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Abstract

A patient’s position changes in every CBCT scan despite patient alignment protocols. How-
ever, there have been studies to determine image quality differences when an object is
located at the center of the field of view (FOV). To evaluate changes in the image quality of
the CBCT scan according to different object positions, the image quality indexes of the
Alphard 3030 (Alphard Roentgen Ind., Ltd., Kyoto, Japan) and the Rayscan Symphony
(RAY Ind., Ltd., Suwon, Korea) were measured using the Quart DVT_AP phantom at the
center of the FOV and 6 peripheral positions under four types of exposure conditions. Ante-
rior, posterior, right, left, upper, and lower positions 1 cm offset from the center of the FOV
were used for the peripheral positions. We evaluated and compared the voxel size, homo-
geneity, contrast to noise ratio (CNR), and the 10% point of the modulation transfer function
(MTF10%) of the center and periphery. Because the voxel size, which is determined by the
Nyquist frequency, was within tolerance, other image quality indexes were not influenced
by the voxel size. For the CNR, homogeneity, and MTF10%, there were peripheral positions
which showed considerable differences with statistical significance. The average difference
between the center and periphery was up to 31.27% (CNR), 70.49% (homogeneity), and
13.64% (MTF10%). Homogeneity was under tolerance at some of the peripheral locations.
Because the CNR, homogeneity, and MTF10% were significantly affected by positional
changes of the phantom, an object’s position can influence the interpretation of follow up
CBCT images. Therefore, efforts to locate the object in the same position are important.

Introduction

CBCT has become the most widely used imaging modality for preoperative diagnosis, and
postoperative evaluation of various fields in the dental area. CBCT has the advantage of having
a higher resolution, lower dose, and cheaper price than the multi-slice computed tomography
(MSCT).[1,2] Additionally, efforts to standardize the CBCT measurement of image quality
have been made for the development of a CBCT phantom, including the SEDENTEXCT proj-
ect[3] from Europe and the DIN 6868-161.[4] Yet, there has been no unified global standard
for CBCT image quality assessment until now. Several papers have reported image quality dif-
terences according to different CBCT machines, field of views (FOVs), and exposure protocols.
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[2,5-7] However, these studies only measured the image quality of the object positioned at the
center of the FOV. Bamba et al.[8] reported that the noise level was different in the thin slices
of two CBCT units when the phantom was located at one peripheral position; however, this
study did not discern the effect of the object location 3-dimensionally. There have been no
reports analyzing the change in image quality according to the 3D locations using the CBCT
phantom until now. The purpose of this study is to evaluate the changes in the image quality
according to the 3D phantom locations in the four exposure conditions using the Quart
DVT_AP phantom.

Materials and Methods
Measurements

CBCT data were collected using the Rayscan Symphony (RAY Ind., Ltd., Suwon, Korea) and
three exposure protocols from the Alphard 3030 (Alphard Roentgen Ind., Ltd., Kyoto, Japan).
The exposure protocols used for each CBCT unit are shown in Table 1. The QUART DVT_AP
(QUART GmbH, Zorneding, Germany) is made of polymethyl methacrylate (PMMA) con-
taining all of the required test objects for quality control (Fig 1). The center of the FOV was
used as a reference position according to the phantom manual. The center of the Quart
DVT_AP phantom was located in the upper, lower, right, left, anterior, and posterior positions
1 cm offset from the center of the FOV (Fig 2). All of the examinations were repeated five times
independently. Because there is no ear holder and head rest in the Symphony, these

Table 1. Cone beam CT machines and exposure protocols.

CBCT Device Mode FOV [diameter(mm) x height Scan Voltage Current Exposure time Voxel size
(mm)] mode (kV) (mA) (s) (mm)
Alphard 3030 Implant (1) 102 x 102 Full 80 8mA 17s 0.20
Panorama 154 x 154 Full 80 5mA 17s 0.30
(P)
Cephalo (C) 200 x 200 Full 80 5mA 17s 0.39
Ray 142 x 142 Full 90 10mA 13s 0.38
Symphony

doi:10.1371/journal.pone.0153884.t1001

— DISC1 DISC2

Fig 1. DVT_AP phantom. (A) the DVT_AP phantom. (B) disc 1 containing the test objects and disc 2 containing scatter radiation parts.
doi:10.1371/journal.pone.0153884.9001
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Fig 2. 3D locations of the phantom. C represent the center of the FOV; A, P, R, L, Up, and Lo represent
anterior, posterior, right, left, upper, and lower positions, respectively, 1 cm offset from the FOV center.

doi:10.1371/journal.pone.0153884.g002

components were removed from the Alphard in order to maintain similar examination condi-
tions. One of the protocols with the smallest FOV of the Alphard was excluded because the
images of the test object were partially obtained in the peripheral positions and some indexes
could not be obtained.

