
RESEARCH ARTICLE

The Influence of the Global Gene Expression
Shift on Downstream Analyses
Qifeng Xu1,2, Xuegong Zhang1*

1 MOE Key Laboratory of Bioinformatics and Bioinformatics Division, TNLIST/Department of Automation,
Tsinghua University, Beijing, China, 2 Department of Aircraft Spare Management, Air Force Logistic College,
Xuzhou, Jiangsu, China

* zhangxg@tsinghua.edu.cn

Abstract
The assumption that total abundance of RNAs in a cell is roughly the same in different cells

is underlying most studies based on gene expression analyses. But experiments have

shown that changes in the expression of some master regulators such as c-MYC can cause

global shift in the expression of almost all genes in some cell types like cancers. Such shift

will violate this assumption and can cause wrong or biased conclusions for standard data

analysis practices, such as detection of differentially expressed (DE) genes and molecular

classification of tumors based on gene expression. Most existing gene expression data

were generated without considering this possibility, and are therefore at the risk of having

produced unreliable results if such global shift effect exists in the data. To evaluate this risk,

we conducted a systematic study on the possible influence of the global gene expression

shift effect on differential expression analysis and on molecular classification analysis. We

collected data with known global shift effect and also generated data to simulate different

situations of the effect based on a wide collection of real gene expression data, and con-

ducted comparative studies on representative existing methods. We observed that some

DE analysis methods are more tolerant to the global shift while others are very sensitive to

it. Classification accuracy is not sensitive to the shift and actually can benefit from it, but

genes selected for the classification can be greatly affected.

Introduction
Whole-genome gene expression analysis has become a major theme in many biological studies
since the development of high-throughput genomic technologies like DNAmicroarrays and
RNA sequencing [1–6]. There are already over 1,722,895 gene expression data samples in the
NCBI Gene Expression Omnibus (GEO) public database [7] as of Feb, 2016.

All gene expression experiments with microarray [8] or RNA sequencing [9] must control
the quantity of RNA molecules of each sample, and most experiments assume that the total
amount of RNAs across cells are roughly the same. If this assumption is true, controlling the
total abundance of RNA molecules of a sample is equivalent to controlling the total number of
cells measured in the experiment. This is the base for all downstream analyses of the expression
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data. In 2012, several studies showed that the total RNA abundance of a cell with high levels of
c-MYC expression can be two or three fold higher than those of cells with normal c-MYC
expression [10–12]. Loven et al [12] discussed that common experimental methods using sam-
ples with similar amounts of total RNAs had relied on the incorrect assumption that cells pro-
duce similar levels of total RNAs. Such studies could draw wrong conclusions from gene
expression experiments. For example, some up-regulated DE genes can be wrongly identified
as down-regulated DE genes. They designed an experiment to show that the conventional pipe-
line of the major gene expression technologies failed to detect gene expression levels correctly,
and they proposed that spiked-in controls should be used to avoid or rectify the influence of
this type of global gene expression shift [12].

This is not a special rare case. Actually it has been known that c-MYC is a major master reg-
ulator that plays important roles in many processes like development and cancers [13, 14].
There have been more than 26,000 papers on it in PubMed. Besides the global gene expression
shift that can be caused by c-MYC, other factors can also lead to unequal total expression per
cell [15]. c-MYC and other master factors have been observed to be abnormally expressed in
many cancers. Therefore, the massive existing data of cancer gene expression studies are more
likely to be affected by the global gene expression shift. There have been many works on gene
expression data normalization but none of them had taken into consideration of the possible
global shift of gene expression levels between cells [16–19].

