.978 0.636 0.801 0.884 0.951 0.568 0.794 0.87 0.951 0.563 0.768 0.857 0.945

BayesCπ 0.799 0.886 0.924 0.965 0.631 0.799 0.882 0.954 0.564 0.792 0.867 0.946 0.549 0.769 0.856 0.94

BayesFCπ 0.814 0.896 0.931 0.973 0.64 0.809 0.883 0.957 0.569 0.794 0.869 0.95 0.561 0.774 0.858 0.942

Values are means of predictive accuracy from 10 replicates. GBLUP, genomic best linear unbiased prediction; GEBV, genomic estimated breeding value;

QTL, quantitative trait loci

doi:10.1371/journal.pone.0154118.t001
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BayesFA, BayesFB, BayesFCπ, respectively. For the three modified methods, it was clear that
the posterior median of v increased with the number of QTLs.

Real dataset
Heritability estimates of three traits were 0.38, 0.43 and 0.47 for CW, LW and TW, respectively
(Table 3). To assess the predictive accuracies, we applied two different cross-validation meth-
ods (random masking and cohort masking) in Simmental population. The predictive accura-
cies of GBLUP and Bayesian methods using the randommasking method were superior to
those in the cohort masking method. BayesFA showed slightly higher predictive accuracy than
BayesA in the two cross-validation methods, and the accuracy improved by 0.4% to 1.2%. The
predictive accuracies of BayesFB outperformed those of BayesB by 0.3% to 1%. Meanwhile, the
predictive ability of BayesFCπ obviously outperformed BayesCπ with the highest increase
(3.8%) of LW in cohort masking. Average posterior means of the hyperparameters estimated
by modified methods across the 10 replicates were shown in Table 4. These hyperparameters
were obviously different to their previous ones.

Discussion
Genomic selection has revolutionized cattle breeding by greatly increasing the predictive accu-
racies of genetic merit for young animals and shortening the generation interval. In our study,
we performed genomic prediction in Chinese Simmental beef cattle with addressing the impact
of v and S2a on predictive accuracies. Gianola proposed that both the degrees of freedom and
the scale parameters can affect the shrinkage of SNP effects [27]. To address these issues, they
applied a full hierarchical approach to estimate the optimal priors instead of assigning fixed
values [16,17]. Based on treating S2a as unknown with Gamma (1, 1) in BayesDπ [7], we further
treated degree of freedom as unknown and gave an inappropriate prior distribution in
BayesFA, BayesFB and BayesFCπ. To illustrate the impact of these two hyperparameters on
genomic predictive accuracy, we simulated different scenarios including population sizes,
numbers of QTL and heritability. Finally, cross-validation analysis using 1136 Simmental beef
cattle showed that predictive ability of BayesFCπ clearly outperformed BayesCπ with the high-
est increase (3.8%) for live weight in the cohort masking cross-validation.

For simulation study, Yang et al. used antedependence model for whole genomic prediction
to explore the relationship between S2a and linkage disequilibrium levels by simulating six dif-
ferent SNP marker densities [17], and found the antedependence models had significantly
higher accuracies than their corresponding counterparts at higher LD level with differences

Table 2. Predictive accuracies of GEBVs estimated using GBLUP and six Bayesianmethods in generations 2–6 with a population size = 1000,
QTL = 200, h2 = 0.5.

Methods Generation 2 Generation 3 Generation 4 Generation 5 Generation 6

GBLUP 0.745±0.008 0.711±0.011 0.680±0.019 0.633±0.028 0.602±0.021

BayesA 0.754±0.013 0.719±0.021 0.689±0.015 0.640±0.022 0.605±0.011

BayesFA 0.766±0.015 0.736±0.111 0.695±0.013 0.649±0.017 0.611±0.012

BayesB 0.759±0.018 0.720±0.015 0.693±0.011 0.647±0.011 0.606±0.020

BayesFB 0.767±0.012 0.725±0.013 0.696±0.015 0.651±0.008 0.610±0.014

BayesCπ 0.757±0.008 0.720±0.014 0.693±0.012 0. 649±0.011 0.606±0.012

BayesFCπ 0.766±0.013 0.731±0.017 0.695±0.014 0.653±0.024 0.610±0.017

Values are means and standard deviations of predictive accuracy from 10 replicates.

doi:10.1371/journal.pone.0154118.t002
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Fig 2. Histogram of the posterior samples for the scale parameters of the Inv-χ2 prior on variances with a population size = 1000,
QTL = 5, 50, 200, 500 and h2 = 0.5 in BayesFA, BayesFB and Bayes FCπ, respectively. The dotted lines represent the posterior 5, 50 and
95% quantiles.

doi:10.1371/journal.pone.0154118.g002
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exceeding 3%. Habier et al. discussed the impact of S2a in BayesDπ, and found it decreased with
the increasing number of SNPs in their analysis [7]. In our simulation, when the population
size was 1000 and h2 = 0.5, the value decreased with the increasing number of QTL in BayesFB

Fig 3. Histogram of the posterior samples for the degrees of freedom of the Inv-χ2 prior on variances with a population size = 1000, QTL = 5, 50,
200, 500 and h2 = 0.5 in BayesFA, BayesFB and BayesFCπ, respectively. The dotted lines represent the posterior 5, 50 and 95% quantiles.

doi:10.1371/journal.pone.0154118.g003
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and BayesFCπ as shown in Fig 2. For degrees of freedom, Jia et al. developed a full hierarchical
approach to estimate v [28] and found optimal marker-effect variance depended on the genetic
architecture of the trait. We assumed inappropriate priors for v in BayesFA and BayesFCπ with
exponential distribution, and BayesFB with gamma distribution. The larger degrees of freedom
sampled by efficient accept-reject can result in greater impact on the posterior SNP variances
inference. The posterior median degrees of freedom estimated by BayesFA, BayesFB and
BayesFCπ were 2.6, 4.3, 118.54, respectively, but different from the fixed value 4.2 as suggested
by Meuwissen et al. [14]. Therefore, a large value for the degrees of freedom may not indicate
better prediction. In this study, BayeaFA estimated smaller degrees of freedom (2.6) than in
BayesA (4.2), while BayesFA show higher predictive accuracy than in BayesA.

