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Abstract

One of the key applications of next-generation sequencing (NGS) technologies is RNA-Seq
for transcriptome genome-wide analysis. Although multiple studies have evaluated and
benchmarked RNA-Seq tools dedicated to gene level analysis, few studies have assessed
their effectiveness on the transcript-isoform level. Alternative splicing is a naturally occurring
phenomenon in eukaryotes, significantly increasing the biodiversity of proteins that can be
encoded by the genome. The aim of this study was to assess and compare the ability of the
bioinformatics approaches and tools to assemble, quantify and detect differentially
expressed transcripts using RNA-Seq data, in a controlled experiment. To this end, in vitro
synthesized mouse spike-in control transcripts were added to the total RNA of differentiating
mouse embryonic bodies, and their expression patterns were measured. This novel
approach was used to assess the accuracy of the tools, as established by comparing the
observed results versus the results expected of the mouse controlled spiked-in transcripts.
We found that detection of differential expression at the gene level is adequate, yet on the
transcript-isoform level, all tools tested lacked accuracy and precision.

Introduction

Ten years ago, short read next-generation sequencing (NGS) technologies first appeared on the
market. During the past decade, notable progress has been made in terms of speed, read length,
and throughput, along with a sharp reduction in per-base cost. RN A-Seq for transcriptome
genome-wide analysis has become one of the most central applications of NGS. With the
explosion of analyzed RNA-Seq data sets, it has become apparent that alternative splicing (AS)
is a key contributor to cellular diversity in both normal and diseased tissues [1-5]. AS is preva-
lent in multicellular organisms, affecting approximately 90%-95% of genes in mammals [6]. It
can be achieved via exon skipping, intron inclusion, mutually exclusive exons, alternative 5’ or
3’ exon splice sites, alternative promoter usage and alternative polyadenylation site usage. AS
enables coding and production of multiple mRNA variants or isoforms from a single gene [4,
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6-8]. The resulting isoforms differ in untranslated regions that regulate transcript localization,
stability, or translation, or in regions encoding protein-protein interactions or sites for post-
translational modification [3]. Overall, AS generates regulatory and functional diversity and
complements differential gene expression in biological systems. In addition to quantification of
known AS, in some cases it is required to define novel alternatively spliced transcripts. Thus,
the ability to accurately build-assemble or quantify and detect differentially spliced transcripts
can be of great biological importance.

Multiple bioinformatics tools designed to analyze RNA-Seq on the transcript level, have been
developed and reviewed [1, 9, 10]. Although multiple studies have evaluated and benchmarked
RNA-Seq tools dedicated to gene level analysis [11-14], few have evaluated its performance on
the transcript-isoform level [15]. As pointed out in the reviews referenced above, there is a need
for such an evaluation. Angelini et al. [16] concluded that it is difficult to obtain reliable transcript
abundance estimates. In a study assessing transcriptome reconstruction method for RNA-Seq, it
has been claimed that assembly of complete isoform structures poses a major challenge [17].

To evaluate the performance of the RNA-Seq platform and tools, externally and controlled
quantities of transcripts can be added to RNA samples (spike-in). ERCC is a branded set of
such RNA standards [18], which consists of 92 polyadenylated bacteria transcripts that mimic
natural eukaryotic mRNAs. They are designed to have a wide range of lengths (250-2,000
nucleotides) and GC-contents (5-51%) and can be spiked into RNA samples before library
preparation at various concentrations (10°-fold range). This set of spike-ins has been used to
evaluate reproducibility and to normalize RNA-Seq data [19, 20].

Herein, we have used a novel spike-in approach to evaluate the accuracy of RNA-Seq bioin-
formatics tools in determining transcript structure and quantifying and detecting differently
expressed transcripts. Forty seven mouse transcripts were synthesized and added to mouse
RNA samples, allowing for analysis of both the endogenous mouse and the spike-in transcripts
with the same methods. To the best of our knowledge this is the first RNA-Seq mammalian
study using synthetic spike-in transcripts derived from the same species as the total RNA. The
advantage in using the same species spike-ins is that they perfectly mimic the endogenous tran-
scripts in a real biological setting. They contain the exon-intron structure and were designed to
contain AS, not existing in bacterial ERCC. This novel approach was used to examine the
spike-ins observed versus expected results using a comprehensive set of public and commercial
tools representing different bioinformatics approaches to RNA-Seq analysis.

Materials and Methods
Cells and RNA

Embryoid bodies (Ebs) were generated by 4 days incubation of single cell suspension
(35000cells/ml) of R1 mouse embryonic stem (mES) cells in 5 ml mES growth medium
(DMEM, 15% FBS, L-Glutamine, Non-Essential Amino Acids, Pen/Strept, 2-beta~Mercap-
toethanol, without Lif) in 6 cm low cell binding dishes. Four-day-old Ebs were treated for 4
days with 2uM RA (Retinoic Acid, Sigma R2625). The day of RA addition corresponds to the
sample name day 0. Days 3 and 4 correspond to the samples that had been treated with RA for
3 or 4 days respectively. Day 3 RNA was analyzed only by microarrays. RNA was extracted
with an RNeasy Mini kit (Qiagen). RNA sample quality was assessed using TapeStation.

Microarray data acquisition

Purified RNA from day 0, day 3 and day 4 was reverse-transcribed, amplified, and labeled with
Affymetrix GeneChip whole transcript sense target labeling kit. Labeled cDNA was analyzed
using Affymetrix Mouse Gene 1.0 ST microarrays, according to the manufacturer's
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instructions. Microarray data were analyzed using Partek Genomic Suite software. CEL files
(containing raw expression measurements) were imported and data was preprocessed and nor-
malized using the Robust Multichip Average (RMA) algorithm. Genes that their intensity was
less than 6 and their intensity standard deviation was below 0.3 were considered undetectable
and therefore possible candidates for spike-ins.