All CBCT images were stored using the DICOM 3.0 (512 X 512 pixel) into a Windows
7-based workstation (Intel Core i5 3570, 4 GByte, calibrated 21.3 inch color monitor, resolu-
tion 1563 X 2048 pixels, NVIDIA Quadro 2000 graphics card) and transferred to the QUART
DVT_TEC (QUART GmbH, Zorneding, Germany) software for semi-automatic image quality
evaluation (Fig 3). Image quality assessments were measured twice by one experienced radiolo-
gist for intra-observer reliability.

Image quality assessment items

Four image quality indexes were analyzed using the Quart DVT_AP phantom and QUART
DVT_TEC software as follows. All tolerance levels are from the phantom manual (Table 2):
The voxel size (nominal resolution) is the unit pixel dimension (mm) obtained from the
Nyquist frequency (NF). The NF is defined as the nominal resolution capability of an x-ray sys-
tem. The NF is a value independent from dose intensity and object location. The voxel size
within 5% of the manufacturer's specifications is defined as the recommended tolerance.
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Fig 3. QUART DVT_TEC software for image quality assessment. (A) Nyquist Frequency. (NF) (B) Contrast to Noise Ratio (CNR). (C) Homogeneity. (D)
Modulation Transfer Function (MTF). “Screenshots from QUART DVT_TEC software under a CC BY license, with permission from QUART GmbH, original

copyright2014.”
doi:10.1371/journal.pone.0153884.g003

The CNR is defined as a ratio of contrast between the PVC-PMMA and the mean image
noise of the PVC-PMMA. It describes to what extent a visual contrast can be discerned from

the statistical background variations. A CNR within 20% of the manufacturer's specifications is

defined as the recommended tolerance range. Because there were no CNR specifications

Table 2. Definition and tolerance of four image quality indexes. All tolerance levels are from the phantom manual.

Image quality indexes

Voxel size (Nominal resolution)
Contrast to noise ratio (CNR)
Homogeneity

10% point of the modulation transfer
function (MTF10%)

doi:10.1371/journal.pone.0153884.t002

Definition

unit pixel dimension (mm)

a ratio of contrast between the PVC-PMMA and the mean image noise of
the PVC-PMMA

relationship between the measured basic contrast and measured
background change within a homogenous slice

the spatial frequency where the modulation is 10%

Tolerance
5% of the manufacturer's
specification

20% of the manufacturer's
specification

>5.0

>1.0
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provided by both manufacturers, the acceptability of the CNR could not be evaluated directly
in this study. Instead, the CNR of the center and periphery was compared.

Homogeneity is defined as the relationship between the measured basic contrast and mea-
sured background change within a homogenous slice. The homogeneity is measured in a slice
image of disc2. A homogeneity value over 5.0 is defined as the recommended tolerance.

The MTF (modulation transfer function) is defined as a measure of how the x-ray system
reproduces details of an object in the image. Spatial resolution is usually represented by an
MTF10%, which is the spatial frequency where the modulation is 10%. The value is given in
line pairs per millimeter (Lp/mm). An MTF10% above 1.0 is defined as the tolerance level.

Statistical analysis

Because the manual selection of the ROI was preceded in the process of image quality assess-
ment by use of the QUART DVT_TEC software, the intra-class correlation coefficient (ICC)
was calculated for evaluating the reliability of manual processing. Image quality indexes of six
peripheral locations were statistically compared with those of the center position using the Wil-
coxon signed-rank test (p<0.05). Statistical analysis was carried out with the SPSS 20.0 (SPSS
Inc., Chicago). A tolerance of all indexes was assessed, too.

