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Abstract
To understand the molecular mechanisms that regulate cell cycle progression in eukary-

otes, a variety of mathematical modeling approaches have been employed, ranging from

Boolean networks and differential equations to stochastic simulations. Each approach has

its own characteristic strengths and weaknesses. In this paper, we propose a “standard

component”modeling strategy that combines advantageous features of Boolean networks,

differential equations and stochastic simulations in a framework that acknowledges the typi-

cal sorts of reactions found in protein regulatory networks. Applying this strategy to a com-

prehensive mechanism of the budding yeast cell cycle, we illustrate the potential value of

standard component modeling. The deterministic version of our model reproduces the phe-

notypic properties of wild-type cells and of 125 mutant strains. The stochastic version of our

model reproduces the cell-to-cell variability of wild-type cells and the partial viability of the

CLB2-dbΔ clb5Δmutant strain. Our simulations show that mathematical modeling with

“standard components” can capture in quantitative detail many essential properties of cell

cycle control in budding yeast.

Introduction
The physiology of living cells is controlled by complex networks of interacting genes, proteins
and metabolites [1]. These networks are often simplified by focusing on one level or another. A
metabolic network treats genes and proteins as fixed parameters. A gene regulatory network
focuses on how one gene controls another, skipping over the proteins that implement these
control signals. A protein regulatory network, on the other hand, describes the production,
degradation and post-translational modifications of proteins, without explicit reference to the
nucleic acids that underpin protein synthesis. Such simplifications are entirely appropriate in
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certain circumstances, and the right way to model such networks also depends on the context.
For instance, genetic control systems are often described by Boolean switching networks,
where simple logical rules (Boolean functions) are used to describe the interactions among
genes and to determine how the system updates its discrete state variables from one time-point
to the next. Boolean models require no rate constants and are primarily used to capture the
qualitative behavior of gene regulatory networks [2–4].

To describe the dynamical behavior of protein regulatory networks (PRNs), computational
biologists have access to a range of mathematical modeling approaches, from discrete Boolean
models to continuous models based on nonlinear ordinary differential equations (ODEs), to
stochastic simulations with Gillespie-type models. ODE models are a common choice, because
they track the evolution of a PRN continuously over time and their simulations can be com-
pared in exquisite detail to experimental observations [5, 6]. The ODE approach, however,
requires that the biochemical rate constants characterizing the reactions in the network be
carefully estimated from experimental data. Parameter estimation for realistic models is a diffi-
cult task [7].

There have been some notable efforts to combine the advantageous features of ODE and
Boolean models. Years ago Glass & Kauffman [8] used piecewise-linear differential equations
to track continuous changes of protein concentrations (given by ODEs) in response to dis-
crete changes in gene expression (given by a Boolean network). This approach was used ele-
gantly by Uri Alon in his textbook on systems biology [9] and by a number of other research
groups [10–12].

To incorporate molecular noise into network simulations, modelers have recourse to Gille-
spie's stochastic simulation algorithm (SSA) [13]—which simulates every reaction event and is
statistically correct but comes at a high computational price—or less computationally expen-
sive methods such as the chemical Langevin equation (CLE) [14] or stochastic Petri nets [15].
It is possible to include stochastic effects in Boolean models as well [16, 17].

Once a modeler adopts a particular quantitative approach, he or she faces the problem of
choosing rate laws to represent the biochemical reactions in the network. Accurate stochastic
modeling by SSA or CLE demands (in principle) that the network be described by elementary
biochemical reactions with mass-action kinetics. ODE models are more flexible, and phenome-
nological rate laws (such as Michaelis-Menten kinetics, zero-order ultrasensitivity, and Hill
functions) are often used. These phenomenological rate laws rely on some simplifications and
assumptions that are, unfortunately, not always true in PRNs [18, 19].

To deal with the issues just described, we propose to model PRNs in terms of three classes
of proteins, depending on the time scales of the reactions that govern their evolution. These
three classes represent distinctly different “building blocks” of a network and are described by
different types of mathematical equations. By connecting these building blocks in standard
ways, we can construct a detailed model of a complex reaction network in a controlled fashion,
much like a LEGO1 toy. We refer to the output of this approach as a standard component
model (SCM). Our approach combines many advantageous features of continuous, discrete
and stochastic approaches, while organizing the model in a simple and logical format.

The goal of this paper is to demonstrate that the SCM approach can be applied effectively to
model a complex protein regulatory network, namely the network regulating cyclin-dependent
kinase activities during the cell division cycle of budding yeast. We build the model in two
steps. First, we build a simple SCM of the START transition in the budding yeast cell cycle, to
illustrate the general principles of deterministic and stochastic modeling by the standard-com-
ponent method. Then we build a more complex SCM of the full cell division cycle of budding
yeast, and test its accuracy by detailed comparisons to experimental data. Our presentation fol-
lows this outline:

A Standard-Component Model of Yeast Cell-Cycle Regulation
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1. Deterministic modeling by the standard-component method.

