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Abstract

Congenital heart defect (CHD) is the most common cause of death from congenital anom-
aly. Among several candidate epigenetic mechanisms, DNA methylation may play an
important role in the etiology of CHDs. We conducted a genome-wide DNA methylation
analysis using an lllumina Infinium 450k human methylation assay in a cohort of 24 new-
borns who had aortic valve stenosis (AVS), with gestational-age matched controls. The
study identified significantly-altered CpG methylation at 59 sites in 52 genes in AVS sub-
jects as compared to controls (either hypermethylated or demethylated). Gene Ontology
analysis identified biological processes and functions for these genes including positive reg-
ulation of receptor-mediated endocytosis. Consistent with prior clinical data, the molecular
function categories as determined using DAVID identified low-density lipoprotein receptor
binding, lipoprotein receptor binding and identical protein binding to be over-represented in
the AVS group. A significant epigenetic change in the APOA5 and PCSK9 genes known to
be involved in AVS was also observed. A large number CpG methylation sites individually
demonstrated good to excellent diagnostic accuracy for the prediction of AVS status, thus
raising possibility of molecular screening markers for this disorder. Using epigenetic analy-
sis we were able to identify genes significantly involved in the pathogenesis of AVS.

Introduction

Congenital heart defect (CHD) is the most common type of birth defect, and affects close to
1% of all live births [1, 2]. Over 50% of children born with CHD will have at least one invasive
surgery in their lifetime, while many will have multiple surgeries. In the US, approximately 20-
30% of all infants with CHD have valve defects [3, 4].

The etiology of CHD is multifactorial and complex. Approximately 30% of children with a
chromosomal abnormality have associated CHD [5]; however, a majority of CHD cases have
no identifiable genetic abnormality. Families with autosomal dominant [6], recessive [7] and
X-linked [8] CHD have been reported; however, in the majority of cases genetic mechanisms
have not heretofore been identified. It is postulated that sporadic CHD, which accounts for
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around 80% of all cases, arises from an interaction of genetic and environmental factors [9].
Gestational diabetes, dietary deficiency, medication use, maternal age, cigarette smoking, obe-
sity, febrile illnesses in pregnancy, alcohol intake and viral infections have been reported as
maternal-environmental risk factors for the development of CHD [10]. The exact mechanisms
by which these factors cause CHD remain unknown.

At least 18 distinct types of congenital heart defects are recognized; among these aortic valve
stenosis (AVS) is one of the most common and most serious valve disease that has strong
genetic basis [11, 12]. Congenital AVS, defined as incomplete obstruction of the valve orifice, is
an important category of structural heart defect, and occurs in 3-6% of such cases [13]. There
is variability in both the site of obstruction and severity of the obstruction. Sites of obstruction
are sub-classified as valvular, subvalvular and supravalvular [14]. About half of infants with
severe AVS require surgery [15]. Mild aortic stenosis is difficult to detect prenatally; however,
critical aortic stenosis can lead to left ventricular myocardial dysfunction with endocardial
fibroelastosis, left atrial dilation and narrowing of the aortic root [16]. These changes can be a
prelude to the development of hypoplastic left heart syndrome. The present standard for pre-
natal screening is mostly based the use of ultrasonography and there is no reliable biologic
screening marker for any type of CHD [17].

Recently, some studies have identified an association between dietary folate supplementa-
tion and decreased CHD risk [18]. Deficiency in folate is known to result in hyperhomocystei-
nemia, another risk factor for CHD development [19]. Folate is a B-vitamin that supplies the
methyl group for DNA methylation and for other methylation reactions in the cell. Such find-
ings are consistent with a role for epigenetic DNA methylation in the development of CHD. In
a recently conducted genome-wide DNA-methylation analysis, we reported evidence of signifi-
cantly altered CpG methylation levels genome-wide in multiple categories of CHD compared
to controls. The study included cases of hypoplastic left heart syndrome, Teratology of Fallot,
ventricular septal defect, atrial septal defect and coarctation of the aorta [20].

