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Abstract
Cascading overload failures are widely found in large-scale parallel systems and remain a

major threat to system reliability; therefore, they are of great concern to maintainers and

managers of different systems. Accurate cascading failure prediction can provide useful

information to help control networks. However, for a large, gradually growing network with

increasing complexity, it is often impractical to explore the behavior of a single node from

the perspective of failure propagation. Fortunately, overload failures that propagate through

a network exhibit certain spatial-temporal correlations, which allows the study of a group of

nodes that share common spatial and temporal characteristics. Therefore, in this study, we

seek to predict the failure rates of nodes in a given group using machine-learning methods.

We simulated overload failure propagations in a weighted lattice network that start with a

center attack and predicted the failure percentages of different groups of nodes that are

separated by a given distance. The experimental results of a feedforward neural network

(FNN), a recurrent neural network (RNN) and support vector regression (SVR) all show that

these different models can accurately predict the similar behavior of nodes in a given group

during cascading overload propagation.

Introduction
Cascading failures in complex networks negatively affect system reliability. Several studies have
investigated possible laws that govern the cascading failure process using percolation theory
[1,2]. However, improving the reliability of complex systems requires further research [3].
Researchers have increasingly used failure prediction and reliability prediction in reliability
engineering. The majority of previous studies have focused on a single system, such as software,
railways, or a large system containing several similar components [4–7]. However, the predic-
tion of cascading failures in networks remains underdeveloped. Because reliability and failure
have a strong correlation with time, most previous research made predictions based on time
series. In spatial networks, such as transportation networks and power grids, cascading overload
failures typically start from local components that exhibit not only temporal but also visible spa-
tial correlations [8–10]. Few studies have attempted to predict cascading failures in networks
related to spatial characteristics. Zhao et al. found that cascading overload failures propagate at
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a constant velocity in spatially embedded networks. This meaningful discovery provides an effi-
cient method of characterizing the dynamics of an entire network. However, the velocity of a
cascading overload failure is a statistical parameter that cannot provide detailed information
about the behavior of the nodes. Thus, a constant velocity provides the possibility of predicting
failures based on spatial characteristics. In this study, we studied different groups of nodes that
are separated by different spatial characteristics with regard to failure prediction instead of
focusing on a single node of a network or on an entire network at different times.

To satisfy the larger amount of users and meet the rapidly increasing complexity of current
system function, most large-scale systems contain subsystems that can complete simpler tasks
by themselves. However, as the load increases, a single subsystem cannot manage all of the
tasks and moves a certain amount of its load to its neighbors such that the entire system can
operate steadily and efficiently. A problem can developed in such a combined system leads
where the load will be released to other components if certain components break down due to
attack or random failure. When a subsystem’s load exceeds a given threshold, it will break
down due to overload; then, the entire system begins to degrade in sequence, producing a cas-
cading overload failure [11,12]. In certain cases, subsystems cannot be repaired after an over-
load that causes a failure, which may lead to unnecessary financial loss. Accurate predictions of
the cascading failure process could prevent certain subsystems from undergoing overload fail-
ure and reduce this unnecessary loss.

Conversely, when maintaining a relatively large-scale system, the complexity of the network
and the limited resources make it impossible to manage each node individually [13]. It is often
unnecessary to focus on whether one single subsystem will overload when the entire system is
suffering from failure propagation. Instead, focusing on a group of nodes that share the same
characteristics can make the task more efficient. Considering the limitation of maintenance
resources, it is important to determine how to efficiently allocate resources (e.g., people, mate-
rials) to stop or slow the failure’s propagation as quickly as possible. For example, when certain
nodes in a power grid fail, it is difficult or impossible to determine which one of the remaining
transformers is going to overload due to the subsequent load redistribution. However, the
probability that a node tends to break down can be determined. Then, loads can be manually
delivered to the nodes that are the least likely to overload. We can arrange different percentages
of the limited resources to different nodes based on accurately predicted data.

