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Abstract

Plant associations with root microbes represent some of the most important symbioses on
earth. While often critically promoting plant fithess, nitrogen-fixing rhizobia and arbuscular
mycorrhizal fungi (AMF) also demand significant carbohydrate allocation in exchange for
key nutrients. Though plants may often compensate for carbon loss, constraints may arise
under light limitation when plants cannot extensively increase photosynthesis. Under such
conditions, costs for maintaining symbioses may outweigh benefits, turning mutualist
microbes into parasites, resulting in reduced plant growth and reproduction. In natural sys-
tems plants commonly grow with different symbionts simultaneously which again may
interact with each other. This might add complexity to the responses of such multipartite
relationships. We experimented with lima bean (Phaseolus lunatus), which efficiently forms
associations with both types of root symbionts. We applied full light and low-light to each of
four treatments of microbial inoculation. After an incubation period of 14 weeks, we quanti-
fied vegetative aboveground and belowground biomass and number and viability of seeds
to determine effects of combined inoculant and light treatment on plant fitness. Under light-
limited conditions, vegetative and reproductive traits were inhibited in AMF and rhizobia
inoculated lima bean plants relative to controls (un-colonized plants). Strikingly, reductions
in seed production were most critical in combined treatments with rhizobia x AMF. Our find-
ings suggest microbial root symbionts create additive costs resulting in decreased plant fit-
ness under light-limited conditions.

Introduction

Rhizobia and arbuscular mycorrhizal fungi (AMF) represent two major groups of plant-associ-
ated microbial mutualists [1-3]. Legume-associated rhizobia are nitrogen-fixing bacteria that
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play a key role for local and global nitrogen cycles, dramatically influencing the productivity
and species composition of natural and agricultural ecosystems [2-4]. AMF colonize roots of
the host plant, form extensive networks, and participate in the acquisition of nutrients (namely
phosphorus) and water [1]. The association between plants and AMF is likely the most ubiqui-
tous of all mutualisms, having been observed in 400 million year-old fossils and persisting in
more than 80% of extant land plants [5]. Like rhizobia, AMF are considered keystone species
in terrestrial ecosystems [1] due to their critical impact on plant growth and species composi-
tion [6].

Root colonization with rhizobia and AMF generally have positive effects on plant growth
[2,7,8], including increases in vegetative and reproductive traits [9,10]. In legumes, which are
frequently colonized by both types of microbial symbionts simultaneously, plant growth is usu-
ally enhanced by the dual symbiosis [11]. However, while most studies have been carried
out under optimal conditions, in several common bean (Phaseolus vulgaris) varieties, under
drought stress both dual and single colonization with different rhizobia strains and AM fungi
can result in negative effects for the plant host [12]. Under such water limited conditions Fran-
zini and co-workers [12] showed that AMF inhibited rhizobial nodule development and N, fix-
ation, and thus caused diminution of plant growth.

While costs of simultaneous colonization by rhizobia and AMF for their legume hosts
have been reported under water limited conditions, less information exists on the effects of
another key plant resource: light. Both rhizospheric associations, rhizobia and AMF, incur
significant costs as consumers of plant photosynthates as the combined demand of symbionts
can reach up to 28% of carbon fixed by the plant [13]. Plants can compensate for this cost
through sink stimulation of photosynthesis, which is considered to be an adaptation to take
advantage of nutrient supply enhancement by the symbiont without compromising the total
amount of photosynthates available for plant functioning [13]. While sink stimulation is gen-
erally an efficient strategy to compensate for costs of carbohydrate allocation, the question
arises of how plants respond to microbial inoculation when photosynthesis cannot easily be
increased [14], for example under light-limited conditions [15,16]. We hypothesize that
under such conditions the costs for maintaining the symbioses may outweigh the benefits,
ultimately turning the mutualist microbes into parasites, resulting in reduced growth and
reproduction of colonized plants. In nature, light availability is often a variable resource due
to competition among plant species and, depending on cultivation method, also shows strong
variation in agricultural systems [17]. In a few previous studies it was shown that the effects
of light limitation on plant growth did not differ between unfertilized plants growing with
symbionts and plants growing without symbionts but with additional fertilization [18,19],
thereby neglecting the role of nutrient supply by the symbionts as the ultimate benefit of
these symbioses for the plant.