For real dataset, Simmental beef cattle was partitioned into training and validation data sets,
cross-validation analyses were carried out using CW, LW and TW traits to assess the accuracies
of genomic prediction. Previous studies have conducted genomic selection of CW and LW
traits in other Simmental cattle [29–31]. We found the estimated heritability of CW (0.38) in
our study was slightly lower than Mahdi Saatchi’s study (0.4) [30]. In Table 3, BayesFA and
BayesFB showed higher accuracy of GEBVs than their counterparts for all traits using the two
cross-validation methods. BayesFCπ increased the accuracy as compared with BayesCπ in
three traits except for LV in randommasking method. The degrees of freedom and scale
parameters in the modified methods were treated in inappropriate priors to be estimated from
the data, which have significant impacts of locus-specific variances elaborated by Habier et al.
[7]. Therefore, the predictive accuracies of these modified methods were superior to their con-
ventional counterparts. Using high density SNP chip, we found BayesA performs markedly

Table 3. Heritability estimation and accuracies of GEBVs estimated using GBLUP and six Bayesian methods for three traits.

Trait h2 CV GBLUP BayesA BayesFA BayesB BayesFB BayesCπ BayesFCπ

CW 0.38 RM 0.470 0.486 0.498 0.487 0.491 0.483 0.488

CM 0.413 0.413 0.422 0.411 0.414 0.402 0.409

LW 0.43 RM 0.526 0.576 0.582 0.594 0.602 0.598 0.596

CM 0.468 0.474 0.478 0.460 0.470 0.412 0.450

TW 0.47 RM 0.540 0.560 0.570 0.566 0.569 0.561 0.569

CM 0.474 0.467 0.474 0.478 0.485 0.475 0.483

RM, Random masking is the first way to mask phenotypes using fivefold cross-validation, and CM, Cohort masking is the second way to mask

phenotypes by their birth year. Values are the means of 10 repeats for RM method. Accuracy is evaluated using r_gg_ ¼ s_
EBV ;GEBVffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2s2ps

2
GEBV

p . EBV, estimated breeding

values. s2
p is the phenotypic variance estimated from the primary analysis using all genotyped animals in the reference population. GEBV, genomic

estimated breeding value; GBLUP, genomic best linear unbiased prediction; CW, carcass weight; LW, live weight; TW, tenderloin weight.

doi:10.1371/journal.pone.0154118.t003

Table 4. Average posterior means of the hyperparameters (v, S 2

a) based on BayesFA, BayesFB and Bayes FCπ analyses for three traits.

Methods Hyperparameters CW LW TW

BayesFA v 4.08(0.21) 4.88(0.21) 5.17(0.13)

S2
a 1.66 e-3 (1.4 e-4) 6.87 e-4 (2.6 e-5) 6.52e-6(8.12e-7)

BayesFB v 4.92(0.28) 4.04(0.16) 4.80(0.17)

S2
a 0.869(0.026) 0.372(0.016) 9.02e-5(8.12e-6)

Bayes FCπ v 11.35(1.02) 8.43(0.85) 12.53(1.06)

S2
a 0.179(0.014) 1.762(0.105) 0.081(0.003)

Empirical standard deviations across 10 replicates are provided in parentheses.

doi:10.1371/journal.pone.0154118.t004
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better than other conventional methods (BayesB and BayesCπ) for LW in cohort masking
cross-validation method despite the statistical drawback of BayesA as described by Gianola
et al. [8].

The proposal distribution of locus-specific variance is an inverse chi-square distribution
with parameters v and S2a. In each iteration, the modified methods sampled new degrees of free-
dom and scale parameters. These variable hyperparameters could influence the sampling of
variances of SNP effects, which may induce higher predictive accuracies than their conven-
tional counterparts. Two hyperparameters estimated in our study were different from Yang
et al. [17]. Their estimates of the degrees of freedom were extremely large (>15) for anteBayesA
and anteBayesB methods with heterogeneous stock mice data. These differences may be caused
by different prior assumption, sampling algorithm and dataset. In contrast, our study showed
larger values for the degrees of freedom only in BayesFCπ.

Due to the additional sampling the variable v and S2a in each iteration, the computing time
in our methods was longer than their counterparts, respectively, i.e., with population size of
1000, QTL = 200, h2 = 0.5 using 3.3GHz, Intel core(TM) i3-2120 processor, computing time for
50000 iterations was 2.39, 2.56, 5.08, 5.36, 2.12 and 2.29 hr for BayesA, BayesFA, BayesB,
BayesFB, BayesCπ and BayesFCπ, respectively. However, these modified methods produced
higher predictive accuracies than their conventional counterparts. For the posterior distribu-
tion in a complicated non-standard form, the degrees of freedom sampled by the efficient
accept-reject algorithm may produce anticipated results.

In conclusion, we performed genomic prediction for live weight, carcass weight and tender-
loin weight in Chinese Simmental beef cattle. Our study indicated the degrees of freedom and
scale parameters could slightly impact the predictive accuracies in both simulation and real
dataset.
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