Preparation of mouse spike-in transcripts

cDNA clones from the Fantom2 mouse cDNABook collection (RIKEN, Japan) were used as
the source for spike-ins. This collection contains a repertoire of splice variants for many mouse
genes, and the structure of the collection enables in-vitro transcription of all the cDNAs from
either the T7 or T3 promoter.

All the cDNA clones, which were in one of two bacterial plasmid backbones (pFLCI or
modified Bluescript) were grown. The plasmid was then purified and quantified, and when
possible, the cDNA was fully sequenced from both ends to verify the identity and the nature of
the splice variant. For in-vitro transcription (IVT) each plasmid was linearized by digesting
2 pg after the poly(A) tail. Next, 500 ng from the linearized plasmids were subjected to IVT for
1 hour using the Ampliscribe T7-Flash transcription kit (Epicentre), according to the manufac-
turer recommendation. RNA was then precipitated and resuspended in 50ul RNase-free water.
The concentration of the produced RNA was measured using a NanoVue (GE Healthcare),
brought to 100 ng/yl, and finally run on a TapeStation (Agilent) to verify that the transcript
length was accurate before being stored at -80°C.

Preparation of RNA samples with spike-ins mixes

The 47 IVT-made spikes were combined in mixes. An additional spike was not taken into
account as a spike-in or a false positive due to an error in its concentration calculation (gene
name: 1700047L14Rik). All spike-in mixes were prepared on the same day. First, the molar
concentrations of each transcript and the dilution factors and volumes to be added to each mix
were calculated. Next, four serial dilutions (1:10-1:10,000) were prepared for each transcript
and the appropriate volumes from the corresponding dilution were combined into each mix.
The final composition of each mix is detailed in S1 and S2 Tables. Finally, each mix was thor-
oughly mixed, aliquoted and stored at -80C.

Mouse IVT spike-in and ERCC mixes were added to the total RNA (S3 Table and Fig 1A).
Two microliter of the relevant mix were added to 1 ug of total RNA. The concentrations of all
the spike-ins depicted in this study are in accordance to their concentration in the mix.

Library construction and sequencing

Total RNA (700 ng) (including spike-in mixes) was processed using the Illumina TruSeq
Strand Specific total RNA with RiboZero Gold protocol (Illumina). The quality of the libraries
was evaluated using Qubit and TapeStation. Sequencing libraries were constructed with bar-
codes to allow multiplexing of 9 samples on three lanes. Paired-end 100-bp reads were
sequenced on Illumina HiSeq Rapid 2500 instrument, using protocols RTA (1.17.21.3) and
HCS (2.0.12.0). The sequence yield was between 39-59 million per sample.

Sequence data analysis

Transcriptome mapping and assembly. Above 81% of the reads were aligned to the
mm10 genome build and the sequences of the External RNA Control Consortium (ERCC)
using TopHat (v2.0.10) [21]. TopHat was run with the option “—library-type fr-firststrand”.
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Fig 1. Experiment and analysis design. (A) lllustration of the experimental sample preparation. The experiment consisted of four RNA samples, two
replicates (designated as Rep) of Day 0 (colored in blue) and two of Day 4 (green), each sample was divided to four vials, to two of them ERCC mix 1 was
added and to other two mix 2 (orange). In addition one of the custom IVT spike-ins was added to each vial (violet). In total there were 16 vials. Custom mix 4 is
the control without IVT spike-ins. (B) Diagram of the bioinformatics analysis design. (C) Genome browser view depicting the gene locus of Pomc that includes

three distinct spike-in transcripts (AK030714, AK017581 and AK017492).

doi:10.1371/journal.pone.0153782.g001

TopHat mapped reads were assembled to transcripts by running Cufflinks [22-24] (2.2.1)
(—library-type fr-firststrand). Each sample's mapped reads were assembled by running Cuf-
flinks RABT [23] (reference annotation based transcript assembly; parameter -g) using the
gene structures of RefSeq or Gencode (mm10) and additional transcripts used as spike-ins
(that were not present in the original gtf) as well as ERCC spikes; this annotation will be termed
herein RefSeq+ or Gencode+. Alternatively, Cufflinks was run without any knowledge on tran-
scripts and gene structure (de novo). Cuffmerge was then used to compile and join the set of
transcripts from each sample, along with RefSeq+ (-g option), thereby creating the gene and
transcript structure for the de novo and the RABT mode.

In addition, Trinity (v2.0.2) [25] was used to perform de novo assembly of the transcripts
without reference genome, with the option “—SS_lib_type FR” added to the command. To
assess the quality of the built transcriptome, the extent and identity of the overlap between the
built transcripts and the spike-ins was evaluated using Blat [26]. The assembly score was calcu-
lated by the Transrate software[27].

Unless otherwise specified, all the tools were applied using default parameters.

Transcriptome quality control. The rRNA content was measured by using the inter-
sectBed command (bedtools) [28] of the alignment bam files against rRNA and tRNA intervals
(the intervals were downloaded from the UCSC tables; four additional intervals that were
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present in Gencode were added). The number of reads that mapped to these intervals was
counted. The percent of reads that mapped to rRNA had a median of 0.17%, with 5.2% being
outliers (sample K, see S3 Table).

Transcriptome quantification and differential expression analysis. Various tools were
used for quantification of the transcripts and genes (Fig 1B). The programs HTSeq [29], Partek
Genomic Suite (v6.6; St. Louis, MO) and Cuffdiff [30] were used to quantify the transcripts and
genes annotated by RefSeq+ or Gencode+, using TopHat mapped reads as input.

DESeq2 (1.4.5) [31, 32] gene normalization and differential expression analysis were per-
formed after running HTSeq (—stranded = reverse -t exon -m intersection-strict -q -i gene_id).
Differential expression of spiked genes within the mixes was analyzed separately for the RNA
samples from day 0 and day 4 using DESeq2 parameters (cooksCutoff = TRUE and
independentFiltering = TRUE). The normalized counts were converted to FPKM.

