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Abstract
State-space models (SSM) are increasingly applied in studies involving biotelemetry-gener-

ated positional data because they are able to estimate movement parameters from posi-

tions that are unobserved or have been observed with non-negligible observational error.

Popular telemetry systems in marine coastal fish consist of arrays of omnidirectional acous-

tic receivers, which generate a multivariate time-series of detection events across the

tracking period. Here we report a novel Bayesian fitting of a SSM application that couples

mechanistic movement properties within a home range (a specific case of random walk

weighted by an Ornstein-Uhlenbeck process) with a model of observational error typical for

data obtained from acoustic receiver arrays. We explored the performance and accuracy of

the approach through simulation modelling and extensive sensitivity analyses of the effects

of various configurations of movement properties and time-steps among positions. Model

results show an accurate and unbiased estimation of the movement parameters, and in

most cases the simulated movement parameters were properly retrieved. Only in extreme

situations (when fast swimming speeds are combined with pooling the number of detections

over long time-steps) the model produced some bias that needs to be accounted for in field

applications. Our method was subsequently applied to real acoustic tracking data collected

from a small marine coastal fish species, the pearly razorfish, Xyrichtys novacula. The
Bayesian SSM we present here constitutes an alternative for those used to the Bayesian

way of reasoning. Our Bayesian SSM can be easily adapted and generalized to any spe-

cies, thereby allowing studies in freely roaming animals on the ecological and evolutionary

consequences of home ranges and territory establishment, both in fishes and in other taxa.
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Introduction
The home range is defined as the area used by an animal during its normal activities [1]. Estab-
lishment of spatially confined home ranges, which may also define an actively defended terri-
tory, is a widely observed pattern in nature [2]. The exploration, extension and stability of
home ranges have fundamental ecological and evolutionary consequences [3], for example, by
determining where predator-prey or intra-specific agonistic interactions occur [4–6]. The
mechanistic idea behind the home range concept is that an animal moves following random
stimuli (i.e., diffusion movement) but with an added tendency to remain around a specific
point, which constrains the fraction of the available potentially suitable habitat to one that is
actually used [7,8]. Among the different mechanistic movement models that have been pro-
posed for describing home range behavior in animals, biased random walks are probably the
most widespread [9,10]. Describing the drift that constrains the animal around the center of
the home range by a bivariate Ornstein—Uhlenbeck (OU) process dates back at least to 1997
[11], and this specific implementation has been repeatedly used since then providing mecha-
nistic descriptors of home range behaviour for a range of wild-living animals (e.g., [12–14]).

Understanding the exact mechanisms driving the establishment of home ranges is not only
relevant from a fundamental perspective of behavioral ecology, but can also inform the effec-
tiveness of spatial management actions, such as the design of protected areas [15–18]. How-
ever, the methods usually used to obtain positional data in aquatic systems via telemetry suffer
from substantial observational error [19,20]. Addressing this methodological issue is crucial to
generate reliable inferences about the drivers of the home range establishment in nature. Global
positioning systems do not work in aquatic environments. Hence, alternative biotelemetry
methods have been proposed for positioning fish and other aquatic animals, such as satellite
tracking (e.g., [21–23]). However, the positioning error caused by geolocation in satellite-based
biotelemetry applications is usually large (up to several km), which reduces the usefulness of
this technology for the fine-scale mechanistic studies of home range behavior in coastal or
freshwater fishes thriving in smaller lakes or river sections [24–26].

Alternative acoustic telemetry systems have been developed for the study of the behavior of
marine coastal fishes [27]. In such applications, an acoustic transmitter is implanted in the fish
that emits a periodic series of ultrasonic pulses that are eventually detected by one or more sub-
merged receivers [28–30]. The standard data that one obtains is a time-series of detections
(including of course many missing data) from an array of spatially spaced receivers. Generating
precise positions is only possible by examination of multivariate time-series resulting from
arrays where hydrophones are located reasonably close to each other. Improved acoustic telem-
etry systems have recently been designed for high resolution fine-scale behavioral studies based
on automated time synchronization of acoustic signals received by various hydrophones (e.g.,
VPS system from Vemco1 or the MAP system by Lotek1, [19,31,32]). However, the most
commonly used system for learning about movement behavior in marine fish currently con-
sists of arrays of fixed automatic omnidirectional receivers without a fine time synchronization
[33].

A detection event occurs when a tagged fish with a transmitter is sufficiently close to the
receiver. The fish’s position is still frequently interpolated from the position of the receivers
that have detected the fish over a predetermined period of time or time-step [34–36]. However,
this procedure may result in biased positioning and may induce incorrect conclusions regard-
ing the characterization of the home range behavior [37–39] or, in general, any other character-
istics of fish’movement [40]. Moreover, there is substantial evidence that the probability of
detection is not only function of the distance between a fish and a hydrophone but that it can
also be highly influenced by several environmental factors that affect sound propagation in
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water, such as water currents, tidal phase or environmental noise [41]. All these factors—either
isolated or combined—may introduce bias when positioning an animal and they can in turn
affect the inference of the mechanisms of home range behavior [42–44]. Therefore, it has been
recommended to set acoustics transmitters at known positions within the array (which are
known as beacon tags or control tags) for calibrating the environmental effects on the probabil-
ity of detection [45–47]. To make use of information from these control tags, it is important to
develop novel statistical methods that are able to incorporate observational error when the aim
is to infer precise positional data from acoustic tracking. Only then can the movement mecha-
nisms that generate a given home range pattern be accurately estimated and the between-indi-
vidual variability in home range behaviour be properly described.