The prenatal and newborn detection of CHD remains a significant challenge [21, 22]. We
undertook a study to examine genome-wide DNA methylation patterns in newborns with AVS
to identify genomic regions containing disease-related genes and epigenetic changes that may
contribute to CHD pathophysiology. An important objective of the study was to identify DNA
methylation biomarkers, serum molecules that could potentially be used in the future for risk
estimation and detection of AVS.

Materials and Methods

Genomic DNA was obtained from neonatal dried blood spots using commercial DNA extrac-
tion kits (Qiagen QIAamp®) according to manufacturer’s protocol. Many studies have
reported genome-wide DNA methylation profiles from archived dried blood spots using the
Infinium HumanMethylation450 BeadChip as a suitable template [23, 24]. Blood spot speci-
mens were collected previously for the mandated newborn screening and treatment program
run by the Michigan Department of Community Health in the State of Michigan (MDCH). All
specimens were collected between 24 and 79 hours after birth. Parents/legal guardians were
aware at the time of blood collection that residual blood spots after clinical testing may be uti-
lized for research pending review of such study requests by the MDCH. This study was
approved by both the institutional review boards from William Beaumont Hospital and the
MDCH. Limited demographic information was available for each subject including date of
sample collection, maternal age and race, gestational age at delivery and newborn sex along
with the type of CHD anomaly. Suspected or diagnosis-unknown AVS cases were excluded.
Unaffected controls had no reported medical disorder and were matched for birth weight,
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gestational age at delivery, ethnicity, year of birth, and interval from specimen collection to
testing. Our cohort included 24 AVS subjects and 24 controls. All specimens were de-identified
by removal of further protected health information and researchers were masked to subject
identity. Details of the case control cohort are available in S1 Table.

Genome-wide methylation analysis using the HumanMethylation450

Genome-wide methylation analysis was performed for 48 individuals (24 AVS subjects and 24
controls) using the HumanMethylation450, Illumina’s newest Infinium® HD BeadChip assay
for methylation (Illumina, Inc., California, USA), which contains 485,577 methylation sites
and requires only 500 ng of genomic DNA. These sites are equally distributed in the genome
and represent 96% of RefSeq genes, 95% of CpG islands and an average of 17 CpG sites per
covered gene region including the promoter, 5’UTR, coding, and 3’UTR regions. DNA methyl-
ation profiling using Illumina Infinium technology with peripheral blood lymphocytes has
been used to identify CpG sites associated with disease states [25, 26].

The DNA samples were bisulfite converted using the EZ DNA Methylation-Direct Kit
(Zymo Research, Orange, CA) according to the manufacturer s protocol. The fluorescently
stained BeadChips were imaged by the Illumina iScan. Prior to detailed bioinformatic and sta-
tistical analysis, data preprocessing and quality control was performed including examination
of the background signal intensity of both affected and negative controls, the methylated and
unmethylated signals, and ratio of the methylated and unmethylated signal intensities. The
processing is done fully according to manufacturer's protocol and 99% of the CpG loci are
determined unequivocally.

Statistical and Bioinformatic analysis

Genome-wide, gene-specific DNA methylation was measured using the Genome Studio meth-
ylation analysis package (Illumina). Following the pre-processing described above, a DNA
methylation §3-value was assigned to each CpG site. Differential methylation was assessed by
comparing the $3-values per individual nucleotide at each CpG site between AVS subjects and
controls. In order to avoid potential confounding factors, probes associated with sex chromo-
somes and/or containing SNPs in the probe sequence (listing dbSNP entries near or within the
probe sequence, i.e., within 10 bp of the CpG site) were excluded from further analysis [27-29].
Probes targeting CpG loci associated with SNPs near or within the probe sequence may influ-
ence corresponding methylated probes [30]. The remaining CpG sites were taken forward for
analysis.

The most discriminating 59 CpG sites were selected based on the pre-set cutoff criteria of
>1.5-fold increase and/or >1.5-fold decrease with p < 0.05. These sites include the highest 46
hypermethylated and top 13 demethylated CpG sites for further analysis. The identified genes
are listed in Table 1. The 59 CpG sites, corresponding to 52 genes, were differentially methyl-
ated either in the coding and/or promoter regions and were subsequently used to generate a
heatmap using the ComplexHeatmap (v1.6.0) R package (v3.2.2). We have used ward distance
for the hierarchical clustering of samples [31] (Fig 1). Subsequently these 59 CpG sites were
used to calculate receiver operating characteristic (ROC) curves and the area under the ROC
curves (ROC AUC).