Partek® Genomics Suite® software, version 6.6 Copyright; 2014 (St. Louis, MO, USA)
with the RNA-Seq workflow was used, and the quantification step, was run with option “yes”
for the question “Can assay discriminate between sense and antisense transcripts?” Otherwise,
default settings were used. A statistical overview of the mapping results is shown in S4 Table.
Four separate ANOVA tests were applied to determine differentially expressed transcripts and
genes within the mixes for RNA sampled from either day 0 or day 4. For the ANOVA test, pre-
processing consisted of excluding non-expressed gene or transcripts (RPKM = 0), applying an
offset of 0.1 and the RPKM values were log2 transformed.

Cuffdiff was used for quantification and differential expression analysis and was run with
the RABT gene structure file (parameter—library-type fr-firststrand). In addition Cuftdiff was
run using the RefSeq+ or Gencode+ annotation file (without prior run of Cufflinks). The differ-
ential expression analysis of samples derived from day 0 and day 4 was performed on two sepa-
rate runs of Cuffdiff. Plots of quantification data was done using the means of the biological
replicates.

The tools eXpress [33] and RSEM (v1.2.18) [34] quantified the transcripts by directly run-
ning bowtie (v2.1.0) [35] (Fig 1B) on the transcript sequences (RefSeq+). For eXpress (v1.5.1)
(—fr-stranded), the input of bowtie2 run (—no-discordant -X 800 -p 3 -a—norc) was used.
For RSEM, first the transcript reference was prepared (rsem-prepare-reference), followed by
rsem-calculate-expression (parameter:—bowtie2—forward-prob 0—paired-end). A script pro-
vided by the Trinity [25] programmers: abundance_estimates_to_matrix.pl was used to merge
the abundance estimation of the different samples and to obtain trimmed mean of M values
(TMM) normalized FPKM matrix. Quantification results of HTSeq and RSEM were further
normalized by using CQN [36]. ROC curves were calculated using pROC package [37]. Power
analysis was performed with Scotty [38] and R package RNASeqPower [39].

The spike-ins plots were done using Matlab, Partek and R. For spike-ins quantification plots
an offset of 10e-3 was added to FPKM values before log2 transformation.

EBSeq [40] was used to detect differentially expressed transcripts using the RSEM tran-
scripts quantification output. Fifteen patterns were defined for analysis of samples from the
same day.

Linear Regression Model. Linear regression models were used to explain the observed
amount of spike-ins (FPKM values). The model included the basic explanatory attributes:
expected spike-in amount, day of sample (0 or 4) and replicate sample information. In addition
to the basic attributes, the spike-in characteristics %GC and the length (number of bases in lin-
ear and squared centralized terms) were included. The initial model consisted of the basic
effects and all second-order interactions effect, excluding the sample replication information.
The final basic model was achieved after implementation of the backward elimination algo-
rithm using the step function in R (3.2). To achieve a better model fit, the log of the observed
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and expected amounts were used. In order to test if the spike-in characteristics significantly
improved the fit, this model procedure was run twice, once with only the basic attributes and
once with all attributes. The third model included in addition to the attributes described above,
the loci attributes of the spike-ins: the number of alternative spliced isoforms within the gene
locus and the number of alternative spike-ins added per locus. The confidence intervals for the
adjusted R-squared were calculated using the MBESS package in R [41].

Results and Discussion
Study design

This study focuses on the expression analysis at the transcript level. Furthermore, this is the
first study to perform an evaluation of bioinformatics tools based on mouse transcripts spike-
ins added to mouse RNA samples. Our design of mouse spike-ins included splice variants from
the same genetic background, tested over a wide range of concentrations.

Mouse total RNA was extracted from EBs before (designated as day 0) and four days after
the addition of RA (designated as day 4). RA plays multiple roles in the nervous system, includ-
ing induction of neural differentiation, axon outgrowth and neural patterning [42]. This proce-
dure was repeated to yield two biological replicates (Fig 1A). Mouse spike-ins of 47 different
mouse RNA transcripts, generated in vitro from plasmid constructs (see Methods), were added
to the total RNA samples. These transcripts were selected as their expression levels were below
the detection threshold, as determined by prior microarray analysis (results not shown). 23 of
the spike-ins originated from 10 different genomic loci (S1 Table); namely, each locus was rep-
resented by at least two different isoform-transcripts termed in this study, as multi-spike-ins
loci. The remaining 24 spike-ins represented different loci (S2 Table) and were termed single
spike-in loci. The selection criteria for the transcripts used as single spike-in loci, were unde-
tectable expression levels and transcripts with a diverse length and GC content. Three different
mixes of spike-ins were prepared, each containing combinations of all the spike-ins, at 10-fold
increments, for example AK008207 is found at 1000, 10 and 100 attomoles/ul in mix 1, mix 2
and mix 3 respectively (S1 and S2 Tables). A control mix containing only native total RNA was
added (mix 4). Three of the spike-ins were added at low concentrations (0.1-100 attomoles/pl)
and three were added at high concentrations (100-10000 attomoles/pl). Each of the four total
RNA samples (duplicates of day 0 and day 4) was divided into four tubes and the mixes were
then added to each. In addition, the ERCC spike-ins were added as described (S3 Table, Fig
1A). Due to the large fold changes between the spike-ins amounts in the mixes (10-100), we
choose to work with duplicates, see power analysis (S1 and S2 Files). The replication quality
was assessed using the transcript (RSEM) and gene expression levels (HTSeq and DESeq2) on
the control samples (mix 4). Pearson correlations between the duplicates on the transcript level
were 0.88 (day 0) and 0.96 (day 4) and on the gene level were 0.95 (day 0) and 0.99 (day 4). The
RNA was sequenced as described in the Methods section.

Quantification and Differential Expression of Spike-ins

In order to assess and compare the ability of the various bioinformatics approaches and tools
to quantify transcript levels, we analyzed the Illumina reads with different tools (Fig 1B). These
tools differ in the initial mapping stage requirement: RSEM and eXpress use the outputs pro-
duced from mapping the reads to transcript sequences, whereas the other tools used. i.e., Cuf-
flinks, Cuffdiff, DESeq2 and Partek, use the output produced after mapping the reads to the
genome.