In this context, state-space models (SSM) have emerged as one of the most promising tools
to study animal movement in the wild [40] because they nicely combine a process model (i.e.,
the movement model that predicts fish position at any time) with an observation model (i.e.,
the model that properly infers the fish position from the data generated by the tracking system)
[48–50]. In SSM, the process model predicts the future fish position given its current position
and the mechanistic properties of the movement model, while the observation model provides
the probability of obtaining a particular observation (i.e., the number of detections events per
receiver per time unit) conditional on the true (and unobserved) fish position [40,51]. The
environmental-related changes in the probability of detection can be monitored through con-
trol tags located at known positions within the array, and they are included in the modelling
process through the observation model [20]. Pedersen and Weng [52] developed an innovative
SSM approach that combines a bivariate OU movement model with an appropriate observa-
tional model for acoustic tracking data, and demonstrated its robustness and usefulness for
estimating the parameters characterizing the home range movement in a coral reef fish.

Here, based on the same conceptual SSM proposed by Pedersen and Weng [52], we present
an alternative Bayesian fitting strategy for estimating the parameters of an OUmovement
model (exploration rate, location and size of the home range). Pedersen and Weng’s SSM solu-
tion is based on frequentist statistics, while ours is based on a Bayesian framework. Our meth-
ods are not meant to revive the frequentist-Bayesian debates. Instead, our approach should be
considered as a convenient alternative for those used to the technicalities and the Bayesian way
of reasoning. The Bayesian SSM developed here is highly flexible and it properly deals with the
data-sets produced by acoustic tracking arrays. Moreover, it is easily customizable by any other
end-user because an R-code is provided associated with our paper (see S1 Appendix). We
developed the model framework and tested its robustness via extensive computer simulation
before fitting it to a real data-set of a small-bodied coastal fish. The case study presented here is
deliberately simple, but it is representative for many small-bodied sedentary coastal species
(e.g., those inhabiting reefs or other temperate coastal habitats) in the sense that many of the
coastal species have relatively small and stable home ranges [53].

Materials and Methods

Ethics Statement
The real data-set is composed of a collection of acoustic detections of wild free-ranging pearly
razorfish, Xyrichtys novacula tagged with acoustics tags in 2011. The capture and tagging of the
individuals were authorized by those responsible for marine natural resources and the Marine
Protected Area (MPA) of Palma Bay (Mallorca Island), the Fisheries Department of the Bale-
aric Islands, through a permit to the CONFLICT Project (ref: CGL2008-00958) and to the
REC2 Project (ref: CTM2011-23835), both of them funded by the Spanish Ministry of Science
and Competiveness. Our study did not involve endangered or protected species, and no
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animals were sacrificed. Acoustic tags were attached to fish after anesthetization with MS-222,
and all efforts were made to minimize fish handling and harm.

Theoretical assumptions
The SSM developed here assumes that actual fish positions constitute a hidden (unobserved)
Markovian state variable that must be estimated from the pattern of detection events on each
of the acoustic receivers while following a predetermined mechanistic movement model.
Receiver detections of a sound signal emitted by a fish are assumed to constitute stochastic
events that depend not only on the distance between the fish and the receiver but also on envi-
ronmental variables affecting sound propagation [20]. Therefore, our approach combines two
different modules: (i) the fish movement model, and (ii) the observational model (Fig 1).

Fish movement module: a process model to describe the mechanistic
pattern leading to the establishment of a home range
The most widely used model for describing animal movement are random walks (RW) [54,55].
Many different forms of RW have been used to describe the different types of movements
encountered in different scenarios and species [8]. The RW case is uncorrelated, i.e., the direc-
tion of movement at a given time step is independent of the previous directions of motion,
which means that the location at a specific time step depends on the location at the previous
time step plus a random term. Moreover, RW assume no bias, i.e., there is no preferred direc-
tion of movement. Movement under such circumstances is Brownian, and the pattern pro-
duced at the population level is standard diffusion [56]. Simple RWs are, therefore, not a
reasonable choice for describing the movement of the increasing number of fish species for
which relatively small and temporally stable home ranges have been reported [3]. In these
cases, animals do not move freely within large patches of suitable habitat. Instead, there is a
need for an additional, possibly memory-driven behavioral rule, according to which each indi-
vidual will tend to be attached to a specific site [57,58]. Such a movement within relatively
small home range can be described by an OU process [8,13]. Accordingly, fish move within a
harmonic potential field, the strength of which describes the extent of their home range. The
rationale behind this model is that fish still move within a homogeneous environment follow-
ing random stimuli (e.g., food patches or predatory threat), but this rule is combined with a
tendency to remain around a specific point, designated as the center of the home range [14].

Specifically, we consider that the trajectory of a fish, r(t) = (x(t), y(t)), is described by the sto-
chastic Langevin equation [59]:

~rðtÞ ¼~rHðtÞ þ ~DðtÞ ð1Þ
where~rH denotes the position of the center of the home range at time t. In general, the center
of the home range can be dependent on t, expressing for example that during day-time the fish
wanders around a particular feeding place, while it is constrained to a different spatial area dur-
ing night-time.

The displacement ~DðtÞ from the instantaneous center of the home range at any time is
given by the OU process

d~DðtÞ
dt

¼ �kðtÞ~DðtÞ þ~xðtÞ ð2Þ

which represents a fish that is attracted toward the center of its home range by a central har-
monic force of instantaneous strength k(t), while it is also subjected to an external random
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force. The random force is described by the Langevin term~xðtÞ, which is a bi-dimensional,
white Gaussian process of zero mean, variance (ε) in each spatial coordinate and no correlation
among them ([14], but see [52] for an alternative definition that may translate in elliptical
home range). Again, the time dependence of k and ε expresses that the fish behavior may
change across t, for instance some species exhibit two different states (e.g., foraging or resting
type of movement).