The data reported in Loven et al indicated that some up-regulated genes could be wrongly
detected as down-regulated genes if the shift effect was not considered [12]. But the data were of a
small scale and only from one particular study. It is largely unknown howmuch influence the
global shift can have on a wide range of gene expression data for typical downstream analyses
[20]. Therefore, we conducted a systematic study on this influence on twomajor types of down-
stream analyses: detection of differentially expressed genes [21, 22] and sample classification
based on selected genes [23–28]. We analyzed a hypothetic model on the possible influence in the
ideal setting, and designed experiments on Loven et al’s data with known shift effects as well as on
data generated by simulating the global shift on 20 sets of gene expression data of various types.
We adopted 3 representative methods for differential expression detection [29–31], two support
vector machine (SVM)-based machine learning methods for gene selection and sample classifica-
tion [27, 28], and compared their results on data with and without global gene expression shift.
We observed that methods for detecting differential gene expression based on fold-change criteria
are more robust to global expression shift than statistical-test-based methods. For sample classifi-
cation, the two classes become more separable when global shift is present in one class, but the
genes selected for the classification can be largely different with or without global shift.

Problems and Methods

Problems Analyses
The most widespread research question of gene expression analysis is the identification of
changes in gene expression levels between the test group and the control group, e.g., comparing
samples of a disease state to the normal state. The initial step of gene expression analysis exper-
iment is to extract RNAs from tissues or cell samples we want to investigate, and many experi-
ments control an equal weight of total RNAs in all samples of the test and control groups [8].
The cells of test sample are about as many as the cells of the control sample if the total amount
of RNAs in experiment is roughly equal in each cell. The assumption that the total amount of
RNAs of the cell is roughly equal is critical to the correct interpretation of a gene expression
experiment. The unfair comparison of gene expression level between test and control group
will arise if the assumption is violated.

Global Gene Expression Shift Effect
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The number of cells in the test group will be less than that of the control group if the amount
RNAs of a cell in a test sample is greater than that in a control sample due to the global gene
expression shift. We call such cases as the amplification effect for the convenience of discus-
sion. On the other hand, the number of cells in test samples will be greater than that in control
samples when the amount of RNAs of a cell in test samples is less than that of a cell in control
samples. We call this case of global shift as the de-amplification effect. In a typical gene expres-
sion study, we actually don’t know whether there is amplification effect or de-amplification
effect and all calculations on gene expressions take it for granted that signals of different sam-
ples were obtained from the same amount of cells.

Unequal numbers of cells in two groups can result in the wrong calculation of gene expres-
sion values. We can use a simple hypothetic toy example to intuitively study the influence of
global shift. We assume there is a shift factor of 2.0 in the test sample compared with the con-
trol sample. That is, the total amount of RNAs in a cell of the test sample is twice as many as
that in a cell of the control sample. Suppose we do two experiments: Experiment #1 controls
the same total RNA amount for the two samples as that have been done in most microarray or
RNA-seq experiments, and Experiment #2 controls the same number of cells for the two sam-
ples. Suppose 2000 cells are used in the control group in both experiments. Only 1000 cells of
the test group will be used in Experiment #1, while Experiment #2 will use 2000 cells in the test
group. Consider two genes A and B in the two experiments as illustrated in Table 1. Suppose
the observed expression of them in the control sample are XA and XB, respectively, in both
experiments. If the observed expression of A and B in the test sample in the Experiment #2 are
YA and YB, respectively, their expression values will be 0.5YA and 0.5YB in Experiment #1. We
can see that the ratios of gene expression between the two groups changed although their rela-
tive orders in each sample do not change. This can affect the judgment on the differential
expression of genes: if the true per-cell expression of a gene is doubled in the test group, it’ll be
detected as no-change in Experiment #1, and a gene with no-change per-cell expression will be
detected as down-regulated in Experiment #1. This toy example was just about the comparison
of two individual samples. When we consider two groups of samples, the change of the mean
and variance of gene expression due to global shift will be more complicated. Therefore, we
designed a series of experiments on real and simulation data to study the effect on the detection
of differentially expressed genes as well as on sample classifications based on selected genes.

Loven et al's Data with Experimentally Verified Global Expression Shift
The data from Loven et al [12] include two samples of cells expressing a low level of c-MYC
and two samples of cells expressing a high level of c-MYC. The gene expression data were
obtained using the GeneChip1 PrimeView™Human Gene Expression Array (with External

Table 1. A simple illustrative hypothetic example on the effect of global expression shift.