All the methods applied, except for DESeq2, support transcript level analysis and utilize the
expectation—maximization (EM) algorithm in order to distribute the reads amongst the

PLOS ONE | DOI:10.1371/journal.pone.0153782 April 21,2016 6/20



el e
@ : PLOS ‘ ONE Using Mouse Spike-In Transcripts to Evaluate RNA-Seq Analysis Tools

A. ERCC subgroup eA«BeC+D B. i FDR #<0.05 «>=0.1
4 R=0.89 e ’
Slope = 0.93 (0.83-1.03) /' wl-eo eececcecccccescocoee o o
) ° g s
E - q E
§ é 3.0
E . c
o
g 1 b ® 25
e £
g 8
5 £ 20
3 ® 8
3 S s
§ o 1 g
b 4 X
4 2 e eececceccecccececece e e
e ® 000O0GOGOGOOGOOLOOOGOOOOOS® O O
0.5 ® 00000 OCOOIOIOGOLOIOGOOIOOSOS O O
«10-1 T T T T
1o 0.5 067 1 4 10102 1.0*10°1 1.0 1010 10402 100  1.010%  1.0410°
expected fold-change (mix1/mix2) maximum concentration (attomoles/pl)
C.
ERCC Group Expected fold FDR <= 0.05 FDR<=0.1 # DE genes
change expected
A(23) 4 9 9 23
B (23) 1 0 0 0
C(23) 0.67 7 7 23
D (23) 0.5 10 11 23

Fig 2. Analysis of ERCC spike-ins. Differential expression of ERCC spike-ins. (A) Scatter plot of DESeq2 normalized ratio between ERCC mix2 and ERCC
mix 1 versus the expected ratio for day 0. Note the axes scale in the plot is logarithmic. The correlation coefficient and the slope were calculated on the log
values. The gray lines represent 95% confidence interval of the slope. The slope confidence interval is indicated in brackets. (B) Scatter plot illustrating the
relationship between the spike-in levels and differential expression detection capacities. The fold changes between the two ERCC mixes and the FDR were
calculated using DESeqg2. The maximum concentration (logo) within the pairwise comparison is shown in the X- axis. (C) Number of significantly
differentially expressed (DE) ERCC spikes.

doi:10.1371/journal.pone.0153782.9002

transcripts. Yet, they differ in handling multi-mapping events and sequence-bias [22, 24, 30,
33, 34, 43].

Quantification of transcripts is greatly influenced by the number of potential isoforms and
by incorrect or misassembled isoforms that can introduce uncertainty. Therefore, all quantifi-
cation results shown here (Figs 2—6) were obtained using the same set of transcripts, namely,
the gene structures of RefSeq+ (see definition in Methods) without novel assembled
transcripts.

Analysis of ERCC spike-ins. After TopHat mapping to the mm10 genome, RefSeq+ genes
were quantified by HTSeq and normalized expression values were extracted with DESeq2.
Between 0.25-0.79 million reads uniquely aligned to ERCC spike-ins and were efficiently
detected, as shown by the relationship between the ERCC spike-in counts (DESeq2 rld values)
and their nominal concentration (S1 Fig). Rld stands for regularized log transformation of the
original count data to a log2 scale by fitting a model with a term for each sample and a prior
distribution on the coefficients which is estimated from the data. Furthermore, the relationship
between the observed and expected ratio (ERCC mix 1 over ERCC mix 2 for the same RNA
sample) had a linear correlation coefficient (R) of 0.89 in day 0 (Fig 2A) and 0.85 in day 4 (S2
Fig).

DESeq2 was used to detect differentially expressed ERCC genes by comparing the eight
samples which had ERCC mix 1 versus the eight samples which had ERCC mix 2 (Fig 2B). In
this comparison, only the ERCC genes should be detected as differentially expressed (since the
comparison sets are balanced as far as the day and IVT mixes). Only 26 of the 69 spikes were
detected with false discovery rate (FDR) less or equal to 0.05 (38%). ERCC spike-ins below a
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Fig 3. Spike-in correlations between expected versus observed values. Spike-ins Spearman correlation
between concentration values (mix 1, mix 2, mix 3) and observed FPKM values. Sample names are shown in
the figure and described in the S3 Table.

doi:10.1371/journal.pone.0153782.g003

concentration of 1 attomoles/ul were not detected as differentially expressed (Fig 2B). The dif-
ferentially expressed spike-in genes are not necessarily the ones with the highest fold changes
(see ERCC groups in Fig 2C), implying that in addition to the maximum concentration of the
spike-in transcripts and the fold change, other specific factors, such as sequence and length,
influence detection of differential expression.

Analysis of IVT mouse spike-in quantification. After mapping to either the genome or
the transcripts, transcripts were quantified by the various tools shown in Fig 1B. The selected
tools differ in the methodology implemented for detection of differentially expressed genes.
DESeq2 and Cuffdiff model the count variance across replicates as a nonlinear function of the
mean counts and use a Negative Binomial distribution to model biological variability, and pro-
vide a measure of statistical significance in the absence of a large number of biological replicates
[13]. In contrast, Partek uses an ANOVA model. EBSeq [40] takes advantage of the merits of
empirical Bayesian methods.