The general solution of Eq 2 is:

~rðtÞ ¼~rHðtÞ þ e�QðtÞ ~D0 þ
ðt
0

xðt0ÞeQðt0Þdt0
2
4

3
5 ð3Þ

where Q(t) is given by:

QðtÞ ¼
ðt
0

kðt0Þdt0 ð4Þ

A suitable discretization (t = nΔt) of the fish trajectory described by Eqs 3 and 4 is given by:

~rnþ1 ¼~r H
nþ1 þ e�ðQnþ1�QnÞð~rn �~rHn Þ þ~Rn ð5Þ

where~rHn denotes the position of the center of the home range at time t = nΔt,

Qnþ1 � Qn ¼
ððnþ1ÞDt

nDt

kðt0Þdt0 ð6Þ

Fig 1. Directed acyclic graph demonstrating the Bayesian state-space model (SSM) approach
developed in this paper. The unobserved position~r at time step n is generated following a combination of
movement parameters (the process model) of the fish:~r H (position of the center of the home range), k and
radius, and depends in the previous position~r at n-1. The observed data (number of detection, ND) at time
step n consists in the number of detections over n by each of the omnidirectional receivers (j in R). Note that
ND at n is independent of the ND at n-1 and is generated using the probability of detection by receiver j at n
time unit (PDj,n) determined by a logit function (with parameters α and β at the n time) of the distance (d at n)
between the (unobserved) fish position and the (known) receiver position at the n time (observational model).
The parameters of the state-space model (movement parameters) were estimated using a Bayesian
approach.

doi:10.1371/journal.pone.0154089.g001
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and~Rn is a stochastic, normally distributed, variable with zero mean and standard deviation
(σ):

sn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εnð1� e�2knDtÞ

.
2kn

r
ð7Þ

Eqs 1 to 7 apply to the general case in which~rH , k and εmay be time-dependent and define dif-
ferent behavioral states. However, here we develop the simplest case applied to species with
diurnal active life-styles. For example, our case species, the pearly razorfish remains inactive
and buried in the soft bottom during night-time (see below for more details of the biological
model selected for the real data-set). When the parameters of the movement model are con-
stant (e.g., during day-time in the pearly razorfish), Eqs 1–7 simplify, and the movement of the
fish can be described by

~rnþ1 ¼~rH þ e�kDtð~rn �~rHÞ þ~Rn ð8Þ

where~Rn is a stochastic, normally distributed, variable with zero mean and standard deviation
(σ):

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εð1� e�2kDtÞ

.
2k

r
ð9Þ

The biologically relevant effect is that the movement of the fish is stochastic within a given
spatial area surrounding the center of the home range. The “radius” of the circular home range
(radius, the radius of the area within which a fish has a 95% probability of being found when a
large period of time is considered) depends on k and ε [14]:

radius ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ε lnð1� 0:95Þ

k

s
ð10Þ

Palmer et al. [14] developed the biological interpretation of this specific version of a random
walk for marine coastal fishes. While the size of the circular home range (radius) depends on
the ratio ε/k and determines the potential size of the space use of the individual in meters, the
parameter k of the model is the rate of exploration (in min-1), which determines the slope of
the curve describing the cumulative space used in function of time or how quickly the individ-
ual explores the whole home range. Thus, k represents the speed by which an individual moves
through its home range.

Observational module: modelling the probability of detection using
control tags
The second module of our SSM deals with the observational model (Fig 1). As commented
above, the true fish positions~rðtÞ are unobserved. Instead, the only information obtained by an
array of acoustic receivers consists of a detection pattern (i.e., how many detections are regis-
tered during the n time-steps by each of the acoustic receivers of the listening array, or NDn,j).
The probability of detecting a signal (PDn,j) is described by a logistic function [20,42,44,52] of

the distance dn;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � xRECjÞ2 þ ðyn � yRECjÞ2

q
between the true fish position at n, (xn, yn),
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and receiver j (j in R receivers), located at (xRECj, yRECj),

Log PDj;n

.
1� PDj;n

� �
¼ aþ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxn � xRECjÞ2 þ ðyn � yRECjÞ2

q� �
ð11Þ

Parameter estimation
Given the input data (a matrix consisting in the number of detections, NDn,j, at each one of the
j receivers during n time-steps), the goal is to estimate both the value and uncertainty of the
movement parameters (~rH , k and radius). In the fish movement module (upper level in Fig 1),
we used the movement model defined by Eqs 8 and 9, and for the observation module (lower
level in Fig 1), we used Eq 11. Concerning such an observation module, it is well known that a
detection event mainly depends on the distance between a fish and a receiver (α and β in Eq
11) but it is also influenced by environmental conditions [42–44]. These dependencies are
explicitly modelled and estimated from the input data, and α and β were estimated in our appli-
cation using a control tag moored at known distances from each of the receivers [47]. The tem-
poral scale at which α and β should be estimated is case-specific. In our case, with no tidal
variations, a daily scale was chosen for simplicity (see below). This means that the values αday
and βday were considered constant at the within-day scale. Again, for simplicity, αday and βday
were estimated in preliminary and independent statistical analyses, and were considered fixed
and supplied as data to the Bayesian model detailed below.

The movement parameters (and uncertainty) of the SSM were estimated using a Bayesian fit-
ting strategy [60]. The model was implemented and run using the R2jags library of the R pack-
age (http://www.r-project.org/), which opens JAGS (http://mathstat.helsinki.fi/openbugs/).
Three Markov Chains Monte Carlo simulations (MCMC) were run, and minimally informative
prior knowledge was assumed (see S1 Appendix). Specifically, k was assumed to follow a uni-
form distribution bounded between zero and 1 min-1. The radius, and the latitude and the longi-
tude of the center of the home range were assumed to follow a normal distribution. In all four
cases, the parameters of the prior distributions ensured a nearly flat prior distribution (see S1
Appendix). In addition, for demonstrative purposes, we compared the posterior distributions
resulting when minimally informative priors were used with those obtained when biological
information is available for setting the priors, and when alternative prior distributions were
imposed. The first 10,000 iterations for all of the parameters were discarded (burn in period),
and a thinning strategy was adopted to ensure the temporal independence of successive values
within the chain (only one out of every 10 consecutive values was kept). The convergence of the
MCMC chains of all parameters was assessed by visual inspection of the plots of the iterations
and tested using the Gelman-Rubin Statistic [61], with values< 1.1 indicating convergence
[62]. Convergence was reached after a variable number of iterations. Depending on the simula-
tion or the real case of tagged fish (see below), between 3,000 and 9,000 valid iterations were
retained after burning and thinning for describing posterior distributions. A fully customizable
R-code (corresponding to one simulation experiment; see below) is provided in S1 Appendix.