Experiment #1 #2

Group Control Test Control Test

Shift factor 1.0 2.0 1.0 2.0

The number of cell 2000 1000 2000 2000

Expression of gene A XA 0.5YA XA YA

Expression of gene B XB 0.5YB XB YB

Test-control ratio of gene A 0.5YA/XA YA/XA

Test-control ratio of gene B 0.5YB/XB YB/XB

doi:10.1371/journal.pone.0153903.t001
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spike-in RNAs). They used RNA spike-in controls to mark the number of cells in each sample,
and validated that the samples with high c-MYC level have a global shift factor of about 2–3
comparing to the samples with low c-MYC level [12]. The true per-cell expression of genes can
be obtained if the spike-in controls information is used in the normalization. If this informa-
tion about cell numbers is not used, the estimate of per-cell expression of genes will be affected
by the global shift. We separately detected up-regulated and down-regulated DE genes on the
expression data with spike-in control information and on the expression data without using
spike-in controls. We then compare the DE gene lists of the two experiments to check the over-
lap proportion. Fold-change and SAM were used as representations of methods for DE gene
detection.

Data with Simulated Global Shift
The data in Loven et al's work were of small scale. We designed a set of experiments on 20 sets
of gene expression data of different sample sizes. All data sets were composed of two groups of
samples for comparison. Since it is unknown whether there was global shift in the data, we arti-
ficially added simulated global shift to the data. That is, for each dataset, we generated a sister
dataset by amplifying the expression of all genes in samples of one group (usually the disease
group) by a factor following N(α, 0.1α) where α is the global shift factor. We experimented
with α = 2, 4 and 8, and reported the results with α = 2 in this paper as it is close to the real situ-
ation observed in Loven et al’s data [12]. Observations on data with other shift factors were
similar. With this setting, we simulated the situation that we have two versions of expression
data in each study: one with global shift corrected and the other not corrected. We applied the
same downstream analyses on the two sister datasets and compare the results. The discrepancy
between the two results indicates the influence of global shift effect. We compared the overlap
between lists of detected genes on the sister datasets with the same methods, and also compared
classification accuracies on the sister datasets.

The databases are all gene expression data on various types of cancers downloaded from the
GEO database [7]. Each dataset has a cancer group and a normal group. Table 2 gives the full
list of the 20 datasets. The data were all obtained by Affymetrix microarray platforms, but they
can represent the general situation of expression data with regard to the possible influence of
global shift effects.

For each of the gene expression datasets, we downloaded the expression data from GEO and
generated a sister dataset as above illustrated. Then we took the following pre-processing pro-
cedures: We filtered genes with the maximum expression level in all samples less than 200, fil-
tered genes with small variance between samples (the ratio of the maximum and minimum
expression levels less than 3 fold, or the difference between the maximum and minimum
expression levels less than 100), and set expression levels lower than 20 to 20. We adopted
these preprocessing following most practices on microarray data analysis to avoid the possible
complication of results caused by genes with very low expression or with little variations in
their expression. But we also experimented with the original raw data and the results were
consistent.

Methods for Detecting Differentially Expressed Genes
We chose three commonly used methods for detecting differentially expressed genes: fold-
change, t-test and SAM. Let xij and yij denote the expression levels of gene i in replicate j in the
control and test samples, respectively, and �xi and �yi represent average expression levels of gene
i in the control and test samples. The fold-change (ratio) for gene i is simply defined as
FCi ¼ �x i

�y i
. T-test is a basic statistic hypothesis testing method. We adopted the Welch's t-test
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[32] because it does not require the assumption of equal variances. Welch's t-test for gene i is
defined as Ti ¼ �xi��y iffiffiffiffiffiffiffiffiffiffi

s2
1i

N1i
þ

s2
2i

N2i

q , where s21i and s
2
2i are sample variances of the gene in the two groups,

and N1i and N2i are sample sizes of two groups, respectively. SAM is a modified t-test method
that added a constant to the standard deviation term in order to produce more stable results
[31]. The SAM statistics is defined as Ti ¼ �x i��y i

siþs0
, where s0 is a constant. The SAM R package is

used in our study and the parameters of the function SAM were set to the default value and the
parameter resp.type was set to “two class unpaired”.