Quantification of the spike-ins in mix4 samples corroborated the undetectable endogenous
level of expression of these transcripts, with a few exceptional transcripts with up to 2 FPKM.
The correlation between the observed FPKM values of the 47 IVT spike-ins and the nominal
IVT spikes-in concentrations is depicted in a heat map plot (Fig 3). There were four samples
for each mix and, as expected, the highest pair correlations were within the same mix. The cor-
relation values were highest when using the RSEM tool (maximum correlation value 0.97) and
lowest when using eXpress (maximum correlation value 0.71). CQN normalization [36] was
applied on the RSEM counts, taking into account the transcripts GC content and length. The
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Fig 4. Abundance estimation of single locus transcript spike-ins using various bioinformatics tools. Spike-ins were quantified using various tools:
RSEM, Partek, DESeq2, Cuffdiff and eXpress. Depicted are box plots of the observed versus the expected values for 19 spike-ins. In the X-axis (a-f) depicts
spike-ins at a concentration of 50, 100, 500, 1000, 5000 and 10000 attomoles/ul respectively. The boxplots for the concentrations 50, 500 and 5000
attomoles/ul are based on 64 observations, the other three box plots are based on 12 observations.

doi:10.1371/journal.pone.0153782.9004

spike-in correlations between the expected and the CQN values had the same values as RSEM
with TMM normalization.

Analysis of the distribution of the FPKM values for the single spike-in loci (Fig 4 and S3
Fig), showed that quantifications by RSEM, DESeq2 (gene level analysis) and Partek provided
a narrow distribution of values, whereas the quantification by Cuffdiff and eXpress yielded a
broad distribution of values for spike-ins added at the same nominal concentration. Some tran-
scripts were categorized as having low expression even though they were added at significant
concentrations (>100 attomoles/ul), for example Wnt7b in the Cuftdift analysis (S3 Fig).

In the analysis of the expression level of the 10 multi-spike-ins loci (Fig 5, S4 Fig), the per-
formance of RSEM, RSEM followed by CQN, Partek and Cuftdiff was closer to the predicted
behavior, when compared to eXpress. The latter provided the most scattered values. Interest-
ingly, the ability to quantify the concentration of the minor isoform spike-in within a locus, did
not differ dramatically among the three groups (10%, 30% or 45% of the major transcript in
the loci).

Analysis of IVT spike-ins differential expression. One of the most important applica-
tions of RNA-Seq is the study of differential expression of gene and transcript between two or
more biological conditions. Table 1 shows the expected number of differentially expressed
transcripts between RNA samples of different mixes (day 0 mix 1 versus day 0 mix 2, etc.) and
the results observed with the various analysis tools. Note that when comparing the biological
replicates of the same day, the expected differentially expressed transcripts should only be the
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Fig 5. Abundance estimation of spikes with multiple isoforms per locus, using various bioinformatics tools. Spike-ins were quantified using various
tools: RSEM, RSEM normalized by CQN, Partek, Cuffdiff and eXpress. Depicted are scatter plots of the observed versus the expected values, for the spike-
ins that have multiple isoforms per locus. The loci are arranged by the concentration of the minor transcript: 15% (A), 30% (B), 45% (C). The major transcripts
are depicted as red points and the minor transcripts in green and blue. Blue stars depict plots with a correlation of > =0.9.

doi:10.1371/journal.pone.0153782.g005

IVT spike-ins. For each comparison, differentially expressed transcripts were defined as those
with a FDR value < = 0.05. Theoretically, there should be 564 such values (47 spike-ins multi-
plied by 12 comparisons).

Using Partek, only 40.4% of the IVT spike-ins comparisons were identified as statistically
significant (FDR< = 0.05), and 68.3% of the significant comparisons were false-positives. Cuft-
diff identified 21.4% of the comparisons of the IVT spike-ins as significant and had false-posi-
tive rate of 18.8%. In addition, we ran Cuffdiff with the transcripts definition created by
Cufflinks, which allowed for de novo transcript assembly (option rabt in the software). This
annotation file had many more transcripts than the RefSeq+ file (107,339 versus 33,286) and
was less efficient in detecting differentially expressed spike-in transcripts. Fewer significant
comparisons for the IVT spike-ins (1.4%) and a dramatic increase in false detection rate
(95.7%) were observed. When using Gencode+ annotation (contains 136078 transcripts; see
Table 2), no transcripts were detected as differentially expressed with Cuffdiff, whereas with
Partek a similar amount was spike-ins were detected (38.3%), yet there was a dramatic increase
in false positive detection (91%). Hence, an increase in the number of annotated transcripts
causes a decrease in the ability to reliably detect differentially expressed transcripts.
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Fig 6. The relationship between the spike-in concentration and differential expression detection capacities. A scatter plot displaying association
between spike-in concentrations and the ability to detect differential expression. Shown are the Partek analysis of day 0 and day 4 samples for the three
mixes (1-3). X axis: the maximum spike-in concentration within the pairwise comparison. The color intensity is proportional to the number of points at each
coordinate. The green line indicates the FDR < = 0.05 cutoff.

doi:10.1371/journal.pone.0153782.g006
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Table 1. Number of differentially expressed transcripts among the mixes, as identified using various bioinformatics tools and RefSeq
+ annotation.

PARTEK Cuffdiff Cuffdiff (with de EBSeq with RSEM
novo)* counts
Description all spikes all spikes all spikes all spikes
mix 1 vs. mix 2- Day 0 48 10 0 0 0 0 775 39
(41) @7)

mix 1 vs. mix 3- Day O 52 10 0 0 0 0

mix 1 vs. mix 4- Day O 63 19 0 0 0 0

mix 2 vs. mix 3- Day 0 11 9 0 0 0 0

mix 2 vs. mix 4- Day O 29 17 0 0 0 0

mix 3 vs. mix 4- Day O 10 7 0 0 0 0

mix 1 vs. mix 2- Day 4 90 24 33 29 47 3 932 44

@7) (29)

mix 1 vs. mix 3- Day 4 103 29 35 29 50 3

mix 1 vs. mix 4- Day 4 96 25 20 13 17 0

mix 2 vs. mix 3- Day 4 79 24 30 28 42 2

mix 2 vs. mix 4- Day 4 80 29 17 13 19 0

mix 3 vs. mix 4- Day 4 59 25 14 9 12 0

Sum 720 228 149 121 187 8 1707 83
expected 564 564 564 94
% false positive 68.33 18.79 95.72 95.14
% identified 40.43 21.45 1.42 88.30