Precision and accuracy of the analytical approach: simulation
experiments
Before applying the Bayesian SSM described here to a real data-set, the accuracy and precision
of the estimations and the effect of the prior distribution in the posteriors were checked via
computer simulation. The simulation experiments were aimed at disentangling the effects of
two issues when estimating the movement parameters: (i) different combinations of movement
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parameters in which the exploration rate (k) and the radius of the home range varied mirroring
the between-fish variability observed in the real study-case (sim 1 to 4, Table 1), and (ii) the
effect of the observational time-step, defined as the fraction of time where the detections are
pooled (5, 10, 15, 30, 60 and 90 min). Note that in all the simulation experiments, the transmit-
ter emitted one acoustic signal per minute, which is the actual emission period in the case of
the pearly razorfish (PT-2, Sonotronics, Inc., Tucson, Arizona, USA; [63]). Therefore, the sim-
ulated fish was moved every minute and the detection (or not) by each of the receivers in the
array was checked with the same periodicity. However, depending on the specific simulation
experiment, the detections were pooled in different time-steps as mentioned above and would
be typical in real applications.

Two series of simulations were conducted. In the first, we generated a total of 24 fish trajec-
tories using Eqs 8 and 9 (Fig 2) considering four realistic combinations of movement parame-
ters (k and radius; Table 1), which were analysed after pooling the number of detections at the
6 different observational time-steps. A simulated squared array of 25 evenly spaced (300 m)
omnidirectional receivers and a sequence of αday and βday, estimated using control tags, both
inspired by the settings of the acoustic tracking study described by Alós et al. [63], were used to
generate a matrix of acoustic detections per time-step (NDn,j) for each one of the 24 simulated
trajectories (see S1 Appendix). The tracking period was 12 days. However, to mirror diel
behavior of the razor fish, the fish was moved only during 14 light-hours per day, which means
that a fish path lasted for 10,080 positions (or 12×14×60 min). Therefore, the data input for the
Bayesian analyses of each simulation experiment consisted of a multivariate temporal series of
number of detections per time-step, which was a matrix of 25 columns (receivers) by 2016,
1008, 672, 336 or 168 rows (for a time-step of, respectively, 5, 10, 15, 30, 60 and 90 minutes).
Concerning the detection probability, we generated a time sequence of αday and βday based on
the between-day variability currently observed, which has been assessed by fitting the number
of detections actually obtained by control tags moored in a known position in the array of
acoustic receivers [63]. In our case, the choice of a daily scale for the detection probability is
justified by the low temporal variability observed in the real case study (Fig 3) [63]; this scale
should be modified to fit the case specificities of future acoustic tracking studies (see S1
Appendix).

In summary, for each of the 24 simulations, fish were moved within the array and a new
position was defined after one minute (Eqs 8 and 9). The probability of detection by each one
of 25 omnidirectional receivers was then calculated as a function of (i) the distance between the
fish and the receivers and (ii) the day-specific values of αday and βday (Eq 11). These predicted
probability values were compared with random values extracted from a uniform distribution

Table 1. Characteristics of the temporal series of acoustic detections considering four combinations of movement parameters (sim 1, sim 2, sim 3
and sim 4) to test the performance and accuracy of the Bayesian state-space model developed here. The table shows the number of days of the time
series and the total number, mean and s.d. of detections generated considering a time-step period of 15 min. The table also shows the specific values of the
movement parameters simulated (exploration rate of the home range kmin-1, the radius in meters of the circular home range, and the latitude and longitude in
meters of the center of the home range).

Characteristics of the simulated temporal series of
detections

Movement Parameters (simulated)

Simulation ID Days Initial day Detections Mean s.d. k (min-1) Radius (m) Longitude (m) Latitude (m)

Sim 1 12 2011-08-01 31671 47.1 4.9 0.001 245 0 0

Sim 2 12 2011-08-01 30617 45.6 5.0 0.001 387 0 0

Sim 3 12 2011-08-01 31343 46.6 4.8 0.01 245 0 0

Sim 4 12 2011-08-01 31466 46.8 4.8 0.01 387 0 0

doi:10.1371/journal.pone.0154089.t001
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between zero and one to simulate detection (or not). Finally, the number of detections by each
receiver was cumulated according to the specific time-step. We then fitted the Bayesian SSM to
the input data produced by these 24 simulation experiments and the estimated movement
parameters (posterior median and Bayesian Credibility Intervals, BCI, 2.5% and 97.5% for k,
radius and the position of the center of the home range) were compared with the true (known)
values.

The second series of simulations aimed assessing the accuracy and the precision of the
Bayesian model, in particular the effect of the priors in the posterior distributions. These sec-
ond series of simulations were focused in the most extreme scenarios in terms of movement
parameters (sim 1 and sim 4, Table 1). The goal was to obtain precise estimates of accuracy and
precision considering a time-step of 15 min and 30 min according to the first block of simula-
tions (see result below for relevant bias starting at time-steps of 30 min). Three simulations sce-
narios were then considered: (i) sim 1 with a 30 minutes time-step, (ii) sim 4 with a 30 minutes
time-step and (iii) sim 4 with a 15 minutes time-step in line with the results of the first set of
simulations. In these three cases, instead of a single fish, the simulation experiment was