2. Molecular cell biology of the START transition in budding yeast.

3. A “multisite phosphorylation” (MultiP) model of the START transition.

4. A deterministic SCM of the START Transition

5. A stochastic version of the SCM.

6. Comparison of the SCM and MultiP models of the START transition.

7. An SCM of the full cell-cycle control system in budding yeast.

8. Deterministic simulations of the full SCM and comparison to the phenotypes of wild-type
and mutant cells.

9. A stochastic version of the full SCM.

10. Comparison of stochastic simulations to the cell-to-cell variations exhibited by wild-type
and mutant yeast cells.

Results

1. Deterministic SCM
Proteins regulate one another by controlling their abundances through rates of synthesis and
degradation and their activities through post-translational modification (e.g., phosphorylation
and dephosphorylation), and by associating into multisubunit complexes. These three classes
of reactions often proceed on different time scales. Synthesis and degradation cause rather slow
changes in the total amount of a protein (time scale> 10 min). Phosphorylation and dephos-
phorylation cause faster changes in protein activity (time scale = 1–10 min). Rapid association
and dissociation of protein complexes bring the complexes and subunits into equilibrium on a
short time scale (1 min or less). In cases where this separation of time scales is known or sus-
pected to be the case, we can partition the components of a PRN into three classes:

Class-1 variables track the total amounts of proteins, which evolve rather slowly in time due to
synthesis and degradation.

Class-2 variables track the activities of proteins, which change faster due to covalent
modifications.

Class-3 variables track protein complexes, which turn over rapidly by association and dissocia-
tion of subunits.

In principle, variables of these three classes can represent different forms of the same pro-
tein. For example, we can use a class-1 variable to represent the total amount of a protein,
while using a class-2 variable to represent the fraction of the total protein that is phosphory-
lated, and a class-3 variable to represent the fraction of the total protein that is bound to a stoi-
chiometric inhibitor.

In our formalism, class-1 variables (Xi) are governed by pseudo-linear differential equations
for protein synthesis and degradation

dXi

dt
¼ Ai � Bi � Xi ð1Þ

The ODE is linear in Xi, the number of molecules of species Xi, but the rates of synthesis
and degradation are functions of variables Yj that may belong to any of the three classes. It is
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often possible to use linear functions for Ai and Bi,

Ai ¼ ai0 þ
X
j2J

aij � Yj ð2Þ

Bi ¼ bi0 þ
X
j2J

bij � Yj ð3Þ

where αi0 and βi0 are basal rates of synthesis and degradation, and αij �Yj and βij �Yj are rates
regulated by transcription factors and proteolytic enzymes, respectively. (In this case, the bio-
chemical rate parameters αi0, βi0, αij, and βij are all positive constants.) In other cases—espe-
cially for transcription factors that inhibit gene expression—nonlinear functions for Ai and Bi
may be required.

Class-2 variables are governed by nonlinear ODEs of the form

dYj

dt
¼ gjðYj;T � Hðsj �WjÞ � YjÞ; ð4Þ

where Yj represents the activity of protein Yj (e.g., the phosphorylated or the active form of Yj),
Yj,T is the total number of molecules of protein Yj, γj determines the time scale of the reaction,
andH(x) = 1/(1 + e−x) is the sigmoidal function illustrated in S1 Fig. (H is a hyperbolic tangent
function shifted along the y-axis. In population biology it is known as the “logistic” function.
We refer to H as the “soft-Heaviside” function, because we use it to replace the step-like Heavi-
side function used in the piecewise-linear models of Glass, Kauffman and others.) In the soft-
Heaviside function,Wj describes the net influence of all components in the network on the
component Yj:

Wj ¼ �oj0 þ
X
k2K

ojk � Yk �
X
l2L

ojl � Yl: ð5Þ

In Eq 5, ωjk and ωjl are weights (always positive values) that describe the influences of variables
Yk and Yl on the variable Yj.K represents all variables that have positive influences on the variable
Yj, and L represents all variables that have negative influences on the variable Yj. Yk and Yl can be
variables of any of the three classes of species. The background influence, ωj0, which can be pre-
ceded by either the positive or negative sign, determines the value of the soft-Heaviside function
when protein Yj is receiving no inputs from the other proteins in the network. The parameter σj
controls the steepness of the soft-Heaviside function; see S1 Fig. In principle, the value of σj could
be absorbed into the values of the ω’s, but we prefer to treat σj as a separate parameter and to
think of the ω’s as relative interaction strengths. That way, we can vary the steepness of the soft-
Heaviside function independently of the relative interaction strengths and vice versa.