Results

The ICC of the image quality indexes were all above 0.96. Image quality indexes among the five
repeated images taken from the same location showed different means and standard devia-
tions. These values were varied according to the exposure protocols and the phantom’s location
(Table 3). Four image quality indexes showed statistically significant differences at some of the
peripheral locations. Moreover, those locations were different for each image quality index
(Table 4, Fig 4).

Voxel size (nhominal resolution)

Voxel sizes of all of the exposure protocols were within tolerance, which was 5% of the manu-
facturer’s specification (Table 3). The voxel size of the Alphard showed statistically significant
differences at some of the peripheral locations. The voxel size of the Symphony did not show
any statistically significant difference (Table 4, Fig 4(A)).

CNR

The CNR of both CBCTs showed statistically significant differences at some of the peripheral
locations. These locations were the lower and posterior positions of the Alphard implant (I)
mode, the anterior position of the Alphard cephalo (C) mode and the upper and posterior posi-
tions of the Symphony (Table 4, Fig 4(B)). Among these, there were positions which showed
mean differences over 20% with the center, which was 24.09% in the lower position of the
Alphard I mode, 20.37% in the anterior position of the Alphard C mode and -31.27% in the
upper position of the Symphony (Tables 4 and 5).

Homogeneity

Homogeneity of the center was within tolerance in all exposure protocols (Table 3, Fig 4(C)).
Meanwhile, homogeneity of both CBCT's showed statistically significant differences at some
peripheral locations. Especially, the anterior and posterior locations of all exposure protocols
showed statistically significant differences compared to the center. There were other locations
that showed statistically significant differences, which were the right and left positions of the
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Table 3. Means and standard deviations (SD) of four indexes. SD is the standard deviation. CNR = Contrast to Noise Ratio. MTF10% = the 10% point of
the modulation transfer function. Upper, Lower, Center, Anterior, Posterior, Right, and Left represent upper, lower, center, anterior, posterior, right, and left
positions 1 cm offset from the center of the FOV. Measurements below the tolerance are shown in bold. The CNR, which showed over 20% difference with

the center, is also marked in bold.

Machine Mode

Alphard 3030 Implant (l)

Panorama (P)

Cephalo (C)

Ray Symphony

doi:10.1371/journal.pone.0153884.t003

Index Mean + SD

Voxel size 0.20 +0.00

CNR 6.71 +0.65
Homogeneity 6.81 £1.28
MTF10% 1.56 £0.11
Voxel size 0.30 £0.00
CNR 11.74 £1.79
Homogeneity 10.96 +1.72
MTF10% 1.30 +0.08
Voxel size 0.39 +0.01
CNR 16.11 £2.00
Homogeneity 8.21 £1.17
MTF10% 0.91 +0.07
Voxel size 0.39 £0.00
CNR 15.37 £3.12
Homogeneity 11.13 £7.17
MTF10% 0.67 £0.03

Upper
0.20 +0.00
6.60 +0.50
6.40 +0.55
1.60 +£0.04
0.31 £0.00

10.46 +0.98
10.60 +0.55
1.34 £0.06
0.40 +0.00
14.72 +1.88
7.00 £0.00
0.84 +0.01
0.38 +0.00
12.35 +2.05
14.60 +0.55
0.71 £0.04

Lower

0.20 +0.00
7.83 +0.87
6.60 +0.55
1.51 £0.06
0.30 +0.00
13.99 +1.17 1
11.40 +0.55 1
1.36 +0.02
0.39 +0.01
17.42 £2.03 1
7.00 +0.00
0.91 +0.04
0.38 +0.00
13.71 +4.01 1
22.20+0.84 1
0.64 +0.02

Center

0.20 +0.00
6.31 +0.53
6.60 +0.55
1.60 £0.06
0.30 +0.00
1.34 +1.64
1.00 +0.00
1.30 +0.06
0.40 +0.00
5.02 +1.29
7.20 +0.45
0.88 +0.01
0.38 +0.00
7.97 +1.80
9.50 +2.24
0.66 +0.02

Mean + SD

Anterior

0.20 +0.00
7.06 +0.73
5.00 +0.00
1.77 £0.16
0.30 +0.00
11.00 +0.49
13.10 £0.22
1.28 +0.04
0.40 +0.00
18.08 +2.00
8.00 +0.00
0.88 +0.05
0.38 +0.00
17.77 £2.43
4.00 +0.00
0.65 +0.01