Materials and Methods

Cascading overload failures
Networks, such as transportation networks and power grids, are similar to lattice networks on
a macro scale. Though certain local portions of these real networks are different from such a
lattice in that they cannot distinctively affect the behaviors of other portions of the network.
Therefore, a lattice network is used in the experiments of this study. We created a 50 × 50
(2,500-node) undirected lattice network to represent a combined system, where each node rep-
resents a subsystem. Then, we randomly initialized the weight of each edge using a Gaussian
distribution (1, 0.2) and ensured that there were no negative values. Node betweenness is an
important and effective parameter to measure the importance of a node in a network and can
describe the load of a node. In these experiments, the load of a single node is the number of
shortest paths (i.e., minimum total weight) that pass through it. In this study, we used a fast
algorithm based on the Dijkstra Algorithm to calculate all of the shortest paths in a network
and the betweenness of each node [14]. To simulate an overload failure, we assumed that a
node breaks down when its betweenness is 1 + α times higher than its initial value. When
attackers seek to destroy a system, they typically focus on vital subsystems (i.e., central
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subsystems) or subsystems that tend to experience higher loads that will break down more eas-
ily. Thus, to start the cascading failure process, we initially attack the center 4 × 4 nodes and
delete them from the network. Then, we recalculate the betweenness of each node that remains
functional and delete the nodes whose betweenness is 1 + α times higher than its initial value.
We repeat the above process until no node is deleted due to overload (Fig 1).

As shown in Fig 1, failures are generally distant from the center after the initial attack and
occur at a constant velocity. However, new failures that occur in one step lie at several different
distances. If we want to know how many failures arise at distance 1, 2, 3. . ., respectively, a con-
stant velocity cannot provide enough information. Thus, we divided the nodes into different
groups based on their spatial characteristics and proposed a method of predicting the failure
rate of different distances at different times.

Machine-learning models
We use three machine-learning methods in this study to predict the failure rates of networks at
different distances: the feedforward neural network (FNN), the recurrent neural network

Fig 1. Cascading overload failures with α = 1.0. The red nodes are new failures in the current step; the blue nodes are failures that occurred before the
current step.

doi:10.1371/journal.pone.0153904.g001
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(RNN) and support vector regression (SVR) [15–17]. These three methods have been proven
by different researchers to perform well in nonlinear regression and can achieve high accura-
cies in prediction problems related to society, economy and technology. The performance of
these non-parametric models is strongly related to their architecture, such as the number of
hidden layers, the number of hidden nodes, training algorithms and weight adjustments. A
well-defined model with an appropriate training algorithm or other optimization methods can
produce highly accurate predictions. These non-parametric models are more flexible than
parametric models because they can predict data based solely on historical data, while paramet-
ric models require certain assumptions to fit different conditions.

In this study, we use distance as the selected spatial feature. Considering that the lattice net-
work is square-shaped, and the nodes that are initially attacked are also square-shaped, we
divide different distances by different squares surrounding the central 2×2 nodes; thus, a
50×50 lattice network has 25 different distances. The failure rate of distance d indicates the per-
centage of failed nodes that lie at this distance away from the central nodes (Fig 2).

For each model, we trained 23 predictors for 23 different distances because distances 1 and
2 do not require prediction. Then, we define each predictor as follows (Fig 2): 25 inputs (i.e.,
the current failure rates of all distances), and 1 output (i.e., the failure rate of its target distance
in next step).

We created 23 predictors for different distances rather than creating a single model that
contains 25 inputs and 23 outputs (i.e., the failure rates of 23 distances at a time) because the
performance of the model decreases as the number of outputs increases, even though the latter
could reduce the computation required in this experiment. A total of 23 outputs make the
model unstable and unable to attain even an approximately optimal solution.

To acquire the data used for training and testing, we constructed 100 lattice networks of size
50×50 whose edges were initialized by the Gaussian distribution (1, 0.2). Then, with a tolerance
α of [0.2, 0.6, 1.0, 1.4, 1.8, 2.2], where a node will fail if its betweenness is 1 + α times higher

Fig 2. Distance division andmodel description. Yi is the failure rate of distance i in next step.

doi:10.1371/journal.pone.0153904.g002
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than its initial value, we calculated the cascading process of the constructed lattice networks that
exhibit different edge weight distributions. Thus, for each α, we have 100 groups of cascading
failure data. Because different α values present different laws in the cascading failure process, we
first attempt to train and test data for a given α. In this study, we performed certain pre-tests to
choose the size of the training samples. With α = 1.0, we trained several RNNmodels with train-
ing samples of different sizes that ranged from 30 to 60. Then, we tested the models using the
same five groups of data, which were not included in any training dataset. The average errors of
each model and its deviation (Fig 3) showed that the average error of the model not markedly
declined as the number of training samples increased. However, the model trained with 45 sam-
ples became unstable because its deviation was larger than those of the other models. If the
unstable models performed well, the model trained by other sample sizes would also perform
well. Therefore, we decided to train the proposed models using 45 samples.