In the present study we used lima bean (Phaseolus lunatus), a model plant in chemical ecol-
ogy and an important food plant [20-24] to better understand the concerted effects of AMF/
rhizobial colonization and light availability on vegetative and reproductive traits. Plants were
inoculated with rhizobia (R) and AMF and blocks were exposed to two different levels of light
availability. Treatments included: no symbiont (R-AME-), AMF only (R-AMF+), rhizobia only
(R+AMF-), and both symbionts (R+AMF+). While effects of light on plant resource allocation
patterns (including carbon, nitrogen and phosphate) to either rhizobia [15] or AMF [25-30],
have been studied using both empirical and modelling approaches, research on the effects of
light upon interactions with multiple bacterial and fungal rhizospheric symbionts simulta-
neously is limited. However, as plants are frequently colonized by multiple microbial symbi-
onts considering interactive effects among microbes, which may range from competition to
cooperation of mutualists, is of high importance [31,32].
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This study aims to answer the following specific questions: i) What are the separate and
interacting effects of rhizobia and arbuscular mycorrhizal fungi on growth and reproduction of
lima bean, and ii) what are the outcomes of these belowground mutualistic interactions regard-
ing plant growth and reproduction when light availability is limited. To our knowledge, our
study is among the first to analyze the interactive effects of AMF, rhizobia and light availability,
addressing potential costs of these microbes when photosynthesis is limited.

Materials and Methods

Lima bean (Fabaceae: Phaseolus lunatus L.) represents an established model system in plant
ecological research due to the simultaneous expression of multiple traits (direct and indirect
defenses) affecting the interaction with plant consumers and higher trophic levels [33-35].
Recent studies using the lima bean system further highlight complex bottom-up effects of
plant-associated belowground microbial symbionts on above ground food webs and pathogens
and thus raise the need for a better understanding of factors driving these belowground associ-
ations [22,23]. In this study lima bean plants (cv. Henderson) were grown from surface steril-
ized seeds (American Meadows Inc., Williston, VT) [26]. Seeds were sterilized by manual
agitation in a 10% bleach solution for 2 min, rinsed three times with deionized water and then
exposed to an elevated temperature (60°C for 3 h) in an oven. This treatment has been shown
to produce sterile plants but does not reduce germination rates in preliminary experiments.
Plants were cultivated in a greenhouse with a temperature of 30°C during the light period and
at 23°C during the dark period. Relative air humidity was adjusted to 70-80%. Plants were
grown in plant-containers of 10 x 10 x 11 cm (width, length, height; one plant per pot) in a 1:1
ratio of low-nutrient seedling potting soil (Fox Farms, Arcata, CA, USA) and washed sand
(grain size 0.5-2.0 mm; Quikcrete, GA, USA). The substrate was flushed with 2 L ddH,O per
kg soil to further reduce nutrient concentration and autoclaved at 121°C for 30 min at a pres-
sure of 1260 mbar. All plants were randomly assigned to one of the four inoculation treatments
(R-AMF-; R-AMF+; R+AMF-; R+AMF+) and to one of two light treatments (full light:

600 + 100 pmol m™s™, 50% shading (shade net): 280 + 80 umol m™s™") with a light:dark period
of 13:11 h L:D. Plants were watered with autoclaved water as needed and care was taken not to
cross-contaminate microbial treatments through splash water during watering. Access water
passed through the tables (metal grid top) and was collected in plastic containers under the
tables for disposal. Plastic containers were cleaned with bleach once a week.

Every treatment combination had 15 replicates resulting in a total of 120 plants. Plants were
inoculated with commercial AMF powder inoculant [Bio Organics™, La Pine, Oregon; (Glomus
aggregatum, G. etunicatum, G. mosseae, G. clarum, G. deserticola, G. monosporus, Gigaspora
margarita, Paraglomus brasilianum, Rhizophagus irregularis), 10 cc (8 g) per plant; see Millar
and Ballhorn [26] for details regarding application. In our previous studies, this inoculum has
been shown to form of active mycorrhiza with lima bean and to promote plant growth com-
pared to non-inoculated plants. The rhizobia strain used in our study was isolated from lima
bean roots at natural sites in Mexico and identified as Rhizobium based on 16S rDNA sequence
data [36]. This specific strain represents an efficiently nitrogen-fixing symbiont for lima bean
which enhances plant growth as well as the plant’s ability to invest in nitrogen-based defenses
[37]. Rhizobia were cultivated in liquid medium (pH 7.0) containing 1 g yeast extract
(Amresco), 10 g mannite (Amresco), 800 ml deionized water, and 200 ml soil extract. The soil
extract was prepared from 160 g dry, non-fertilized loamy soil (taken from a grass-covered area
on the campus of Portland State University) that was suspended in 400 ml deionized water
under addition of 0.4 g sodium carbonate (VWR, Radnor, PA) and autoclaved at 121°C for 30
min at a pressure of 1260 mbar. Three days prior to plant inoculation, rhizobia were cultivated
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at 28°C and 180 rpm on a laboratory shaker (New Brunswick Scientific 126). The bacteria solu-
tion was then diluted with autoclaved tap water in a ratio of 1:10 and plants were watered with
100 ml of this solution (>107 cells mL™"; determined using a Petroff-Hausser counting cham-
ber). Plants with AMF and rhizobia were inoculated at the same time. Control plants were sup-
plied with autoclaved AMF powder and bacterial media solutions (containing no bacteria) in
volumes corresponding to those used in the inoculation treatments while all other parameters
remained unchanged.