Validation of methylation status by bisulfite sequencing

To confirm the results obtained from the Illumina HumanMethylation450 arrays, we per-
formed pyrosequencing analysis of bisulphite-converted DNA with appropriate oligos using
the PyroMark Q24 System and advanced CpG Reagents (Qiagen ®).
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Table 1. Highly Differentially Methylated CpG sites in Aortic Stenosis subjects. Differentially methylated genes with Target ID, Gene ID, chromosome
location, % methylation change and FDR p-value for each gene methylated. CpG sites with significant FDR p-value indicating methylation status and ROC

AUC >0.75 appear to have a strong potential as diagnostic biomarkers for AVS.

Target ID Gene Sym Chr % m Change FDR p-value AUC
1 cg10818676 DUSP27 1 37.77 6.98E-28 0.72
2 €g21498547 DLGAP2 8 24.36 5.50E-25 0.70
3 cg16464924 GAA 17 38.33 6.17E-27 0.75
4 €g08422420 SDHAP3 5 19.69 2.19E-10 0.67
5 €g24960960 SDHAP3 5 16.57 1.00E-07 0.66
6 cg08778598 SDHAP3 5 22.18 1.67E-09 0.64
7 cg11787167 NPAS3 14 21.09 2.90E-10 0.67
8 cg03748376 OR2L13 1 21.70 6.75E-10 0.61
9 cg04028570 OR2L13 1 21.63 5.12E-13 0.68
10 cg08600378 PRHOXNB 13 22.86 3.02E-19 0.73
11 cg00045070 PCSK9 1 21.65 7.98E-16 0.67
12 cg12556569 APOA5 11 18.95 2.17E-14 0.65
13 cg04836786 HLTF 3 5.68 0.1640 0.76
14 cg00071565 ODCH1 2 2.98 0.5085 0.64
15 €g23622369 HSD17B1 17 4.47 0.3173 0.60
16 €g05890887 RPL9 4 2.47 0.2188 0.80
17 cg11032634 TXNRD2 22 411 0.3061 0.62
18 €g03205258 TXNRD2 22 3.83 0.1066 0.60
19 €g26473478 C6orf136 6 5.64 0.1647 0.69
20 cg04146011 FBXL6 8 3.07 0.4184 0.55
21 €g26196700 SORD 15 4.62 0.1051 0.75
22 €g22801400 HECTD2 10 3.96 0.3084 0.53
23 €g26303934 C70rf50 7 6.06 0.0640 0.61
24 cg08082908 C70rf50 7 4.27 0.0605 0.64
25 €g27153400 ISOC2 19 5.76 0.1693 0.61
26 €g04307831 CNST 1 5.14 0.2136 0.59
27 €g27307781 CBR1 21 5.43 0.0177 0.53
28 cg12741994 CLDN11 8 4.95 0.0325 0.61
29 €g09085632 PPP2R1B 11 3.42 0.1617 0.52
30 cg07662121 MPV17L 16 8.32 0.0123 0.62
31 €g05845592 SULT1A1 16 5.79 0.1174 0.50
32 cg13885357 KRT3 12 9.17 0.0112 0.68
33 €g22469274 HOXA6 7 6.79 0.0543 0.76
34 cg17994139 HOXA6 7 6.21 0.0519 0.70
35 cg14044640 HOXA6 7 7.56 0.0033 0.69
36 €g00994804 RUNX1 21 9.74 0.0013 0.76
37 cg07169764 MCMé6 2 6.86 0.0003 0.51
38 €g19499452 PACS2 14 7.86 0.0345 0.67
39 €g22093805 4 7.03 0.0158 0.51
40 cg15128141 GALNT9 12 10.81 0.0009 0.71
41 cg18532727 C17orf51 17 7.99 2.15E-05 0.61
42 €g23763647 AKR1E2 10 8.50 1.01E-09 0.74
43 cg19865561 MICB 6 9.33 5.63E-05 0.60
44 €g22618164 WDR66 12 10.79 0.0003 0.55
45 cg21171335 WDR66 12 9.91 0.0005 0.51
(Continued)
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Table 1. (Continued)