Methods for Sample Classification and Gene Selection
Another type of downstream analysis is the classification of samples with machine learning
methods based on a subset of genes selected from the expression data. There are two major
strategies for this task. The filtering strategy adopts some criteria to select genes first and then
build classification models based on the selected genes. A typical criterion for gene selection in
this strategy is to select differentially expressed genes. Another strategy is the wrapper strategy,
which integrates the selection step with the classification model. The influence of global shift
on the filtering strategy will be largely decided by the influence on the detection of differentially
expressed genes. Therefore, we focus on the wrapper strategy in studying the influence of global
shift on sample classification and gene selection.

We chose two commonly used methods for sample classification and gene selection:
R-SVM [27] and SVM-RFE [28]. Their basic ideas are very similar and the results were also

Table 2. Gene expression datasets used in the experiments.

Data
ID

Cancer
name

Paper information Number of
samples

Number of Cancer(Normal)
samples

Number of
Probeset

1 bladder Dyrskjøt,L. et al. Cancer Res 2004 43 29(14) 22215

2 brain Sun,L. et al. Cancer Cell 2006 61 38(23) 54613

3 cervical Scotto,L. et al. Genes Chromosomes Cancer
2008

52 28(24) 22215

4 cervical Zhai,Y. et al. Cancer Res 2007 31 21(10) 22215

5 colorectal Sabates-Bellver,J. et al. Mol Cancer Res 2007 64 32(32) 54613

6 colorectal Hong,Y. et al. Clin Exp Metastasis 2010 82 70(12) 54613

7 esophageal Hu,N. et al. BMC Genomics 2010 34 17(17) 22215

8 esophageal Su,H. et al. Clin Cancer Res 2011 106 53(53) 22215

9 esophageal Su,H. et al. Clin Cancer Res 2011 102 51(51) 22477

10 Head neck Kuriakose,MA. et al. Cell Mol Life Sci 2004 44 22(22) 12558

11 Head neck Pyeon,D. et al. Cancer Res 2007 56 42(14) 54613

12 leukemia Stirewalt,DL. et al. Genes Chromosomes Cancer
2008

64 26(38) 22215

13 lung Landi,MT. et al. PLoS One 2008 107 58(49) 22215

14 lung Spira,A. et al. Nat Med 2007 187 97(90) 22215

15 lung Stearman,RS. et al. Am J Pathol 2005 39 20(19) 12558

16 lung Su,LJ. et al. BMC Genomics 2007 54 27(27) 22215

17 pancreatic Badea,Pancreas. et al. Hepatogastroenterology
2008

78 39(39) 54613

18 pancreatic Pei,Pancreas. et al. Cancer Cell 2009 52 36(16) 54613

19 prostate Yu,YP. et al. J Clin Oncol 2004 75 58(17) 12579

20 prostate Wallace,TA. et al. Cancer Res 2008 87 69(18) 22215

doi:10.1371/journal.pone.0153903.t002
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close. So we present the results with R-SVM. Both methods are based on the support vector
machine (SVM), which is a machine learning method that can perform well for classification
of high-dimensional data with small sample sizes [27, 28]. The key idea of the SVM is to maxi-
mize the margin separating the two classes while minimizing the total classification errors [33].

R-SVM is a method uses linear SVM for classification and selecting subsets of relevant fea-
tures (genes) according to their contribution in the classification [27, 34]. The selection was
done in a recursive manner in multiple steps along a ladder of decreasing size of subsets, so
that a subset of genes was selected from genes used in the previous step of SVM training. The
contribution of a feature is evaluated by its differences between the mean of two classes multi-
plied by their weights in the trained SVM.

The stringent cross-validation scheme (CV2 as defined in [27]) is used to estimate the error
rate of R-SVM at each level of feature selection. The samples to be tested in the validation step
were left out at the beginning before any feature selection step. This avoids the possible over-
fitting caused in feature selection caused by “information leak” due to the improper timing of
cross-validation [27]. The detail of the method was described in [27]. We used R-SVM with
C = 10 in the leave-one-out cross-validation and set the number of features to decrease by 50%
at each level of feature selection along the ladder. We applied R-SVM on the original expres-
sion datasets and their sister data with simulated global expression shift, and compared the
classification errors and the selected gene lists on each pair of datasets. Fig 1 shows the experi-
ment diagram.