Posterior

0.20 +0.00
5.76 +0.48
9.30 +0.45
1.47 £0.07
0.30 +0.00
10.58 +1.59
7.40 £0.55
1.38 +0.05
0.39 +0.01
14.74 £1.06
9.10 +0.22
0.86 +0.02
0.38 +0.00
16.52 £3.09
7.80 £0.45
0.67 +0.02

Right
0.20 +0.00
6.44 +0.58
7.00 £0.00
1.52 0.03
0.31 £0.00

11.50 +1.97

11.80 +0.84
1.18 £0.02
0.39 £0.01

15.87 +1.83
9.20 +0.45
1.00 0.03
0.38 £0.00

13.64 +2.02
4.80 +0.45
0.71 £0.02

Left

0.20 +0.00
6.94 +0.96
6.80 +0.45
1.43 £0.07
0.30 +0.00
13.30 £1.24
11.40 £0.55
1.23 +0.02
0.39 +0.01
16.90 +1.44
10.00 +0.00
0.99 +0.04
0.39 +0.01
15.62 +1.87
5.00 +0.00
0.69 +0.02

Table 4. Statistical analysis of image quality index values. ® represents p<0.05. CNR = Contrast to Noise Ratio. MTF10% = the 10% point of the modula-
tion transfer function. Upper, Lower, Center, Anterior, Posterior, Right, and Left represent upper, lower, center, anterior, posterior, right, and left positions 1
cm offset from the center of the FOV. Measurements below the tolerance are shown in bold. The CNR, which showed over 20% difference with the center, is

also marked in bold.

Machine Mode Index P value
Upper Lower Anterior Posterior Right Left
Alphard 3030 Implant (1) Voxel size .0252 .0252 157 .0252 157 1.000
CNR .500 .0432 .138 .0432 .893 .345
Homogeneity .564 1.000 .038? .0392 157 .564
MTF10% .893 .138 .0432 .0432 .0432 .0432
Panorama (P) Voxel size .0252 1.000 1.000 1.000 .180 1.000
CNR .345 .080 317 .345 .686 .080
Homogeneity 157 157 .0342 .038% .102 .180
MTF10% .225 .138 .686 .080 .043% .043%
Cephalo (C) Voxel size 1.000 .059 1.000 157 .059 .0462
CNR .686 .080 .043° .686 .500 .138
Homogeneity 317 317 .0462 .039% .025% .034%
MTF10% .043? .080 .893 .068 .0432 .043?%
Ray Symphony Voxel size 1.000 1.000 1.000 1.000 1.000 317
CNR .043? .138 .500 .500 .080 .080
Homogeneity .0432 .080 .0432 .0432 .043? .043?%
MTF10% .136 .138 .686 .686 .043? .043?2
doi:10.1371/journal.pone.0153884.t004
PLOS ONE | DOI:10.1371/journal.pone.0153884 April 19,2016 6/13
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Fig 4. Statistical analysis of image quality index values. (A) Voxel size. (B) Contrast to Noise Ratio (CNR). (C) Homogeneity. (D) 10% point of the
modulation transfer function (MTF10%). C, P, and | represent cephalo, panorama, and implant modes of the Alphard 3030 CBCT, respectively. Ray is the
Ray Symphony CBCT. Gray columns represent the center position, large nodes represent the values with statistically significant difference compared with

the center, and black dotted lines represent the tolerance levels.

doi:10.1371/journal.pone.0153884.g004

Alphard C mode and the upper, right, and left positions of the Symphony (Table 4, Fig 4(C)).
Among these, the anterior of the Alphard I mode and the anterior, right, and left positions of the
Symphony showed values under tolerance (~5%) (Table 3, Fig 4(C)). The biggest mean differ-
ence with the center was 40.91% of the Alphard I mode and -79.49% of the Symphony (Table 5).

MTF10%

The Alphard C mode and Symphony showed the MTF10% under the tolerance in all positions
except the right position of the Alphard C mode. Other modes of the Alphard showed the
MTF10% within tolerance (Table 3, Fig 4(D)). The MTF10% of both CBCT's showed statisti-
cally significant differences at some of the peripheral locations. Especially, the right and left
positions of both CBCT's showed statistically significant differences. There were other locations
which showed statistically significant differences, which were the anterior and posterior posi-
tions of the Alphard I mode and the upper position of the Alphard C mode (Table 4, Fig 4(D)).