Bioinformatics tools were applied to determine differentially expressed transcripts (FDR< = 0.05),”all” depicts all the differentially expressed transcripts.
First number in EBSeq analysis is the number of transcripts which were not pattern 1, in brackets is the number of transcripts that were pattern 15.
*Transcripts of class “=*, " or “x”

doi:10.1371/journal.pone.0153782.t001

To measure the sensitivity and specificity in detecting differentially expressed IVT spike-in
controls by the various methods we performed a ROC analysis (S5 Fig). ROC analysis was
done by using different cut-off points of the p values, revealing that Cuffdiff (run with RefSeq
+ annotation file) method performed better than Partek in detecting the differentially
expressed spike-ins, with average (day 0 and day4) area under the curve (AUC) 0.9 for Cuffdiff
and an average of 0.6 for Partek (S5 Fig). The ROC analysis was in disagreement with the FDR
results, indicating a possible problem in Cuffdiff FDR calculation.

EBSeq, an empirical Bayesian approach, was also tested. For isoform level inference, EBSeq
directly accommodates isoform expression estimation uncertainty by modeling the differential
variability observed in distinct groups of isoforms. In this study, there were four types of mixes
and therefore, 15 possible expression patterns. The IVT spike-ins should be determined as pat-
tern 15: “1234”, since this depicts the situation of a different expression level in each of the
mixes. A non-differentially expressed transcript is one which has pattern 1: “1111” i.e., the
same level of expression in all the mixes. EBSeq was run on transcript raw counts (non-normal-
ized) derived from RSEM and the number of transcripts that were not pattern 1 (Table 1) as
well as those that were explicitly pattern 15 were counted. Although 88.3% of the IVT spike-ins
were identified as pattern 15, in total, 1707 transcripts were not categorized as pattern 1, thus
the false-positive discovery rate was extremely high 95.1%.

To determine if the differential expression detection of the IVT spike-ins was influenced by
concentrations and/or fold differences, the maximum nominal value within a comparison was
plotted against the FDR value (Fig 6). The plot shows Partek analysis and demonstrates that
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Table 2. Number of differentially expressed transcripts and genes among the mixes, as identified using various bioinformatics tools using Gen-
code+ annotation.

Transcripts Genes
Partek Cuffdiff Partek Cuffdiff DESeq2
Description all spikes all spikes all spikes all spikes all spikes
mix 1 vs. mix 2- Day 0 187 12 0 0 56 12 25 25 27 26
mix 1 vs. mix 3- Day 0 156 11 0 0 53 10 18 18 29 27
mix 1 vs. mix 4- Day 0 174 19 0 0 54 16 11 11 23 22
mix 2 vs. mix 3- Day 0 64 11 0 0 10 8 19 19 30 28
mix 2 vs. mix 4- Day O 81 17 0 0 17 12 11 10 20 19
mix 3 vs. mix 4- Day 0 30 6 0 0 9 8 12 11 21 19
mix 1 vs. mix 2- Day 4 273 19 0 0 112 25 33 30 36 32
mix 1 vs. mix 3- Day 4 319 26 0 0 122 26 31 28 36 32
mix 1 vs. mix 4- Day 4 330 23 0 0 131 27 21 17 29 26
mix 2 vs. mix 3- Day 4 155 19 0 0 110 21 30 27 36 31
mix 2 vs. mix 4- Day 4 305 28 0 0 113 25 20 17 27 24
mix 3 vs. mix 4- Day 4 320 25 0 0 122 23 17 14 24 21
Sum 2394 216 0 0 909 213 248 227 338 307
Expected 564 564 432 432 432
% false positive 90.98 0.00 76.57 8.47 9.17
% identified 38.30 0.00 49.31 52.55 71.06

Bioinformatics tools were applied to determine differentially expressed transcripts or genes (FDR< = 0.05),"all” depicts all the differentially expressed
transcripts or genes.

doi:10.1371/journal.pone.0153782.t002

the spike-ins were more likely to be detected as differentially expressed if the maximum con-
centration was above 100 attomoles/pl. However, several transcripts did not follow this trend,
such as AK089819 (loci: Irf4_plus) and AK030714 (loci: Pomc_plus).

The above assessment at the transcript level revealed that none of the tools were adequately
accurate. The accuracy of the same data at the gene level was evaluated. The spike-ins in each
locus were designed to have 10 fold increments in concentration between the mixes. Therefore,
differential expression of the spike-in loci (gene level) was expected to be detected.

Analysis of differential expression among the mixes at the gene level, using DESeq2 (this
tool does not support transcript analysis, Table 3), revealed that 68.9% of the comparisons of
IVT spike-ins loci were identified as differentially expressed and the false discovery rate was
close to the expected (observed 7.3%, expected 5%). In comparison, the Partek analysis at the
gene level, detected 44.% of the IVT spike-ins loci contrasts between the mixes as differentially
expressed, where 27.1% of the differentially expressed gene comparisons were false-positives.
The Cuffdiff analysis categorized 55.2% of the spike-in loci comparisons as differentially
expressed and 6.8% of the differentially expressed gene comparisons were false-positives. Inter-
estingly, the ability to detect differentially expressed genes was not changed when using Gen-
code versus RefSeq annotation for both Cuffdiff and DESeq2 whereas with Partek false positive
detection increased (from 27.1% to 76.6%; Table 2 and Table 3). It should be noted that in all
Cuffdiff analysis described, no spike-ins transcripts were detected as differentially expressed in
day 0, yet at the gene level close to half of the spike-ins are identified as differentially expressed.
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Table 3. Number of differentially expressed genes among the mixes, as identified using various bioinformatics tools using RefSeq+ annotation.