Results and Discussion

Results on Loven et al's Data
We compared the overlap proportions of the top 50, 100, . . ., 1000 genes of the detected up-
regulated DE gene lists and the down-regulated DE gene lists obtained from the data corrected
with spike-in-controls and un-corrected data. The results of fold-change are shown in Fig 2.
We can see that the overlap proportion of the up-regulated genes is always high, and the over-
lap proportion of the down-regulated genes is high for the top few genes, but decreases rapidly
when we go down in the list. This is consistent with the understanding that for up-regulated
genes, global shift will make them more up-regulated and therefore won’t change the order
much. But for down-regulated genes, many of them are actually also up-regulated and the

Fig 1. The flowchart of the classification and gene selection experiments on data with simulated
global shift.

doi:10.1371/journal.pone.0153903.g001
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seemingly down-regulation are due to the improper normalization. Therefore, correcting the
global shift will cause big change in the list of down-regulated genes.

Fig 3 shows the results of SAM on the same data. We can see that the overlap is much
poorer and more complicated. There is almost no overlap among the top genes. This tells that
the global shift causes more changes in the variances of gene expression as the mean shifted,
especially when sample size is very small.

Results on Simulated Datasets
For each of the 20 simulated datasets, we applied the same analysis on the sister datasets and
compared the overlap between the top 50, 100, . . ., 500 genes in the whole differentially
expressed gene lists, and also in the separated lists of up-regulated DE genes and down-regu-
lated DE genes. All the results are provided in the S1 File. We averaged overlap proportions on
the 20 datasets for the fold-change, t-test and SAMmethods. Fig 4 shows the results.

We can see that for the top genes selected by fold-change, the overlap proportion can be
kept at the level of 70–90% for both the up-regulated gene list and down-regulated gene list.
However, for statistical-test methods like t-test and SAM, overlaps between results on sister
datasets are very low. The overlap proportions obtained by SAM are slightly higher than that
by t-test. We also see that the overlaps in the down-regulated genes are relatively higher in the
case of global amplification effect in the disease group. We can imagine that the overlaps in the
up-regulated genes will be relatively higher when the global shift is de-amplification in the dis-
ease group.

From the result of the above experiments, we found that methods for detecting differential
gene expression based on fold-change are more robust to global expression shift than methods

Fig 2. Overlap proportions of differentially expressed genes detected by fold-change from the data
with corrected and uncorrected global shift effects on Loven et al’s data. (A) Up-regulated DE genes.
(B) Down-regulated DE genes. The x-axis is the number of the top genes of the up-regulated DE gene lists or
the down-regulated DE gene lists. The y-axis is the overlap proportions of the top genes.

doi:10.1371/journal.pone.0153903.g002

Fig 3. Overlap proportions of differentially expressed genes detected by SAM from the data with
corrected and uncorrected global shift effects on Loven et al’s data. (A) Up-regulated DE genes. (B)
Down-regulated DE genes. The settings are the same with Fig 2.

doi:10.1371/journal.pone.0153903.g003
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based on statistical tests, and the overlap proportion of FC is rather high. We can use the ideal
example of Table 1 to illustrate the reason behind the above observations.

Table 3 shows the fold-change (FC) ratios in the two experiments in the toy example of
Table 1, plus an extra example (Experiment #3) for the situation of de-amplification (shift fac-
tor = 0.5). In Experiment #1 with global shift effect factor 2, the FC of a gene that has equal
expression in each cell of the test group and the control group will be 0.5. A real down-regu-
lated gene will have FC less than 0.5, and a real up-regulated gene will have FC larger than 0.5.
Therefore, genes with observed FC between 0.5 to 1.0 will be mistaken as down-regulated in
the detection. In Experiment #2 that does not suffer from global shift as the numbers of cells in
the two groups have been controlled to be equal, a gene with no differential expression will give
the FC of 1.0, and a down-regulated or up-regulated gene will give FC smaller than 1 or larger
than 1, respectively. For experiment #3 with global shift effect factor 0.5, the FC of a gene that
has equal expression in each cell of the test group and the control group will be 2. A real down-