At the end of the 14 week experiment we evaluated microbial colonization, above and
belowground biomass, seed number, and seed viability (S1 Table). Plant tissue was dried in an
oven (IncuMax™ CV250 Convection Oven, Amerex Instruments, Inc., Lafayette, CA) at 70°C
for 5 days. To assess viability of seeds, they were germinated by placing them between wet
paper towels in the dark at 25°C. The number of germinating seeds (i.e. development of an
intact root) was recorded over a period of 14 days. Seeds that did not germinate after 14 days
were considered non-viable.

Percent root-length colonization by AMF was evaluated using the Magnified Intersections
Method according to McGonigle et al. [38] after staining. Microscopic observations were con-
ducted using an AmScope FM320 Trinocular Microscope in both 100x and 400x magnifica-
tion. Rhizobial nodulation (i.e. biomass of rhizobial nodules) was determined per plant after
washing soil from roots, removing all visible nodules and drying root nodules at 70°C for 5
days.

Statistical Analysis

The effects of rhizobia, AMF and light on plant traits were tested as orthogonal factors includ-
ing all interactions with generalized linear models (GLM). The effects of rhizobia on mycorrhi-
zation and vice versa were tested in two-way GLMs with light as additional factor. For number
of seeds we assumed poisson-distributed residuals with the log-link function and for mycorrhi-
zation rate and seed germination rate we assumed binomial-distributed residual with the logit-
link function (both tested against alternative distributions using the Akaike Information Crite-
rion). All analyses were run in SAS 9.2 (Proc Glimmix).

Results

Microscopic analyses revealed successful rhizobial and AMF colonization in inoculated groups,
whereas non-inoculated plants showed no rhizobia or AMF. While AMF colonization (overall
mean = 14.7%, standard error = 2.7%) was not affected by light availability (F; 5c = 1.86,

P =0.18), the presence of rhizobia (F; 55 = 1.30, P = 0.26) or the interaction between both fac-
tors (F; 56 = 0.47, P = 0.49), nodule biomass was reduced 27% by mycorrhization (Fig 1, F; 56 =
7.15, P = 0.009). The effect of mycorrhization on nodulation tended to be weaker under low-
light conditions (- 15%) than under high-light conditions (-33%, mycorrhization x light inter-
action F; s = 3.39, P = 0.07).

Aboveground biomass was an average of 86% higher under full light than shade. The effects
of AMF and rhizobia strongly depended on the light treatments. The positive effects of both
symbionts under full light turned into negative effects for the shade plants (Table 1, Fig 2a and
2b, S1 Table). Plants inoculated with both AMF and rhizobia exhibited a 43% increase of mean
aboveground biomass relative to non-inoculated plants under full light, whereas mean above-
ground biomass of fully inoculated shade plants decreased by 47% relative to AMF and rhizo-
bia-free plants. AMF and rhizobia showed further interacting effects on aboveground biomass
independent of light treatment, resulting in an AMF-induced 8% increase of aboveground bio-
mass only for plants without rhizobia (Table 1, Fig 2¢, S1 Table).
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Fig 1. Effects of AMF on nodule biomass of rhizobia-inoculated plants for P. lunatus under varying
light conditions. Bars are means + s.e.

doi:10.1371/journal.pone.0154116.9001

Belowground biomass was unaffected by mycorrhization but was decreased by 47% under
shaded conditions independent of inoculation with mycorrhiza, and by 28% in rhizobia treat-
ments independent of light condition (Table 1, Fig 2d and 2e, S1 Table). The negative effect of
rhizobia was independent on mycorrhization (no significant interaction, Table 1, Fig 21, S1
Table). Similar to aboveground biomass, total plant biomass was 87% higher under full light.
However, inoculation decreased belowground biomass under both light treatments, with rhizo-
bia accounting for a greater proportion of the decrease (Table 1, Fig 3a and 3b, S1 Table).
Shoot/root-ratio showed no general effect of the light treatment but a higher relative invest-
ment into aboveground biomass with AMF and rhizobia under full light, whereas under low-
light conditions rhizobia decreased shoot/root-ratio (Table 1, Fig 3c and 3d, S1 Table).