For the FNN models, we used the FeedForwardNetwork module of Pybrain [18] to build
the proposed FNN model. Each FNN model contains a linear input layer with 25 nodes, a lin-
ear output layer with 1 node, and a “Tanh” hidden layer with an undetermined number of

Fig 3. Average errors and deviations of different sizes of training samples.

doi:10.1371/journal.pone.0153904.g003
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nodes. The number of hidden nodes is determined based on experimental results. Different lay-
ers are fully connected. For the RNNmodel, we used a “vanilla” RNNmodel that was imple-
mented based on the library named Theano. Similar to the FNN model above, each RNN
model contains a linear input layer with 25 nodes and a linear output layer with 1 node. The
activation of nodes in the hidden layer remains Tanh. Because the FNN and RNN models both
require the number of hidden nodes to be chosen, we considered different FNN and RNN
models with different numbers of hidden nodes for α = 1.0. Then, we calculated the average
errors at different distances (Fig 4). Fig 4a shows that FNN and RNNmodels with 15–30 hid-
den nodes exhibit the best performance. With regard to both efficiency and accuracy, FNN
models with 15 hidden nodes and RNNmodels with 20 hidden nodes are chosen for use in the
experiments of this study. For the SVR model, we used Libsvm [19], which is the most popular
support vector machine (SVM) library when building SVMmodels. Similarly, we had to select
the kernel type of the SVR. Because this is a nonlinear fitting task, we considered three regres-
sion kernel functions (polynomial, radial basis function, sigmoid), which were supplied by
Libsvm. Based on the result of the average errors shown in Fig 4b, we selected the radial basis
function (RBF) as the kernel function in the proposed SVR model.

Results

Learning with a given α

For the FNN model, we used a back propagation through time (BPTT) trainer, which is widely
used in deep learning, and trained each FNN model using 500 epochs. For the RNN model, we
used an efficient Hessian-Free optimizer to train the proposed networks with 500 epochs
instead of using the BPTT algorithm in training. Training using the Hessian-Free optimizer is
faster than using BPTT, and the accuracy of the two methods is similar. For the SVR model, we
did not need to rescale the data because the data were all on the interval [0, 1]. We set the ter-
minator condition such that the cost of the model was less than 0.001.

After training the models, we tested the predictor using the five groups of test data. In this
study, only the results of α = 1.0 are shown because the results of different values of α are

Fig 4. Performances of different structures of eachmethod, with α = 1.0. (a) Average errors of different hidden node numbers for the RNN and FNN
models. (b) Average errors of different kernel functions for the SVRmodel.

doi:10.1371/journal.pone.0153904.g004
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similar. First, we drew a predicted value-actual value figure (Fig 5a) to show the results of the
proposed models. Then, we calculated the average absolute error (|predicted value—real value|/
n) and the deviation of each distance produced by the different learning models (Fig 5b).

The nodes in Fig 5a primarily lie near the line y = x, which demonstrates that models trained
for a certain tolerance can accurately predict the failure rates of different distances at different
times. The average errors of different learning models, which are shown in Fig 5b, do not differ
considerably, which demonstrates that the results of different models were near their optimal
solutions. Also, the small standard deviation of each distance indicates that the models are all
stable. In complex regression problems, the optimal solution cannot be easily obtained within
limited computation. After training in several epochs, the cost function fluctuates within a
small range or decreases slowly, which indicates that the current solution is near the optimal
solution and can be used as the optimal solution. Continuing training to reach the optimal
solution would require high computation costs, and obtaining the optimal solution can only
improve the performance of the model marginally.

Because there are 23 predictors for each α, and each predictor has its own error, we calcu-
lated the average error of different predictors for each α to fully describe the accuracy of the
predictors with different values of α (Fig 6). The average errors of different models are shown
to decrease as α increases and show similar trends. The errors decrease as α increases because
nodes are sensitive to overload when α is small, and the network changes rapidly with time.
Many failures occur in a single step, which increases the randomness of the cascading failure
process. The similar decreasing trends of the different models also indicate that each model has
reached an approximately optimal solution.