Fig 4. Overlap proportions of differentially expressed genes detected by fold-change, SAM and t-test
from the data with simulated global shift effects, averaged over the 20 datasets. (A) DE genes ranked
by whole differentially expressed differences; (B) Up-regulated DE genes; (C) Down-regulated DE genes.
The settings are the same with Fig 2.

doi:10.1371/journal.pone.0153903.g004

Table 3. Illustrative examples of experiments without global shift and with shifts of two directions.

Experiment #1: shift factor 2.0

FC value < 0.5 0.5~1 >1

Identification / Truth down / down down / up up / up

Experiment #2: no global shift

FC value < 1 - >1

Identification / Truth down / down - up / up

Experiment #3: shift factor 0.5

FC value <1 1~2 >2

Identification / Truth down / down up / down up / up

FC, fold-change ratio; down, down-regulated gene; up, up-regulated gene.

doi:10.1371/journal.pone.0153903.t003
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regulated gene will have FC less than 2, and a real up-regulated gene will have FC larger than 2.
This will cause genes with detected FC between 1.0 to 2.0 be mistaken as up-regulated in the
detection. For genes with very high or very low FC on top of the DE gene lists, they tend to be
detected correctly regardless to the global shift effect.

From this example, we can draw some conclusions in some specific circumstances for deter-
ministic methods based on the relative rank of genes in their expression, such as fold-change
method. We can see that in situations highlighted in italic in Table 3, a gene’s up- or down-reg-
ulation can be identified correctly by fold-change. Although global-shift may change the spe-
cific value of fold-change-ratio, the direction of the change is not affected for those situations.
This explains why the top genes in the DE gene lists by fold-change are not much affected by
the global shift in our experiments.

When we consider variations among multiple samples in each group, statistical tests need to
be adopted to infer whether a gene has significant differences in its expression between the two
groups. The differences in means of the expression between the two groups need to be normal-
ized by the variance. Tables 4 and 5 show illustrative examples of the expression of 4 toy genes
in two groups of samples in situations of no global shift and with global shift factor of 2.0. The
t-test results for each gene in the two situations are provided. We can see that when there is
global shift in one of the two groups, both the difference of means and the pooled variance
have dramatic changes. This results in big changes in the inference and the rank of the genes by
their p-values. The influence of global shift on SAM will also be similar. The s0 parameter in
SAMmakes it less sensitive to changes in the estimated variance, so SAM is slightly more
robust to global shift effect as we seen in the experiments.

Results on Sample Classification and Gene Selection
We applied R-SVM and SVM-RFE on the sister data of the 20 datasets for the classification of
the two groups and selection of informative genes for the classification. The results of two
methods are similar, so we only present the results of R-SVM here. We compared the leave-
one-out cross-validation errors on the sister datasets and the overlap between the two gene lists

Table 4. Illustrative examples of multiple samples of the experiment with no shift effect.

Gene Expression in control
samples

Expression in test
samples

Difference of
means

Pooled
variance

t p Inference (p-
value<0.05)

p-value rank (from
small to large)

#1 150, 200, 250 1, 50, 100 149.67 40.62 3.68 0.021 Significant, Down 3

#2 101.1, 101.2, 101.3 100.1, 100.2, 100.3 1 0.082 12.25 2.6e-
04

Significant, Down 1

#3 150, 200, 250 50, 100, 150 100 40.82 2.45 0.07 Non-significant 4

#4 180, 200, 220 95.1, 100.2, 105.3 99.8 11.92 8.37 0.0096 Significant, Down 2

doi:10.1371/journal.pone.0153903.t004

Table 5. Illustrative examples of multiple samples of the experiment with shift factor = 2 in test samples.