46
47
48
49
50
51
52
53
54
55
56
57
58
59

doi:10.1371/journal.pone.0154010.t001

Target ID

cg02981003
€g21931717
cg07508773
€g21544437
€g02583546
cg25114630
€g24834873
€g23307264
cg10975354
cg13523718
€g24668570
€g22355889
cg11035303
cg01818594

Gene Sym Chr % m Change FDR p-value AUC
GPR123 10 13.27 6.83E-08 0.57
SDHAP3 5 14.60 4.22E-08 0.68
WDSUBH1 2 7.56 0.0002 0.51
2 9.72 0.0001 0.69
C14orf4 14 8.76 0.0085 0.54
CHSY1 15 8.36 0.0089 0.54
ANKRD34B 5 16.61 2.35E-07 0.69
KHSRP 19 6.24 1.61E-05 0.60
VPS13A 9 9.10 1.15E-10 0.67
PTPRN2 7 8.36 5.62E-15 0.68
KNDCH1 10 21.19 1.30E-37 0.70
ELMOD1 11 15.01 1.36E-13 0.55
ANO10 3 12.95 4.43E-09 0.61
AIMP1 4 9.31 9.29E-06 0.61

The p-value for methylation differences between case and normal groups at each locus was
calculated as previously described [32]. Filtering criteria for p-values were set at <0.05 and also
<0.01 in order to identify the most differentiating cytosines. P-values were calculated with and
without Benjamini and Hochberg False Discovery Rate (FDR) correction for multiple testing
[33]. The Benjamini and Hochberg correction tolerates more false positive genes than the Bon-
ferroni correction.

Further analysis of the differentially methylated genes was conducted for potential biological
significance. ROC curves and ROC AUC were calculated to determine the diagnostic accuracy
of specific cytosine loci to differentiate AVS from control groups. Data were normalized using
the Controls Normalization Method.

Gene ontology analysis and functional enrichment

The genes found to be differentially methylated (at FDR p-value < 0.01) were uploaded to the
web-based functional annotation tool DAVID V67 (DAVID/EASE, WebGestalt) for Gene
Ontology analysis [34, 35] including gene ID conversion, bio-pathways analysis, and the
molecular functions of methylated and unmethylated regions. Literature data mining for co-
occurrence of gene names and keywords of interest was performed using Chilibot. Only genes
for which Entrez identifiers were available were further analyzed. Pathway analysis was carried
out using Ingenuity pathway analysis (Ingenuity Systems). Over-represented canonical path-
ways, biological processes and molecular processes were identified.

Web Resources

The URLs for data presented herein are as follows:
Mumina: http://www.illumina.com/
Genome Studio: http://www.solexa.com/gsp/genomestudio_software.ilmn
Ensemble: http://www.ensembl.org/
UCSC: http://genome.ucsc.edu/
NCBI: http://www.ncbi.nih.gov/
DAVID/EASE: http://david.abcc.ncifcrf.gov/
Web Gestalt: http://genereg.ornl.gov/webgestalt/
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Fig 1. Heatmap of unsupervised hierarchical clustering of AVS data on the basis of 59 differentially methylated CpG sites. Unsupervised
hierarchical clustering analysis is very popular in identifying methylation-defined patient sub-groups. Fig 1 displays CpG sites that are at least either 1.5
fold demethylated or 1.5 fold hypermethylated in the disease (AVS) condition (red colored squares) compared to normal subjects (blue colored squares).
Differentially methylated CpG sites have been displayed in three clusters (row-wise). The figure also displays direction, fold change in disease, probe
relationship and probe annotation of differentially methylated CpG sites. Red color in the heatmap indicates hyper DNA-methylation, and blue hypo

DNA-methylation values.

doi:10.1371/journal.pone.0154010.g001
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Chilibot: www.chilibot.net
Ingenuity Systems: www.ingenuity.com
Online Mendelian Inheritance in Man (OMIM): http://www.ncbi.nlm.nih.gov/Omim/