Partek Cuffdiff DESeq2
Description all spikes all spikes all spikes
mix 1 vs. mix 2- Day 0 33 11 26 26 28 27
mix 1 vs. mix 3- Day 0 33 9 17 17 27 26
mix 1 vs. mix 4- Day O 37 16 13 13 22 21
mix 2 vs. mix 3- Day 0 9 8 20 20 29 28
mix 2 vs. mix 4- Day O 17 14 14 14 20 19
mix 3 vs. mix 4- Day O 12 9 13 13 21 20
mix 1 vs. mix 2- Day 4 22 22 32 30 35 32
mix 1 vs. mix 3- Day 4 22 22 34 30 36 33
mix 1 vs. mix 4- Day 4 26 26 25 18 29 26
mix 2 vs. mix 3- Day 4 15 15 31 30 33 30
mix 2 vs. mix 4- Day 4 25 25 18 17 26 23
mix 3 vs. mix 4- Day 4 22 22 20 17 24 21
Sum 273 199 263 245 330 306
Expected 444 444 444
% false positive 27.11 6.84 7.27
% identified 44.82 55.18 68.92

Bioinformatics tools were applied to determine differentially expressed genes (FDR< = 0.05),"all” depicts all the differentially expressed genes.

doi:10.1371/journal.pone.0153782.1003

Building a Linear Regression Model to Explain Spike-ins Quantification
Results

Linear regression models were used to explain the observed expression level of single spike-ins
quantified by HTSeq and normalized by DESeq2. A comparison of a model designed with both
basic explanatory attributes (expected spike-in concentration, sampling day and number of
replicates) and spike-in attributes (%GC and length) to a model considering only the basic
components, demonstrated a significant contribution of the spike-in attributes (F(6,254) = 18,
p< =0.00001). The final model included the main effect of the expected concentration (log
scale), %GC, length (linear and centralized square) and the interaction %GC with all the other
factors (Table 4). The final model's adjusted R? square was 0.91 (CI: 0.89-0.92), whereas the
model with only the basic attributes had a R? 0f 0.87 (CI: 0.85-0.89) thus the effect size was
minor (S6 Table). We then explored the dependence between expected and observed values
using these final models (S6A Fig). In this figure, there are three %GC quantiles (0.25, 0.5,
0.75), and three quantiles for length (0.25, 0.5, 0.75). The intercept in these figures was depen-
dent on the combination of %GC and length.

A similar analysis was performed for the observed quantification results of HTSeq normal-
ized by CQN (S5A Table, S6B Fig). The CQN quantile normalization algorithm combines
robust generalized regression to remove systematic bias. In our analysis, it was used to remove
bias resulting from %GC and transcript length. The final CQN model achieved an R value of
0.90 (CI: 0.87-0.91), similar to the results of the DESeq2-HT Seq model.

The complete model that explains all the 47 spike-ins using the normalized RSEM FPKM
values (Table 5) had, in addition to the attributes described above, the loci attributes. The R? of
the complete model was 0.94 (CI: 0.93-0.94), the R? of the model without the loci attributes,
was 0.92 (CI: 0.91-0.93). This R difference was significant (F (6, 547) = 23.36, p< = 0.00001),
but the effect size was minor. The model with the basic attributes had an R? of 0.85 (CI: 0.83—
0.86). Therefore, we can see that the spike-ins attributes contribute more than the loci
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Table 4. Linear regression model using normalized DESeq2-HTSeq FPKM values for single loci spike-ins.

Estimate Std. Error t value p value
(Intercept) -8.03 1.99 -4.03 0.00007
expected 1.69 0.15 11.05 0
day4 5.36 0.93 5.75 0
%GC 0.14 0.04 3.44 0.00069
length/1000 1.37 0.57 2.43 0.016
length_sq/1e+06 -2.39 0.68 -3.54 0.00048
expected:%GC -0.02 0.00 -5.75 0
day4:%GC -0.10 0.02 -5.23 0
%GC:(length/1000) -0.03 0.01 -2.59 0.01009
%GC:(length_sqg/1e+06) 0.05 0.01 3.68 0.00029

RMSE 1.0
Adjusted R-squared: 0.91

doi:10.1371/journal.pone.0153782.t004

attributes to the model. Similar results were obtained with the CQN normalized RSEM values
(S5 Table, S5 Fig).

Accuracy of Transcriptome Assembly

Transcriptome assembly using Cufflinks. Cufflinks [22, 24] was run, without supplying a
reference annotation file, in order to evaluate the program's ability to properly assemble the
spike-ins. Transcriptomes were separately assembled for each sample and merged to a master
transcriptome using Cuffmerge. A total of 40,305 genes and 107,388 transcripts were assem-

«_«

bled. All 47 spike-ins were built correctly (class code “=*); in addition, 150 transcripts

Table 5. Linear regression model using normalized RSEM FPKM values for all spike-ins.

Estimate Std. Error t value p value
(Intercept) -7.48 1.08 -6.91 0
replica2 -0.37 0.07 -5.32 0
expected 1.69 0.10 17.71 0
day4 5.19 0.56 9.36 0
%GC 0.11 0.02 5.30 0
length/1000 1.77 0.37 4.74 0
length_sqg/1e+06 -2.08 0.41 -5.03 0
spiked_loci 0.26 0.12 2.13 0.03371
isoforms_loci -1.92 0.45 -4.28 0.00002
expected:%GC -0.02 0.00 -8.54 0
expected:(length/1000) 0.04 0.01 2.94 0.00341
expected:spiked_loci -0.05 0.02 -2.81 0.00522
expected:isoforms_loci -0.14 0.04 -3.79 0.00017
day4:%GC -0.10 0.01 -8.97 0
%GC:(length/1000) -0.04 0.01 -5.34 0
%GC:(length_sqg/1e+06) 0.04 0.01 4.62 0
(length/1000):isoforms_loci -7.48 1.08 -6.91 0