The number of seeds produced per plant was affected by a three-way interaction between the
factors light, AMF and rhizobia. The overall positive effect of light was further increased by the
symbiosis with rhizobia but not significantly by AMF. For plants under low-light, rhizobia

Table 1. GLM-results of the effects of rhizobial nodulation, mycorrhizal colonization and varying light conditions on vegetative traits of P. lunatus.

Significant effects are shown in bold.

Aboveground Biomass

F1,112

Rhizobia (R) 0.46
Mycorrhiza (AMF) 1.62
Light (L) 1049.3

R x AMF 6.91
RxL 248.76
AMF x L 56.96
R x AMF x L 2.08

doi:10.1371/journal.pone.0154116.t001

Belowground Total Biomass Shoot:Root
Biomass
P F1,112 P F1,112 P F1,112 P
0.50 40.96 <0.001 18.85 <0.001 15.90 <0.001
0.21 2.93 0.09 0.05 0.82 0.48 0.49
<0.001 180.39 <0.001 851.48 <0.001 0.46 0.49
0.01 1.17 0.28 1.09 0.30 2.26 0.14
<0.001 3.25 0.07 83.21 <0.001 42.21 <0.001
<0.001 0.13 0.72 21.82 <0.001 5.43 0.02
0.15 1.37 0.24 0.05 0.83 0.28 0.60
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Bars are means + s.e. Different letters indicate statistically different means following Tukey’s post-hoc test (P<0.05). Only significant
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include all mycorrhizal treatments and (c) and (f) include all light treatments. Only tests with a significant interaction between two factors are

followed by a post-hoc test.

doi:10.1371/journal.pone.0154116.g002

strongly decreased the number of seeds and this effect was further exacerbated by AMF, whereas
AMEF alone had no significant effect (Table 2, Fig 4a, S1 Table).

The effects of the light treatment on the germination rate of seeds were again dependent on
the presence of root symbionts. The negative effect of shading was more pronounced for plants
growing with both AMF and rhizobia (Table 2, Fig 4b and 4c, S1 Table).

Discussion

In our study we quantitatively analyzed effects of light availability on the tripartite symbiosis of
mycorrhizal fungi (AMF), rhizobia, and lima bean. Our results showed enhancing effects on
growth and reproduction by belowground symbionts under full light, but reduced plant devel-
opment and reproduction in inoculated plants under shaded conditions. Moreover, nodulation
of plants was reduced by AMF resulting in interacting effects of both types of symbionts on
growth and reproduction. Interacting effects of rhizobia and AMF on plant growth are some-
times suggested to be rather uncommon [39,40], however, we could demonstrate an antagonis-
tically interacting effect on aboveground biomass. This antagonistic effect was also obvious for
the reproduction of lima bean but only under conditions of light limitation. This implies that
light availability mediates the outcome of a dual infection with different root symbionts.
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Table 2. GLM-results of the effects of rhizobial nodulation, mycorrhizal colonization and varying light conditions on generative traits of P. lunatus
and the mutual influence between both symbionts in P. lunatus. Significant effects are shown in bold.

Total Seeds Germination [%)]

F1,112 P F1,106 P
Rhizobia (R) 17.13 < 0.001 0.02 0.89
Mycorrhiza (AMF) 7.49 0.07 0.15 0.70
Light (L) 136.73 <0.001 48.51 <0.001
R x AMF 4.41 0.04 0.11 0.74
RxL 61.27 <0.001 19.34 <0.001
AMF x L 16.26 <0.001 7.06 0.009
R x AMF x L 7.69 0.006 2.63 0.11
doi:10.1371/journal.pone.0154116.t002
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doi:10.1371/journal.pone.0154116.9004

Carbon requirements by root-associated microbial mutualists are thought to be easily com-
pensated through sink stimulation (up-regulation) of photosynthesis [13,26]. Our study shows
that even though sink stimulation may be an efficient strategy to compensate for photosynthate
losses to microbial symbionts under full light, the situation can be fundamentally different
when light is limited. Under such conditions, mutualistic microbes may act as parasites that
exploit resources and reduce host fitness [15,41,42]. As spatial and temporal variation in light
availability are ubiquitous in nature [17], as are plant associations with multiple rhizospheric
microbes, our findings suggest that light variation represents a widely overlooked key factor
determining the outcome of plant-microbe interactions.