Results

There were no differences in gestational age at birth in weeks: mean (SD) 38.75 (1.42) in AVS
subjects vs. 38.88 (1.19) in controls (p = 0.743), nor in the timing of specimen collection after
birth (in hours): mean (SD) 31.042 (11.86) in AVS subjects vs. 32.46 (8.62) in controls

(p = 0.638). There were no variations in maternal age: mean (SD) 29.87 (4.56) in AVS subjects
vs. 29.87 (4.56) years in controls (p-value 1.00). Finally, maternal race and newborn gender
were matched for analysis. Of the 52 genes identified during genome-wide methylation analy-
sis, hierarchical clustering analysis demonstrated ~10 as novel principal candidate genes that
are commonly methylated and whose methylation was associated with altered gene expression
in AVS individuals. Table 1 includes the most significantly differentially methylated CpG sites
based on FDR-corrected p-values. The methylation status is represented as percentage methyl-
ation for a given probe in the sample. A positive ‘% m Change’ value indicates an average
increase in methylation status in AVS subjects compared to control samples. Similarly, a nega-
tive ‘% m Change’ value indicates a decrease in methylation status in AVS subjects compared
to controls. The p-value indicates the significance of the differential methylation levels. The
University of California Santa Cruz (UCSC) gene name and genomic location of the C in the
CG dinucleotide and the chromosome on which it is located as provided by Illumina are also
shown in Table 1. The results obtained from the DAVID Pathway and Gene Ontology over-
representation analysis for canonical pathways and for biological processes are presented in
Table 2. Gene Set Enrichment analysis using multiple computational tools showed no signifi-
cant functional enrichment due to the relatively small size of the gene list. Therefore Gene
Ontology information for all genes given in the list was obtained and classified. DAVID path-
way analysis software was used to identify molecular pathways associated with genes having
differentially methylated CpG sites between AVS subjects and controls. Analysis was done on
genes with at least one differentially methylated CpG site based on the uncorrected p-values.

In combination with the FDR p-value indicating methylation status, the area under the
ROC curves can be used to distinguish AVS subjects from controls. All data cleaning and anal-
ysis was performed using R (version 3.2.3) and RStudio (version 0.99.489). The CpG sites cor-
responding to the 52 differentially methylated genes have a ROC AUC >0.50 including six
CpG sites with ROC AUC >0.75: cg16464924 (AUC 075; 95% CI, 0.62 to 0.89), cg05890887
(AUC 0.80;95% CI, 0.68 to 0.93), cg26196700 (AUC 0.75; 95% CI, 061 to 081), cg22469274
(AUC 0.76;95% CI, 0.63 to 0.90), cg00994804 (AUC 0.76; 0.62 to 0.89), cg04836786 (AUC
0.76; 0.63 to 0.90). At each locus, the FDR p-value for methylation difference between AVS
subjects and controls was highly significantly different. ROC curve analysis (Fig 2) narrowed
down the number of markers commonly methylated in AVS for the development and further
consideration of their role and validation and also possible use as biomarkers.

Biological processes and molecular function determination for these genes are shown in
Table 2. Genes were further grouped according to their Gene Ontology-characterized function.
Two genes were identified whose biological processes (APOA5 PCSK9) have known molecular
function (AIMP1, PCSK9, TXNRD2, CLDN11, RUNX1, MCM6, APOA5 and PCSK9).

Discussion

We have presented genome-wide differential methylation analysis of AVS subjects. To our
knowledge, this is the first study that has performed an array-based genome-wide high
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Table 2. Over-represented Gene Ontology Molecular Function and Biological Process categories as determined using DAVID Categories: AVS.
Biological Process and Metabolic Function categories for over-represented pathways determined using DAVID Pathway and Gene Ontology analysis

Category Term Term Description # of hypo and hyper %of hypo and hyper p-Value Genes
methylated genes methylated genes
annotated to the term annotated to the term
Biological G0:0048260 Positive regulation of 2 4.17 0.02 APOA5 PCSK9
Process receptor -mediated
endocytosis