PLOS ONE | DOI:10.1371/journal.pone.0153884 April 19,2016
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Table 5. The mean difference (%) with the center position. CNR = Contrast to Noise Ratio. MTF10% = the 10% point of the modulation transfer function.
Upper, Lower, Center, Anterior, Posterior, Right, and Left represent upper, lower, center, anterior, posterior, right, and left positions 1 cm offset from the center
of the FOV. Measurements below the tolerance are shown in bold. The CNR, which showed over 20% difference with the center, is also marked in bold.

Machine Mode Index Upper (%) Lower (%) Anterior (%) Posterior (%) Right (%) Left (%)

Alphard 3030 Implant (1) Voxel size 0.00 0.00 0.00 0.00 0.00 0.00
CNR 4.60 24.09 11.89 -8.72 2.06 9.98

Homogeneity -3.03 0.00 -24.24 40.91 6.06 3.03

MTF10% 0.00 -5.63 10.63 -8.13 -5.00 -10.63

Panorama (P) Voxel size 3.33 0.00 0.00 0.00 3.33 0.00

CNR -7.76 23.37 -3.00 -6.70 1.41 17.28

Homogeneity -3.64 3.64 19.09 -32.73 7.27 3.64

MTF10% 3.08 4.62 -1.54 6.15 -9.23 -5.38

Cephalo (C) Voxel size 0.00 -2.50 0.00 -2.50 -2.50 -2.50

CNR -2.00 15.98 20.37 -1.86 5.66 12.52

Homogeneity -2.78 -2.78 11.11 26.39 27.78 38.89

MTF10% -4.55 3.41 0.00 -2.27 13.64 12.50

Ray Symphony Voxel size 0.00 0.00 0.00 0.00 0.00 2.63
CNR -31.27 -23.71 -1.11 -8.07 -24.10 -13.08

Homogeneity -25.13 13.85 -79.49 -60.00 -75.38 -74.36

MTF10% 7.58 -3.03 -1.52 1.52 7.58 4.55

doi:10.1371/journal.pone.0153884.t005

The biggest mean difference with the center was 13.64% of the Alphard I mode and 7.58% of
the Symphony (Table 5).

Discussion

Previous studies reported a gray value (GV) variation according to the location inside the
object.[9-11] These studies assumed an ideal condition that the object was positioned at the
center of the FOV; yet this is different from clinical situations where patients are not always at
the same position. Other studies showed a GV change according to the phantom location.[12-
15] However, analyzing a GV difference is one quantitative approach from the perspective of
each voxel, and it is difficult to obtain the overall information about the change in image qual-
ity, which can be represented by various indexes including the CNR, homogeneity, MTF10%
and so on.

The three main physical factors affecting image quality are now generally considered to be
the contrast, noise, and sharpness [16], which are represented by the CNR, homogeneity, and
MTF, respectively. Each factor is related to unique features of the anatomical structures
expressed by various imaging modalities. The CNR is related to the imaging performance with
respect to large, low-contrast structures [17,18], whereas the MTF is related to the reproduction
of small structures. [17,19] Homogeneity is related to the noise distribution and affects the
low-contrast detectability. [18,20]

The three indexes above also describe the physical performance of the imaging system in
specific conditions, but it is often difficult to link these to clinical performance.[16] Nonethe-
less, there have been reports about the correlation between the MTF [21], CNR [21-28], and
subjective evaluation in lesion detection. The CNR can be an important factor in the evaluation
of the periodontal ligament space and lamina dura [21], which are important for the periapical
and malignant lesion detection in dental diagnostic radiology.[29-31] Additionally, there was a
report that a higher CNR made a higher correlation between the CBCT and micro-CT in bone
quality evaluation for implant installation.[32] Homogeneity is also reported to affect the lesion

PLOS ONE | DOI:10.1371/journal.pone.0153884 April 19,2016 8/13
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detection performance.[28] The MTF is reported to affect the sensitivity for detection of root
fractures.[33-35] On the basis of these correlation with subjective and clinical evaluations, the
phantom study has been used as a pre-requisite for obtaining quality images in the clinical set-
ting, currently.[36]

In spite of increased attention about a correlation between objective and subjective image
quality evaluation, there has been no study yet about the image quality needed for comparing
follow up CBCT images. Comparing current images with previous ones is important for lesion
detection. However, even experienced radiologists sometimes fail to interpret the images cor-
rectly.[37,38] To reduce this failure, physical factors that can affect the comparison perfor-
mance need to be analyzed beforehand. Following the same line of thought, analyzing the
effect of the change in object position should precede the comparison of follow up CBCT
images.