Gene Expression in
control samples

Expression in test
samples

Difference of
means

Pooled
variance

t p Inference (p-
value<0.05)

p-value rank (from
small to large)

#1 150, 200, 250 2, 100, 200 99.33 64.03 1.55 0.220 Non-significant 2

#2 101.1, 101.2, 101.3 200.2, 200.4, 200.6 -99.2 0.13 -768.4 6.81e-
09

Significant, Up 1

#3 150, 200, 250 100, 200, 300 0 64.55 0 1 Non-significant 4

#4 180, 200, 220 190.2, 200.4, 210.6 -0.4 12.96 -0.03 0.97 Non-significant 3

doi:10.1371/journal.pone.0153903.t005

Global Gene Expression Shift Effect

PLOS ONE | DOI:10.1371/journal.pone.0153903 April 19, 2016 9 / 13



selected on the sister datasets. Tables 6 and 7 give the error rates at different gene-selection lev-
els on Dataset 1 and Dataset 2. Fig 5 shows the overlap of selected genes in the sister datasets at
different gene-selection levels. Results on the other datasets are provided in the S2 File. With-
out surprise, we can see the classification error becomes smaller (0 for most of the data in our
experiments) when there is global shift in one of the two groups, since the global shift brings
systematic difference in gene expression between the two groups and makes them more separa-
ble. However, the overlap between the genes selected from sister datasets is low, especially
when we select only a small number of genes.

Conclusion
We studied the influence of the global gene expression shift on downstream analyses of differ-
entially expressed genes, sample classification and gene selection. We designed a set of experi-
ments to study the influence of the shift effect on downstream analyses based on data with
known global shift effect and also generated data to simulate different situations of the effect.
The experiments as well as study on illustrative toy-data models show that deterministic meth-
ods for detecting differential expression such as fold-change are less sensitive to global shift in
gene expression, although they have the obvious shortcoming for not being able to provide
information on the significance of differential expression. The top genes selected according to
their rank of fold-change are quite robust with regard to global shift. On the other hand, statis-
tical methods like t-test and SAM suffer severely from global shift effects. The majority of the
top genes can be changed if global shift effect exists in the data and cannot be corrected. For
sample classification and gene selection with machine learning approaches, the classification
accuracy is increased by the global shift, but the genes selected with the classification can be
severely affected by global shift.

Table 6. The classification errors of rank lists of Dataset 1.

# of genes 21649 10824 5412 2706 1353 676 338 169 84 42 21 10 5

On original data 0.047 0.07 0.047 0.047 0.047 0.07 0.07 0.07 0.07 0.07 0.07 0.047 0.047

On data with shift factor 2 0 0 0 0 0 0 0 0 0 0 0 0 0

doi:10.1371/journal.pone.0153903.t006

Table 7. The classification errors of rank lists of Dataset 2.

# of genes 54429 27214 13607 6804 3402 1701 850 425 212 106 53 26 13 6

On original data 0.115 0.098 0.098 0.098 0.098 0.098 0.098 0.115 0.082 0.098 0.082 0.082 0.082 0.082

On data with shift factor 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0

doi:10.1371/journal.pone.0153903.t007

Fig 5. The overlap proportion of selected gene lists by R-SVM. (A) on Dataset 1; (B) on Dataset 2. The
settings are the same with Fig 2.

doi:10.1371/journal.pone.0153903.g005
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The DE gene detect methods we used were among the simplest methods that have been
widely used by most published work. They are the basis for more sophisticated methods.
Therefore observations on these simple methods also shed light on more sophisticated meth-
ods, and also on classification methods based on filtering-type of feature selection. From the
observations of this study, we can see that great caution should be taken in analyzing gene
expression data when there can be abnormal expression of master regulator genes like c-MYC
that may cause global expression shift. As pointed out in Loven et al’s work, spike-in signals
that can provide control on the number of cells will be the optimal solution to avoid possible
biased conclusions introduced by uncorrected global shift effect. When such signals are
unavailable, methods need to be developed to test the existence of global shift and estimate the
shift factor so that the influence can be corrected. Biological knowledge about the expression
and function of master regulators in multiple tissues will also be helpful for estimating the
global shift effect.

Supporting Information
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