Fig 2. Simulated data for testing the feasibility and accuracy of our approach. Discrete-time trajectories of the four movement parameters combinations
(sim 1, sim 2, sim 3 and sim 4, Table 1) generated for 6 different time-steps periods in min (5, 10, 15, 30, 60 and 90 min) to test the accuracy and the
performance of the analytical approach. The resulting numbers of acoustic detections were obtained through the simulation experiment for the 24 movement
trajectories, and the movement parameters and positions were estimated using a Bayesian tate-space model proposed here. Results were compared with
the (known) real values.

doi:10.1371/journal.pone.0154089.g002
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repeated for 50 fish to obtain 50 replicates of each simulation. The percentages of simulations
where the known parameters were properly estimated (where the estimated BCI of the parame-
ter included the true value) were quantified. Finally, the outcomes of imposing different priors
were evaluated using a single simulation by comparing the posterior distribution and a set of
five different prior distributions. We focused only on the case of the radius of the home range
because data were more easily available for this parameter. In the case of the pearly razorfish,
the 95% of the kernel utilization distribution occurred within an averaged (between-fish) accu-
mulated area and s.d. of 0.32 ± 0.13 km2 which is equivalent to a radius of 314 ± 67 m [63]. By
providing a fish with a true radius of 245 m (sim 1 above), the BCI were compared after setting
five different priors.

Fig 3. Simulated and real probability of detection in function of the distance. Daily (n = 10 days)
probability of detections (logit function with parameters α and β) against the distance considered in the
simulated exercise (upper panel) and real-data (down panel) implemented in the observational model of the
Bayesian state-space model described in Fig 1. Note the low variability observed in our case study. The
variability in the logit models can be easily modified and adapted to any other case as the parameters of the
model (α and β) can be estimated (using a control tag) and included in the analytical approach for each time
step (see Material and Methods).

doi:10.1371/journal.pone.0154089.g003
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Case study—the pearly razorfish, Xyrichtys novacula
The Bayesian SSM was applied to a collection of acoustic detections from an acoustic tracking
experiment done in 2011 where the movement of several pearly razorfish was monitored for a
short period of time (~20 d: the length of tracking period is limited by the battery life span,
which in turn is limited by the fish size) using an array of 21 omnidirectional acoustic receivers
(model SUR-1, Sonotronics, Inc., Tucson, Arizona, USA) in the waters of Mallorca Island, NW
Mediterranean (see the details of the receivers array in [63] and S1 Dataset). The pearly razor-
fish is a small protogynous monandric hermaphrodite with marked sexual dimorphism [64,65]
and prefers habitats characterized by sandy soft bottoms [66,67]; the species is highly targeted
by the recreational fisheries in temperate areas in the Mediterranean [68].

We selected six tracked individuals in 2011 that generated sufficient data following the deci-
sion-tree criteria to discard potential mortalities described in March et al. [69]. Moreover, it is
well known that after the implementation of the acoustic tag X. novacula show a short period
of abnormal behavior during which the fish remain buried in the soft [63]. Accordingly, we
used Continuous Wavelet Transformations (CWT) using the sowas library in R-package to
detect the normal behavior to set the initial day of the time-series of acoustic detections follow-
ing Alós et al. [63]. We only considered the day-time detections as the pearly razorfish remains
inactive and buried in the soft bottom during the night-time, which prevents detections [63].
The resulting time series of detections for each tagged fish are presented in Table 2 and are rep-
resentative of the typical data generated in this type of acoustic tracking study based on arrays
of omnidirectional receivers (e.g., [70–72]). We fitted the Bayesian SSM to these 6 tagged fish,
and the posterior distribution of the movement parameters (latitude and longitude of the cen-
ter of the home range (~rH), radius and k) and their uncertainty (BCI) were summarized for
each individual. Following the results of the simulation exercise (see Results), we decided to fit
the Bayesian SSM considering a time-step of 15 min.

Results

Simulation experiments
The Bayesian SSM retrieved the movement parameters of the simulated fish trajectories with
acceptable precision and accuracy in most of the combinations of movement parameters (sim
1, 2, 3 and 4) and for the six time-steps that were considered (Fig 4). The Bayesian Credibility
Intervals (BCI, 2.5% and 97.5%) were usually tight, and in most cases (84.4%) the true value
was within the BCI, which indicated that the results obtained with the Bayesian approach were
accurate in most of the cases (Fig 4). Regarding the estimation of the latitude and longitude of
center of the home range (~rH in meters), the model fit yielded BCIs that included the real value
in almost all cases (Fig 4). However, the uncertainties associated with estimating~rH were larger
in sim 1 (k = 0.001 min-1 and radius = 245 m) and sim 2 (k = 0.001 min-1 and radius = 387 m)
than in sim 3 (k = 0.01 min-1 and radius = 245 m) and sim 4 (k = 0.01 min-1 and radius = 387
m). Regarding the exploration rate (k in min-1), the Bayesian SSM retrieved BCIs that included
the true value except for the two largest time-steps (i.e., 30, 60 and 90 min), where k was overes-
timated (Fig 4). Moreover, precision of k was smaller in sim 3 and 4, suggesting positive rela-
tionship between uncertainty and how fast the individual explores the home range (Fig 4).

The estimations regarding the radius were similar to the results obtained for k: most of the
estimated BCIs included the true value, with the exception of the two largest times-steps (60
and 90 min) where the radius was overestimated (Fig 4). In the case of the radius, the uncer-
tainties associated with the estimation of the parameter were similar for all combinations (Fig
4). Overall this first series of 24 simulation experiments suggested a good performance and
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accuracy of the Bayesian SSM unless the time-step is large (30, 60 or 90 min), especially for the
simulations involving large exploration per unit of time (i.e., high k in simulation runs 3 and 4,
Table 1). Moreover, the Bayesian SMM also seems to properly retrieve the original trajectory of
the simulated fish, which supported a good performance for positioning the fish (Fig 5).