In this study, the voxel size showed statistically significant differences at some of the periph-
eral locations. Because the voxel sizes of all of the exposure protocols were within the tolerance
(~5%), these differences were not substantially important. This is because the signals obtained
from the CBCT detector are sampled by an NF fixed for the specific exposure protocol. This
result showed that the voxel sizes were all acceptable in this experiment, and other image qual-
ity indexes were nearly influenced by the voxel size.

The CNR, homogeneity, and MTF10% of both CBCT's showed statistically significant differ-
ences at some of the peripheral locations (Table 4, Fig 4). The average differences between the
center and these peripheries were up to 31.27% (CNR), 70.49% (homogeneity), and 13.64%
(MTF10%) (Table 5). The different tolerance levels for image quality are reportedly needed
according to the treatment such as bone quality evaluation for implants and periapical lesion
detection.[21] Therefore, in order to compare follow up CBCT images accurately, different tol-
erance levels of image quality might also be required. Furthermore, considerable image quality
differences according to the object’s location might affect the complex and time-consuming
comparison procedure. Image quality difference also can influence image subtraction [39,40],
which has significantly raised the accuracy of the lesion detection.[41-43]

The European Commission in EUR 16262 defined image quality criteria as a level of perfor-
mance considered necessary to produce images of standard quality for a particular anatomical
structure.[44] Therefore, image quality indexes below the tolerance might affect the interpreta-
tion of an anatomical structure. In this study, homogeneity was below tolerance at some of the
peripheral locations. There have been studies which have reported that there was little correlation
between homogeneity and lesion detection.[21,45] However, homogeneity in those studies was
all within the tolerance and there was no lesion size classification. Another study reported that
the lesion detection performance was influenced by homogeneity when the lesion size was below
1 mm.[46] When comparing follow up CBCT images, radiologists often make efforts to identify
the subtle changes of the lesion size or bone pattern around the lesion. Therefore, unacceptable
homogeneities might affect the lesion detection performance of follow up CBCT images.

The C mode of the Alphard 3030 and Symphony showed an MTF10% below the tolerance
except at one peripheral position (the left position of the Alphard C mode) (Table 3, Fig 4D).
Many of the MTF10% of the CBCT with a large voxel size (about 0.4 mm) were below tolerance
in some studies.[1,47,48] However, an MTF10% above 1.0 is recommended as a realistic spatial
resolution of the CBCT [1] and this is possible in an exposure protocol with a voxel size of
about 0.4 mm, as this result showed. Therefore, an acceptable MTF10% of the center has to be
guaranteed first before the proper evaluation of the MTF10% at the peripheral positions.

The patient position has been an important issue in diagnostic radiology because the form
of the internal organs can be influenced by different patient postures.[49-51] However, the
effect of the position itself has not been thoroughly reviewed in previous studies. In this study,
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different object positions resulted in significant and considerable changes in the image quality
indexes that might affect the comparison of follow up CBCT images. This result is meaningful
because any CBCT image may be compared for other purposes such as lesion detection or
post-implantation checkups. Therefore, it is important for radiologists and technicians to seek
a more reproducible patient positioning protocol.

This study has the limitation of a physical experiment that analyzed image quality indexes
using a CBCT phantom. Therefore, an additional study using a jawbone or cadaver should be
needed for evaluating the effect of the position change on the subjective evaluation of the follow
up CBCT images. Due to use of the QUART DVT_TEC software, it was impossible to analyze
the rotated and tilted images. In a future study, it is necessary to evaluate rotated and tilted
images for reproducing clinical situations.

Conclusions

Because the CNR, homogeneity, and MTF10% were significantly affected by positional changes
of the phantom, an object’s position can influence the interpretation of follow up CBCT
images. Therefore, efforts to locate the object in the same position are important.
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