Eq 4 shows that H (σj�Wj) determines the steady state of the variable Yj as a fraction of the
total amount Yj,T. If the total amount of the protein remains constant over time, Yj,T is a con-
stant parameter in the model. If the total amount of the protein changes in time, we can use a
class-1 variable to keep track of Yj,T while using a class-2 variable to keep track of the fraction
of the protein that is in the active form.

Class-2 variables evolve to a steady state on a time scale that is proportional to γj
−1. There-

fore, if γj is large, we can invoke the pseudo-steady state approximation for the class-2 variable:

Yj ¼ Yj;T � Hðsj �WjÞ: ð6Þ
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Moreover, if both γj and σj are large, then the class-2 variable, Yj/Yj,T, behaves like a Boolean
variable, switching rapidly between 0 and 1 in response to other components in the network
(S1 Fig).

Eq 4 has been used to describe interactions in PRNs many times before [12, 20–23]. We use
the soft-Heaviside function because biochemical reactions (such as phosphorylation and
dephosphorylation) are nonlinear in nature and often show ultrasensitive, sigmoidal responses
[24–26]. Different mechanisms have been proposed to give rise to ultrasensitivity, and different
types of rate equations have been used to capture this response. For transcription factors bind-
ing to gene promoter regions, Hill functions are often used to express the highly nonlinear
(ultrasensitive) response of gene transcription rate to transcription factor concentration. For
post-translational modifications of proteins, a commonly used mechanism is zero-order ultra-
sensitivity, originally proposed by Goldbeter & Koshland (GK) [25]. The GK equation
describes the steady-state activity of a protein modified by two Michaelis-Menten enzymes
with opposing effects (activation and inactivation). More recently, multisite phosphorylation
has received considerable attention as an alternative mechanism of ultrasensitivity in PRNs
[26–28]. All these mechanisms ultimately lead to sigmoidal-like responses, similar to the soft-
Heaviside function (S1 Fig). Therefore, we eschew specific assumptions about the molecular
mechanisms of ultrasensitivity and simply use the soft-Heaviside function as a phenomenolog-
ical law that captures the ultrasensitive responses that are characteristic of PRNs.

Class-3 variables describe the rapid association and dissociation of proteins in multi-subunit
complexes. For example, if proteins Y and I bind together strongly in an inactive complex, then
the number of Y molecules that are free (not bound to I) is given by

Y ¼ maxð0;YT � ITÞ: ð7Þ

This equation is a good approximation if both association and dissociation rates are fast,
and the equilibrium binding constant is large. The max function returns zero if the total
amount of the protein, YT, is less than the total amount of its inhibitor, IT, meaning that all of
protein Y is sequestered in the complex. On the other hand, if YT > IT, then the free form of
the protein, Y, is simply the excess of YT over IT.

If an inhibitor associates with two different proteins with comparable association and disso-
ciation rates, the amounts of the free proteins can be approximated by

Y1 ¼ max 0;
Y1;;T

Y1 ;T þ Y2;T

� ðY1;T þ Y2;T � ITÞ
 !

Y2 ¼ max 0;
Y2;T

Y1;T þ Y2;T

� ðY1;T þ Y2;T � ITÞ
 !

I ¼ maxð0; IT � Y1;T � Y2;TÞ

ð8Þ

where IT, Y1,T and Y2,T are the total amounts of the proteins, and I, Y1 and Y2 are the amounts
of the free forms of the proteins. In Eq 8, we assume that the inhibitor is distributed equally
between Y1 and Y2, according to the availability of the two proteins. If I binds much more
strongly to Y1 than to Y2, then Eq 8 should be replaced by

Y1 ¼ maxð0;Y1;T � ITÞ
Y2 ¼ minfmaxð0;Y1;T þ Y2;T � ITÞ;Y2;Tg
I ¼ maxð0; IT � Y1;T � Y2;TÞ

ð8’Þ
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In the following sections, we show how to use these three classes of variables as building
blocks to construct an SCM of the molecular network controlling the cell division cycle in bud-
ding yeast. Because the full model is very complex, we approach it in a series of simpler steps.

2. The Start transition in budding yeast
START is an event in G1 phase of the budding yeast cell cycle when a cell commits to a new
round of DNA synthesis and mitosis. A crucial step of the START transition is the translocation
of Whi5, a stoichiometric inhibitor of SBF and MBF transcription factors, from nucleus to
cytoplasm [29, 30]. SBF and MBF control the expression of CLN2 and CLB5 genes, which
encode “cyclin” proteins Cln2 and Clb5, respectively. Cln2 and Clb5 bind to kinase subunits
(Cdc28) to form heterodimers with “cyclin-dependent kinase” (CDK) activity. CDK activity
generated at START triggers initiation of DNA synthesis and bud emergence. Because kinase
subunits are in excess over cyclin partners [31], CDK activity is determined solely by the abun-
dance of cyclin proteins. For simplicity in illustrating the SCM approach for the START transi-
tion, we combine Cln2- and Clb5-dependent kinase activities into a single variable, called ClbS.
We also treat SBF and MBF as a single variable, called SBF.