Biological G0:0048259 Regulation of receptor 2 417 0.04 APOA5 PCSK9

Process -mediated endocytosis

Molecular G0:0042802 Identical protein binding 6 12.5 0.02 AIMP1 PCSK9

Function TXNRD2 CLDN11
RUNX1 MCM6

Molecular G0:0050750 low-density lipoprotein 2 417 0.03 APOA5 PCSK9

Function receptor binding

Molecular G0:0070325 lipoprotein receptor 2 417 0.04 APOA5 PCSK9

Function binding

doi:10.1371/journal.pone.0154010.t002

resolution DNA methylation in a cohort of AVS newborns. We found that epigenetic alteration
of CpG sites exhibits a relationship with AVS phenotype, not only of those located within the
CpG islands in the promoter region of genes, but also of those distributed throughout the gene
including 5° UTR, coding, and 3’UTR regions. Recent work by our group [20] found a strong
association between CpG methylation changes and the presence of multiple different types of
CHD. Another recently published study reported DNA methylation changes in patients with
Tetralogy of Fallot (TOF) using MassARRAY-based quantitative methylation analysis [36].
That study was, however, limited to targeted promoter regions. Taken together, these studies
provide evidence that DNA methylation may be critical in the genetic and environmental inter-
actions underlying cardiac morphogenesis. We have identified 59 CpG sites based on either at
least 1.5 fold demethylation or 1.5 fold hypermethylation in disease samples. We hypothesize
from the present study that altered expression of one or a combination of the 52 genes corre-
sponding to the 59 CpG sites identified by differential methylation analysis is likely to be
responsible for AVS.

There is a well-established and known association between defects in receptor-mediated
endocytosis and many diseases such as hypercholesterolemia, a condition characterized by
very high levels of cholesterol in the blood. Higher levels of total cholesterol increase the risk of
cardiovascular disease [37, 38] including aortic valve stenosis [39] and a high risk for heart dis-
ease even in childhood. The report by Chui et al [40] also showed significantly higher serum
total cholesterol concentrations in patients with aortic stenosis than in controls. However,
molecular mechanisms responsible for the association of hypercholesterolemia with CHD in
offspring remain unknown. In the present study, the identification of multiple genes modified
in AVS indicates that the phenotype is a complex trait.

DUSP27 (Dual Specificity Phosphatase 27 (Putative)) is a protein coding gene that belongs
to the dual-specificity phosphatase (DUSPs) family of proteins. These proteins play important
roles in a number of cell types and events, but are preferentially expressed in the heart and skel-
etal muscles. Li [41] conducted a Dusp27 knockdown experiment using siRNA to study its
effect on myogenic differentiation. These experiments identified this gene’s important role dur-
ing muscle and heart development. Together, these findings indicate that Dusp27 may have a
more important function in these two tissues. Arrington et al. [42] conducted exome sequenc-
ing of DNA samples from multiple affected family members with diverse CHDs and identified
gene variations in DUSP27 among the 18 variations they noted.

PLOS ONE | DOI:10.1371/journal.pone.0154010 May 6, 2016 8/13


http://www.ncbi.nlm.nih.gov/pubmed/?term=Chui%20MC%5BAuthor%5D&amp;cauthor=true&amp;cauthor_uid=11195607

el e
@ : PLOS ’ ONE Epigenetics in the Origin of Aortic Valve Stenosis (AVS)

cg05890887 €g22469274
=1 - 1_|// =1 —_ /,
© _| /// © _| /’/
o v o .7
i) ” /’/
s «© _| T @ 4 v
= o = o -
2 2
) - _| ) - _| /,’
E = E o
s L7 AUC = 0.8 s 1 UC =0.76
wd 95% CI [0.68, 0.93] 95% CI [0.63, 0.9]
L— - // o _|
o ¥ d o
T T T T T LI T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate
cg00994804 cg04836786
o | o ]
© _| < _|
o o
2 )
© o ] ® « _]
o Yo o
2 2
(4]
g S g =
S AUC = 0.76 &= =0.76
L 95% CI [0.62, 0.89] 7 95% CI [0.63, 0.9]
o _| & ///
o - = T
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate False positive rate