Table 2. Characteristics of the time-series of acoustic detections obtained from 6 individual of pearly razorfish, Xyrichtys novacula tracked in the
waters of Mallorca Island (NWMediterranean). The table shows the characteristics of the individuals tracked, the acoustic tag identification (ID) and the
gender and the total length in mm of the individual. The time-steps defined the number of 15 min periods (n), the total detections shows the overall number of
detection received by a given individual, and mean and standard deviation (s.d.) of detections shows the average number of detection per time-step gener-
ated for each individual tracked.

Fish ID Gender Total length Time-steps (n) Days Initial Day Total Detections Mean detections s.d. detections

201102 Male 187 842 15 01/08/2011 27709 33.1 18.2

201104 Male 209 842 15 01/08/2011 36885 44.1 20.4

201107 Male 185 842 15 01/08/2011 21123 25.3 17.0

201109 Female 158 675 12 01/08/2011 9158 9.8 8.6

201111 Female 159 842 15 01/08/2011 39468 47.2 12.1

201113 Male 192 842 15 01/08/2011 48940 58.4 19.8

doi:10.1371/journal.pone.0154089.t002

Fig 4. Estimated and real movement parameters resulted from the simulation experiment. Estimated Bayesian Credibility Intervals (BCI, 2.5% and
97.5% as point range in red) using the Bayesian state-space model proposed here and real values (as a horizontal dashed blue line) of the movement
parameters (latitude and longitude in meters of the center of the home range, k in min-1 and radius in meters) in each of the combinations of different time-
steps considered here (5, 10 15, 30, 60 and 90 min) and four simulations (overall 24 simulated trajectories). In most cases the estimated BCI included the real
value suggesting good performance of the model. Only the estimated values for the time-steps periods 30, 60 and 90 min in simulation 3 and 4 were
consistently biased, suggesting a poor performance for this particular type of fish movement.

doi:10.1371/journal.pone.0154089.g004
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The results obtained from the second series of simulation experiments (50 replicates) con-
firmed the general picture depicted in the first series of simulation experiments for a single fish
(Table 3). When k and radius were small (sim 1), the largest time-step considered (30 min) had
no or small effect, and the estimates of the movement parameters were accurate, which sug-
gested a good performance of the Bayesian SSM (Table 3). However, when k and radius were
larger (sim 4), the largest time-step produced slightly biased (overestimation) estimates for k,

Fig 5. Estimated and real fish trajectories resulted from the simulation experiment. First six days of the estimated (in blue) and real (in red) discrete-
time trajectories of the 24 simulated trajectories. The estimated trajectory corresponds to the Bayesian mean, and the error is represented in the figure as a
density plot of 100 trajectories re-sampled from the posterior distribution generated by the state-space model.

doi:10.1371/journal.pone.0154089.g005

Table 3. Percentages of agreement (% of replicas where the estimated Bayesian Credibility Interval, BCI, 2.5% and 97.5% included the true-known
value) for eachmovement parameter obtained from the second series of simulation experiments based in 50 replications of sim 1 and sim 4 con-
sidering a time-step of 15 and 30min.

(%, n = 50) Time-step = 15 min

Simulation ID k Radius Longitude Latitude

Sim 1 96% 92% 98% 98%

Sim 4 78% 90% 92% 90%

(%, n = 50) Time-step = 30 min

k Radius Longitude Latitude

Sim 1 98% 92% 98% 100%

Sim 4 8% 86% 90% 90%

doi:10.1371/journal.pone.0154089.t003
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while the other parameters remained unbiased (Table 3). The overestimation observed in k was
notably reduced when smaller time-steps (15 min) were used, and the percentage of BCI con-
taining the true value raised from 8% to 78% suggesting a better performance of a 15 min time-
step (or smaller) than 30 min (or larger) when k and radius were large (Table 3).

The outcomes of imposing different priors were evaluated using a single simulation. For a
uniform distribution bounded between 0 and 10,000 m, the estimated BCI of the radius (real
value 245 m) was 185 and 405 m. For a normal distribution with zero mean and a large vari-
ance (tolerance = 10−8), the BCI was 178 and 417 m, and for a normal distribution with
mean = 314 m and the observed between-fish variance, the BCI was 198 and 357 m. Finally, for
a normal distribution with mean = 314 m and a variance ten times larger than the observed
between-fish variance, BCI was 193 and 357 m. Therefore, when minimally informative or rea-
sonable priors were assumed, posteriors were largely narrower than priors, and BCIs were simi-
lar and included the true value. Conversely, for a normal distribution with mean = 100 m and a
narrow variance (tolerance = 0.01), BCI was 133 and 157 m. Therefore, as expected, when very
informative, but biased priors were assumed, posterior distributions did not include the true
value.

Case study of pearly razorfish
The results of the simulation experiments above suggested that a time-step of 15 minutes or
less provided the most accurate and precise estimates of the movement parameters in most of
the simulation cases that were evaluated. As computation time exponentially increases with the
size of the input data, we considered a time-step of 15 min for fitting the real data set (~ 3 h per
individual). The Gelban-Rubin statistic, which assessed the convergence of the model parame-
ters, was below of 1.1 in all cases. Table 4 shows the BCIs of the estimated movement parame-
ters for the 6 individuals of pearly razorfish that were analysed. The BCIs did not overlap in
many cases, suggesting the existence of individual differences in the movement parameters
(Fig 6). Fig 7 displays the estimated trajectories of the individuals tracked showing different
patterns of home range behavior.

Discussion
A particular movement behavior that constraints the animal within a small area or home range
has several ecological, evolutionary and managerial consequences for many exploited fish spe-
cies. With the recent miniaturization of acoustic tracking devices, fisheries scientists and

Table 4. Posterior distributions of the Bayesian state-space model fitted to the temporal series of acoustic detection generated by 6 individuals of
pearly razorfish, Xyrichtys novacula, tracked in 2011 to estimate the home rangemovement parameters (the exploration rate of the home range k,
in min-1), the radius of the circular home range (in m) and the latitude and the longitude in UTM). The table shows the Bayesian mean and the uncer-
tainty associated with the movement parameters through the Bayesian Credibility Interval (BCI, 2.5% and 97.5%).