RMSE 0.82
Adjusted R-squared: 0.94

doi:10.1371/journal.pone.0153782.1005
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A.
Locus number AK clone Strand  Mix1 Mix2 Mix3 Mix4
10 AK035433  A430018G15Rik + 100 1000 10 0
10 AK079699  A430018G15Rik + 45 450 4.5 0
10 AK038633 - 45 450 4.5 0
C.
# spike-ins # built by # of
B. in locus cufflinks occurrences
it 4 AKO79699 1 1 3
AK035433 » < AK038633 1 2 11
b 1 NM_001037099
— 1 3 4
=) Tt it 1 NM_001285426
— et NM_001285428 1 4 2
-~ H————————————1  NM_146123 1 5 2
—H—~—H— e ———————————  NM_001285427 1 6 1
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-
¢+ o X 1 15 1
| —t 2 2 1
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2 13 1
3 8 1

Fig 7. Cufflinks assembly of transcripts(A) Information regarding the spike-ins used for locus 10. The concentration of the spike-ins in each mix is shown
(attomoles/pl). (B) The RefSeq+ and Cufflinks assembled transcripts structure within locus 10. (C) Table showing the number of transcripts spiked-in and the
number of transcripts reported in the Cufflinks assembly output.

doi:10.1371/journal.pone.0153782.g007

«s» <« » d« »

corresponding to these spike-ins loci were built (class codes 57, “0” and “x”, identified as a
spike-in transcript by the name designated as “nearest_ref” or “old”) (Fig 7C). An example of
an assembly of transcripts corresponding to loci 10 is shown in Fig 7A and 7B.

Transcriptome assembly using Trinity. Trinity was run using all the sample reads with-
out a reference genome, to build de-novo transcripts. A total of 1,220,442 transcripts, belonging
to 1,028,937 loci according to the tool definition, were built. The number of overlaps between
the transcripts and 47spike-ins was checked. A total of 1056 transcripts displayed at least 90%
overlap with at least 90% identity to 45 spike-ins genomic regions. There were 2 single loci
spike-ins (not the ones with the lowest concentration), for which none of the Trinity built tran-
scripts met the overlap requirement. To assess the built of the spike-ins, overlap between the
spike-ins and the built transcripts was evaluated using Blat. Blat reciprocal overlaps of at least
90% of the sequence and at least 90% identity were found for 34 transcripts. In three additional
cases the transcript built by Trinity included the spike-in totally but was approximately twice
longer than the spike-in. All the additional 10 spike-ins were partially build, for one of them
35% of the sequence was built, for four of them between 50% and 70% and for five additional
ones between 71% and 87% of the original length was built. All these built sequences had and
identity of at least 97% to the spike-ins.

A general evaluation of the de novo transcriptomes was performed using Transrate. A trans-
rate assembly score is calculated as the geometric mean of all contig scores multiplied by the
proportion of input reads that provide positive support for the assembly. The transrate assem-
bly scores were 0.2072 and 0.2069 when using RefSeq+ or Gencode+ annotations respectively.

Conclusions

The goal of this study was to assess the ability of various bioinformatics tools to assemble,
quantify and detect differentially expressed transcripts. The novelty of the presented approach,
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lay in the utilization of spike-ins of known concentration, from the same organism as the RNA
sample, allowing for simultaneous analysis of the spike-in and all biological RNA-Seq tran-
scripts. To date, there has been a lack of transcript level assessment studies that compared anal-
ysis tools. The reason for this is the lack of standard transcripts with known concentration,
leading to an inability to grade the tool accuracy. This study was performed in samples from
two biological developmental stages, testing the tool performance accuracy in different biologi-
cal settings and evaluating sample bias. Although the experiment was designed with biological
duplicates per developmental stage, it had sufficient power to detect the spike-ins fold changes
of 10-100. We suggest this spike-ins approach, even though it is time consuming and costly as
a dedicated way to evaluate the accuracy of bioinformatics tools, to learn their strength and
weakness. Due to the extensive work involved in this tailored approach it is not suitable as a
mainstream procedure.

Our results demonstrated variability in the ability of the different tools to properly quantify
the mouse spike-in transcripts. We found that the program which does not attempt to remove
sequence biases performed better (RSEM). The minimum concentration required to detect
accurately a transcript with of 50 million reads per sample was 100 attomoles/pl. The minor
isoforms-transcripts within the multiple spike-ins loci could be quantified properly. Further-
more, using linear regression models, we have found that GC content, length and the number
of transcript-isoforms per loci had a small effect on the accuracy of RSEM quantification. The
RNA background which is different between day 0 and day 4 samples, influenced the spike-ins
quantification and differential expression results.

We also found that detection of differential expression at the gene level was adequate when
using DESeq2, yet on the transcript-isoform level, all tools tested for differential expression
lacked accuracy and/or precision. This result is disappointing given the high fold changes (10-
100) used for the spike-ins, while in many biological settings the fold changes are lower. Cuft-
diff analysis permitting novel transcripts to be defined, revealed that the ability to determine
accurately differentially expressed transcripts decreased as the number of defined transcripts
increased. In addition when using a more extended annotation database than RefSeq (Gen-
code), the differential expression detection of transcripts was less accurate.

Cufflinks-mediated transcript de novo assembly with the mouse reference genome, assem-
bled the spike-ins correctly. Yet, many variations to the spike-in transcript isoforms were also
assembled. Trinity assembly produced a huge number of transcripts, more than one million,
which may have resulted from the vast amount of sequence data used for the Trinity assembly.

To conclude, all the tools tested for identification of differentially expressed isoforms-tran-
scripts and for de-novo assembly of RNA-Seq short reads, were found to be insufficient and
required improvements. It is most likely that significant progress will be promoted by longer
sequencing reads capabilities currently emerging in the field.

Supporting Information

S1 Fig. Relationship between ERCC rld normalized counts and their nominal concentra-
tion.
(PDF)

S2 Fig. Scatter plot of DESeq2 normalized ratio between ERCC mix2 and ERCC mix 1 ver-
sus the expected ratio for day 4.
(PDF)

S3 Fig. Scatter plots of mouse single locus spikes: expected vs observed concentrations.
(PDF)
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