Fig 2. Receiver operating characteristic (ROC) curve analysis of methylation profiles for four specific markers associated with aortic valve
stenosis. AUC: Area Under Curve; 95% Cl: 95% Confidence Interval. Lower and upper confidence interval was given in parentheses. We have identified six
CpG sites (cg16464924, cg05890887, cg26196700, cg22469274 cg00994804 cg04836786) among 52 differentially methylated genes that have ROC AUC
>0.75. At each locus, the FDR p-value for methylation difference between AVS subjects and controls was highly significantly different. Due to figure
resolution, we have included only for four markers.

doi:10.1371/journal.pone.0154010.9002

APOAS5 (OMIM 606368) or apolipoprotein A5 is associated with plasma triglyceride levels,
a major risk factor for coronary heart disease. Earlier association studies were conducted to
examine the links between high-density lipoprotein genetics of various genes, including the
APOAS5 gene, and aortic valve stenosis risk [43]. However due to limited sample size, their
study did not yield strong associations. A significant correlation between the APOAS5 gene
polymorphism and the levels of plasma high-density lipoprotein-cholosteal and increased risk
for cardiovascular disease was previously identified [44, 45].
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Another important gene identified by Gene Ontology analysis is proprotein convertase, sub-
tilisin/Kexin-Type 9 (PCSK9, OMIM 607786). PCSK9 is a serine protease that reduces both
hepatic and extrahepatic low-density lipoprotein (LDL) receptor levels and increases plasma
LDL cholesterol. Mutation in this gene leads to an increase in the LDL cholesterol level. Cohen
et al [46] studied a large population and identified PCSK9 gene variations associated with dif-
fering plasma levels of LDL cholesterol and the risk of coronary heart disease, including myo-
cardial infarction and mortality from coronary disease.

Two other genes displaying altered methylation are Runt-related transcription factor 1
(RUNXI; OMIM 151385) on chromosome 21q22.12, and Thioredoxin reductase 2 (TXNRD2;
OMIM 606448) on chromosome 22q11.21. Deletion of chromosome 21q21.1-22.12 including
the RUNXI gene has been associated with multiple congenital anomalies and congenital heart
defects including aortic stenosis [47, 48]. Thioredoxin reductase is directly involved in reducing
proteins such as insulin. Experiments in mice demonstrated TrxR2 is required for proper heart
development [49]. Chromosome micro-deletions (del22q11) involving TXNRD2 have also
been associated with various congenital heart defects including aortic valve stenosis [50]. Heli-
case-Like transcription factor (HLTF; OMIM 603257), a gene that maps to chromosome 3, also
plays an important role in the mouse heart development and function [51].

A number of other unrecognized genes identified in the genome-wide analysis are also
potentially implicated in the pathogenesis of AVS, however the association between these
genes and heart defects and putative mechanisms of action remain to be further explored.

In summary, we have identified alterations in DNA methylation in a number of genes
involved in biological processes important to cardiac development in newborns with AVS, sup-
porting the hypothesis that epigenetic modification may play a crucial role in the development
of congenital heart defects such as AVS.

In the present study we have identified novel DNA-methylated genes and critical biological
pathways that correlate with human aortic valve stenosis. We have demonstrated profound
methylation differences in multiple CpG sites in these genes in AVS subjects. The methylation
levels of individual CpG sites were used to calculate the area under the ROC curves as a mea-
sure of the accuracy of a putative diagnostic test with 59 CpG sites. Many of the identified CpG
sites have a higher ROC AUC than 0.5; among them, the six CpGs with the highest AUC of
more than 0.75 display strong diagnostic potential. Our overall results raise the possibility of
using a large number of different marker combinations for effective detection of AVS. The
results suggest that DNA methylation analysis is a molecular technique that might have the
potential to be developed into a test for screening and diagnosis of AVS.

Finally the present study also determined that among 52 genes identified, many have not
previously been reported in association with AVS. These results also suggest that the selected
genes may be involved in the development of AVS by DNA methylation. The functional role of
these genes or their potential as novel DNA methylation markers remains to be examined. An
important limitation of the present study is that the findings are based on a relatively small
number of subjects; however, these results can form the basis for specific hypotheses regarding
AVS pathophysiology. Future larger studies based on this preliminary data may contain further
clues for new approaches to non-invasive prenatal diagnosis and even prevention of this seri-
ous congenital heart malformation.
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