Movement parameters (real)

Longitude (m) Latitude (m) k (min-1) Radius (m)

Fish ID Mean BCI 2.5% BCI 97.5% Mean BCI 2.5% BCI 97.5% Mean BCI 2.5% BCI 97.5% Mean BCI 2.5% BCI 97.5%

201102 477412.9 477390.8 477433.2 4364924.2 4364901.5 4364945.2 0.005 0.003 0.007 125.2 107.4 151.7

201104 477337.0 477274.6 477404.7 4364857.7 4364793.8 4364923.9 0.002 0.001 0.002 231.2 189.1 296.9

201107 477428.1 477412.8 477444.4 4364639.2 4364622.3 4364656.0 0.009 0.006 0.012 119.7 104.5 137.7

201109 476363.7 476316.4 476410.7 4364806.0 4364763.3 4364848.6 0.004 0.002 0.007 177.8 143.1 223.7

201111 477183.0 477166.0 477200.3 4365399.4 4365382.3 4365415.8 0.004 0.003 0.006 105.9 91.7 122.8

201113 476904.8 476885.6 476922.6 4365193.3 4365176.4 4365213.3 0.004 0.002 0.005 110.5 96.1 132.8

doi:10.1371/journal.pone.0154089.t004
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ecologists have now a suitable tool for disentangling the mechanisms behind the behavior that
constraints fish within a home range or, more generally, behind any movement behavior
[27,28], even for small-bodied fish such as the pearly razorfish. However, given that the data
collected by arrays of omnidirectional acoustic receivers (i.e., number of detections per time
unit) are only indirectly related to the fish’s position, the estimation of the movement parame-
ters is often imprecise. This may in turn limit the biological interpretation of acoustic tracking
data [40]. In this paper, we presented a Bayesian approach for fitting a SSM, which joins a
mechanistic home range movement model (in our case, a random walk weighted by an OU
process), with an appropriate observational model. This observational model predicts detection

Fig 6. Estimated (plus uncertainty) movement parameters in case study applied to pearly reazorfish
Xyrichtys novacula, using a Bayesian state-space model. Estimated Bayesian Credibility Interval (BCI,
2.5% and 97.5% as point range in red) of the movement parameters using a Bayesian state-space model for
discrete-time (based in a time-step of 15 min) trajectories of 6 individuals of pearly razorfish, Xyrichtys
novacula tracked in 2011 using an array of omnidirectional receivers in the waters of Mallorca Island (NW
Mediterranean).

doi:10.1371/journal.pone.0154089.g006
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probabilities not only from the distance between a fish and the receivers, but it also takes into
account that the distance-related detectability can be affected by environmental factors. Related
work combining movement and observational models based on a frequentist solution for esti-
mating the movement parameters in a SSM have recently been published [52]. The Bayesian
solutions we propose follows this research and constitute a suitable alternative for those
used to the Bayesian way of reasoning. With both a frequentist [50] and a Bayesian SSM
approach available, the methodological ground is developed for improving the mechanistic

Fig 7. Estimated trajectories in case study of pearly razorfish, Xyrichtys novacula, using a Bayesian
state-space model. Estimated trajectory using a Bayesian states-space model for discrete-time (based in a
time-step of 15 min) trajectories of six individuals of pearly razorfish, Xyrichtys novacula (the picture shows an
image of the species) tracked in 2011 using an array of omnidirectional receivers in the waters of Mallorca
Island (NWMediterranean). The plot shows the continuous path and the estimated positions as points in
latitude and longitude (UTM). The trajectories have been centered to the same center of the home range to
improve visualization.

doi:10.1371/journal.pone.0154089.g007
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understanding of home range behavior and its ecological and evolutionary consequences across
a wide range of animals.

SSMs are among the most promising analytical tools for analyzing movement data gener-
ated from tracking systems [40,49], including acoustic applications [51,52]. All SSM are based
on combining two models: (i) the process and (ii) the observational model. Concerning the
process model, the specific movement model we choose for describing the movement behavior
of our study species is able to unravel the behavioral mechanisms behind the emergence of a
spatially confined home range, not only in terms of its size (radius), but also the location of the
center of the home range, and to study how quickly a fish explores its home range (parameter
k, [14]). These parameters can be interpreted as individual traits that might be under selection
by natural or anthropogenic forces [77]. Moreover, the SSM modelling approach is flexible and
it can easily accommodate other types of movement behaviors if they fit the specificities of the
tracked species (e.g., correlated random walks following an environmental driver, [73]). One of
the key improvements of SSM is the incorporation of an observational error module. In the
same way that is demonstrated in [52], our approach allows for the explicit incorporation of
the effects of environmental variability over the general pattern of a distance-dependent detec-
tion probability (Fig 1). Specifically, the detection probability of an acoustic pulse transmitted
by a fish was described by a distance-dependent logistic model, shown in Eq 11 and elsewhere
[42,52,74]. The parameters of the logistic curve (α and β) can be estimated at the desired tem-
poral scale using a control tag (as in our case), thereby providing a solution for addressing the
variability in the probability of detection related to environmental factors [20].