Learning without a given α

Training models with a given α increases the limitation that if we want to predict failures in a
system, we must know the exact value of α and choose the corresponding predictors that have
been trained under the same α. In reality, the α of a system is unknown in certain cases, which
results in a significant loss when we train predictors considering different tolerances. Thus, a

Fig 5. Performances of the three methods, with α = 1.0. (a) Real value vs. predicted value of different models. (b) Average error of each distance.

doi:10.1371/journal.pone.0153904.g005
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new prediction model that can be used under different circumstances without considering a
given α is required. First, to include the information of α into the inputs of a predictor, we
added the failure rates of step t-2 to the input to predict the failure fates of step t instead of
using the failure rates of step t-1 as the input. Thus, the nodes of the input increase from 25 to
50, and the α of the system is hidden in the inputs, which can be learned by the new models.

Second, to make the results more accurate, we each calculated five groups of cascading fail-
ures for α on the interval [0.4, 0.8, 1.2, 1.6, 2.0] and used these groups of data as the testing
dataset. Because the training dataset included data from α on the interval [0.2, 0.6, 1.0, 1.4, 1.8,
2.2], which are different from the testing data, we increased the randomness of the α in the pro-
posed experiments. Aside from adding 25 nodes to the input and changing the test dataset, we
did not change the other parts of the models and repeated the experiment in a similar manner
to that described in the last section. Because the results of all of the predicted values with the
corresponding real values cannot be clearly presented in a single figure, we present them in dif-
ferent figures based on the different learning methods. Because the points primarily lie near the
line y = x, the new model containing 50 inputs that was used to predict failure rates without
knowing α still performs well. The similar results of the three methods demonstrate that each

Fig 6. Average error of different distance errors with different values of α.

doi:10.1371/journal.pone.0153904.g006
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method reached an appropriate optimal solution, and the small deviations signify the stability
of the methods (Fig 7).

We then repeated the proposed experiment on a larger lattice network with a size of
100×100; these results are shown in Fig 8. The three methods still perform well because they
each present a small average absolute error and a narrow standard deviation. The SVR model
is shown to perform marginally worse than the other two neural networks in this study; how-
ever, on the network with a size of 50×50, the SVR model performs better than the other mod-
els. This may occur because the neural networks are more complex and perform better at
solving problems with multidimensional inputs.

Discussion
Cascading overload failures occur in large-scale spatial systems and present visible temporal
and spatial correlations. Previous studies have considered the failure prediction of a simple tar-
get over time, and most studies have investigated the reliability of an entire system or a single
component. Because the size of most systems is gradually increasing, it is not possible to con-
centrate on one or two specific nodes in the network when failures spread. As a result, we seek
to determine what is occurring in a group of nodes that share the same spatial characteristics.

Fig 7. Real value vs. predicted value of different models without considering α, n = 2500. (a) FNN. (b) RNN. (c) SVR. (d) Average error of each model.

doi:10.1371/journal.pone.0153904.g007
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We proposed a failure rate prediction at different distances using the FNN, RNN and SVR
models, and found that these methods can accurately predict failure rates in networks.

First, assuming the α of the system is known, we trained and tested the models under a cer-
tain α. The experimental results demonstrated that the proposed prediction model could accu-
rately predict the failure rate with a small error, and the three learning methods all performed
well and reached their approximate optimal solutions. However, considering that the α of a
system is unknown in certain cases, we changed the proposed models by adding the data of t-2
to the input to include the information of α in the training data. We only trained predictors for
different distances without considering α. The results showed that the predictors trained for
uncertain α performed well and had a similar average error to that of the predictors trained for
given α. However, the model that did not consider α cannot predict the failure rates of the step
immediately after the initial attack. When α is known, the model trained for a given α is more
powerful and more efficient than models that do not consider α, even though the latter are
more convenient.

Forecasting the behavior of every node in a network that is experiencing cascading failures
would provide more useful information. However, this is difficult because the behavior of a
node is based on many factors, including its status and function, its neighbors’ status and

Fig 8. Real value vs. predicted value of different models without considering α, n = 10000. (a) FNN. (b) RNN. (c) SVR. (d) Average error of each model.

doi:10.1371/journal.pone.0153904.g008
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functions, and the relationships between these nodes. In addition to the challenge of choosing
an appropriate model to predict a node’s behavior, we must know what type of information
and how much information should be input to the model. This topic will be addressed in future
work.
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