Inquiry into the mutualism/parasitism continuum offers insight into the delicate coevolu-
tion of plants and their belowground symbionts. Kiers and Denison [43] have shown that
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rhizobial mutualisms are maintained by host sanctioning of “cheating” genotypes while AMF
mutualisms are maintained by reciprocal rewards between genotypes of hosts and AMF that
allocate a greater amount of nutrient or photosynthate to the more generous partner. Though
plants have relatively fine control over these mechanisms via selective partitioning within root
systems when multiple microbial genotypes are present [43], an overall change in an abiotic
condition such as light is likely to have a disruptive effect on the symbiosis. Whether either
sanctioning or reciprocal rewards are at play, mutualistic cooperation also favors mutualist fit-
ness, thus we predict a destabilization of mutualisms under unfavorable abiotic conditions that
induce a symbiotic lifestyle switch. Our study shows that light availability is a key factor in
determining the threshold between mutualist and parasite in such interactions.

Legumes, rhizobia, and mycorrhizal fungi usually form a tripartite symbiosis, and legume
performance may therefore be affected by potential interactions between both symbionts. In
our study, nodulation was reduced for plants grown with AMF. Nutrient provisions by one
microbial symbiont may reduce the provisional benefits of the other. Multiple studies have
addressed reduced benefits of rhizospheric symbioses in the presence of non-limiting resources
[19,44,45]. The reduced nodulation we observed in the presence of AMF might also be
explained by competition for colonization sites, even if evidence for this is controversial [43].
AMEF are sometimes described as the dominant symbiont due to the prioritization of phospho-
rous over N provision to both host and rhizobia during AMF colonization [46]. However, we
found that this effect tended to be more obvious under full light, whereas under shaded condi-
tions nodulation was generally weak regardless of the status of AMF infection, suggesting com-
petition for photosynthates. This interaction was also reflected by an antagonistic effect of both
symbionts on biomass and seed production under light limitation, which is in dramatic con-
trast to synergistic effects under full light reported in the present study and others [46]. Differ-
ences in abiotic conditions (e.g. light availability) may therefore be interpreted as an important
mediator of such mutualistic relationships.

Many questions remain regarding whether all legumes may exhibit similar decreases in fit-
ness parameters due to AMF and rhizobial colonization under light-limited conditions. A bet-
ter understanding of these interactions is of high relevance. As of 2003, grain and forage
legumes represented 27% of all primary agricultural production [20]. In natural ecosystems,
ranging from forests to grasslands, microbial associations with legumes have been shown to be
responsible for the provision of the majority of available nitrogen [2,20]. Considering the ubiq-
uity of the highlighted symbiotic associations and the economic importance of legumes, condi-
tional symbiotic lifestyle switching (mutualist to parasite) has significant ramifications
regarding the stability of mutualisms and the productivity of agro-ecological systems.

It further remains to be tested whether the effects we report here hold true under natural
conditions. While we used a natural rhizobia strain derived from a wild lima bean population,
the AMF inoculum we used in the present study represents a commercial product. Thus, it
likely contains AMF species and strains that form beneficial interactions with a broad range of
different host plant species but may not interact with lima bean plants in nature. Also, using an
inoculum composed of various fungi leaves the question which of the strains actually forms
beneficial mycorrhiza and causes in the observed effects. Alternatively, several AMF species
may co-colonize plant roots simultaneously and thus can introduce uncontrolled variation into
the experimental system due to variable synergistic effects or competition among fungi but also
between fungi and rhizobia. However, as we observed consistent effects of AMF and rhizobial
inoculation, as well as for plants inoculated with both root symbionts, our statements on the
effect of light limitation on this experimental tripartite interaction seem justified. Whether or
not such effects determine the outcome of diverse tripartite plant-AMF-rhizobia interactions
in natural ecosystems remains to be tested.
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S1 Table. Raw data on effects of light availability (L+ = full light, L- = 50% light), rhizobial
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AMEF fungi) colonization on production and viability of seeds in lima bean (Phaseolus
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