One of the main novelties of the approach proposed here is technical rather than concep-
tual, in the sense that the model parameters are estimated using the Bayesian machinery.
Bayesian inference has been widely proposed as an efficient way to estimate the parameters of
complex movement models with large number of parameters [49], as is the case in the SSM
proposed here. Another potential advantage is that the Bayesian inference method allows com-
bining existing knowledge (through prior probabilities) with additional knowledge derived
from new data (through likelihood) to obtain the posterior distribution of the model parame-
ters (in our case the movement parameters and movement path) [75]. The posterior distribu-
tion of the MCMC summarizes the degree of belief of the parameter estimates, given the data.
However, rather than promoting frequentist-Bayesian debates, which is not intended by our
work, the results we obtained strongly support that posterior distributions and its biological
interpretation are virtually the same when imposing either minimally informative priors or
reasonable informative priors. Conversely, only when very informative yet possibly biased pri-
ors are imposed, the analysis may result in biased posteriors as demonstrated in our simulation
analysis. However, our simulation experiments have also demonstrated that the accuracy and
precision in the estimation of the movement parameters as well as in the positional data by our
model were reasonable. In all cases, the (known) movement parameters in the four realistic
simulation settings were properly retrieved. Only when the observational time-step considered
were 30, 60 and 90 min the parameters were not well estimated, but only for certain movement
trajectories characterized by large distance travelled per unit of time (k). This finding suggests
that mobile fishes may experience relevant changes in both position and detection probability
within the same time-step which may induce a bias in their movement path when large obser-
vational time-steps are considered. Therefore, a trade-off between how fast an individual
moves and the duration of the time-step should be considered, both in the modelling process
and in designing the array of receivers (i.e., between-array distance) as well as the periodicity at
which acoustic pulses should be optimally emitted. To that end, pilot studies aiming at generat-
ing preliminary information about the movement pattern of a given species is highly advisable
for optimizing the design of an acoustic array and the transmitter settings. The approach
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proposed by Pedersen et al. [39] or the R-code provided in the S1 Appendix should help for
conducting simulation experiments for fulfilling this task.

The application of the Bayesian SSM to case study of the pearly razorfish revealed that the
species’ activity is constrained within a very small circular home range with a radius of
145.04 ± 49.5 m (between-fish mean and s.d.) and that the exploration rate (k) of the home
range was 0.005 ± 0.002 min-1. That is, despite that the pearly razorfish is abundant within a
large area of connected sandy and soft bottom habitats, a given individual fish only uses a very
small fraction of such large area of suitable habitat, at least at the temporal scale considered
here (up to effective 15 tracking days). This pattern has been observed in other sequential her-
maphrodites living in coastal areas of the Mediterranean. For example, the radius of the circu-
lar home range estimated for the Mediterranean rainbow wrasse, Coris julis, was only 227.6 m
[14]. These findings confirmed that even relative small marine protected areas may provide a
significant protection to the adult stock of the pearly razorfish [16–18]. Moreover, our method-
ological approach provides a tool to quantify the large variability of behavior between individ-
ual fishes fish. This is especially relevant when considering the growing evidence for the
ecological and evolutionary role of between-fish variability in behavioral traits [76]. In fact,
Alós et al. [77] demonstrated how among-individual variability in the home range behavior
can generate selection gradients through harvesting individuals characterized by larger home
range radius and large exploration rate (k) that, when combined, implies that fishes with faster
swimming speeds are selectively harvested. SSM, therefore, provides a novel tool for future
studies aimed at investigating the ecological and evolutionary consequences of the home range
behavior in exploited fishes, with especial emphasis on the relationship among home range
behavior and harvesting-induced selection [78].

Although useful as discussed, the Bayesian SSM proposed here has limitations too. First, it
is a method based on a MCMC-algorithm, thus it is computation-intensive and reaching con-
vergence for all the parameter may require long computation times [75] compared with fre-
quentist solutions [52]. In our case, the real data-sets obtained for the pearly razorfish was
however analysed in a reasonable computing time (~3 hours). Nevertheless, computation time
may be a severe constraint our Bayesian approach when long time series (months or years) are
available. The recent approach suggested by Albersten et al. [12] implemented in the novel R-
package Template Model Builder (TMB) for fitting SSM models to movement data provides a
promising tool to alleviate MCMC computational costs in the future when applying the meth-
ods presented in this paper. Second, our approach is currently underexploiting some of the
potential benefits of SSM when applied to movement data. SSM is a specific case of a family of
Hidden Markov Models (HMM) where data (in our case positional data) are observed with
uncertainty [40]. HMM are becoming popular for understanding fine-scale animal behavior in
reality mining applications because of their ability to differentiate different behavioral states
from movement data [23,79]. One interesting application has been proposed by Patterson et al.
[80] who demonstrated the usefulness of the method for discriminating if a given fish is in a
resident or migratory state using electronic tagging data in the southern bluefin tuna (Thunnus
maccoyii). Therefore, as it was suggested in the theoretical framing of this manuscript, the
Bayesian SSM can be readily expanded for discriminating different behavioral states such as
foraging, hunting or spawning. Third, random effects can also be readily incorporated into
hierarchical Bayesian models to facilitate the convergence of the model parameters where the
individual movement parameters are estimated from the individual-level data but they are
assumed to be distributed around a population mean [81]. All three limitations maybe solved
in the future to improve the performance of the application of Bayesian SSM to acoustic track-
ing data.
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To conclude, the use of SSMs opens new possibilities for analysing movement data of any
animal, including of course sedentary marine fishes, which can provide novel insights for
improving our understanding of home range behavior. Fish path and movement parameters
can also be used for deriving biologically relevant information with direct application for pro-
moting the sustainability of exploited fish and for providing better understanding of relevant
spatial ecological processes. The approach demonstrated here is flexible to include different
movement processes and can be easily adapted to acoustic tracking study with other receiver
configuration arrays. Similarly, a wide range of behavioral models can be analysed, increasing
the potentials of biotelemetry as recently suggested by Krause et al. [23], Donaldson et al. [28]
and Hussey et al. [27].

Supporting Information
S1 Appendix. R-Code for fitting the Bayesian state-space model. Simulation code to generate
acoustic tracking data and to estimate the movement parameters (home range behavior) and
positions using a Bayesian state-space model.
(DOC)

S1 Dataset. Temporal series of acoustic detections of the six individuals of pearly razorfish,
Xyrichtys novacula tracked in 2011 and coordinates (in UTM) of the array of omnidirec-
tional receivers located in the waters of Mallorca Island (NWMediterranean).
(ZIP)
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