During normal cell cycle progression in budding yeast, the cell needs to grow sufficiently
large to execute START [32, 33]. The major players involved in “size control” of START are Cln3
andWhi5. Whi5 prevents the START transition by binding to and inhibiting SBF, and Cln3 pro-
motes START by phosphorylating and inactivating Whi5 [29,30]. The accumulation of Cln3 in
G1 phase seems to depend on cell growth [34], and recent evidence suggests that Whi5 concen-
tration is diluted out by cell growth [35]. As the cell grows, Cln3-dependent kinase phosphory-
lates Whi5, resulting in translocation of Whi5 from nucleus to cytoplasm and the release of its
inhibition on SBF. Free SBF promotes the synthesis of ClbS, which stimulates its own expres-
sion by further phosphorylating Whi5. This positive feedback loop is thought to enforce the
irreversible commitment of cells to the START transition [36]. A schematic diagram illustrating
the molecular basis of the START transition is shown in Fig 1A.

Before constructing an SCM of the START transition, we first describe a multisite phosphory-
lation (MultiP) model that will serve as a “reference point” for judging the adequacy of the
SCM.

3. A multisite phosphorylation model of the Start transition
Our MultiP model is a simplified version of a model developed by Barik et al. [27] (see Fig 1B),
who used mass-action kinetics to describe all the reactions involved in the START transition and
carried out detailed stochastic simulations based on Gillespie’s algorithm [13]. Our version of
the model (see the equations in S1 Text) is governed by 20 molecular species, including both
proteins and mRNAs (mn3,mbS,mi5, andmhi5 are mRNAs for Cln3, ClbS, Whi5, and Hi5,
respectively). The 20 molecular species participate in 50 reactions, representing synthesis, deg-
radation, phosphorylation, dephosphorylation, association, and dissociation of the species.
Mass-action rate laws are used for all reactions. Each differential equation specifies how the
number of molecules of each species changes with time.

Cell size (V) is assumed to increase exponentially. The rate of synthesis of each protein is
assumed to be proportional to volume V × number of mRNA moleculesm encoding the pro-
tein, because we assume that the number of ribosomes per cell increases proportionally to cell
size V. In this way, we ensure that the concentration (N/V) of every constitutively expressed
protein remains constant as the cell grows. The only exception is Cln3, whose synthesis rate—
we assume—is proportional to the square of cell size (V2), as in Barik’s model [27]. This
assumption, whose consequence is that the concentration of Cln3 increases exponentially as
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the cell grows, introduces a “size dependence” on the START transition, which is needed to
account for many properties of cell cycle progression in budding yeast. Although this assump-
tion is sufficient to account for the observed size-dependence of yeast cell division, it is cer-
tainly not necessary. Other explanations are possible. Indeed, Schmoller et al. [35] have
recently shown that Cln3 synthesis rate increases in direct proportion to V, so that its total con-
centration is nearly constant during G1 phase; and size dependence of the yeast cell cycle
depends on diluting out Whi5, an inhibitor of START, as the cell grows. This alternative will be
explored in future versions of the model.

In Barik’s model [27], multisite phosphorylation of Whi5 is the source of nonlinearity nec-
essary for the ultrasensitive START transition. Whi5 is phosphorylated in vivo on ~10 CDK
phosphorylation sites [37]. In Barik’s model Whi5 has seven phosphorylated states: Whi5,
Whi5P1, Whi5P2, . . ., Whi5P6. In the model, the sites are phosphorylated sequentially and dis-
tributively [26]. The first three forms bind rapidly and strongly to SBF; the higher phosphory-
lated states (Whi5P3, . . ., Whi5P6) are inactive and unable to bind to SBF. Free SBF binds to
and activates the ClbS gene (Gi + SBF$ Ga). Cln3 and ClbS phosphorylate Whi5 (both free
and in complex with SBF), while Whi5Pi species are dephosphorylated by an unspecified phos-
phatase, called Hi5 (“H” for phosphatase, “i5” for Whi5).

In Barik’s model [27], Whi5:SBF complexes are called Cmp, CmpP1, and CmpP2. Whi5P2
in the complex (CmpP2) is assumed not to get further phosphorylated. For Whi5P2 in the com-
plex to be phosphorylated and thereby inactivated, Barik’s model supposes that Whi5P2 must
first dissociate from CmpP2. We think this requirement is unnecessarily restrictive, so we allow
the doubly-phosphorylated Whi5 in the complex (CmpP2) to be further phosphorylated, and

Fig 1. The Start transition. (A) Schematic diagram of the START transition in budding yeast. In early G1, SBF is inactivated by its
stoichiometric inhibitor, Whi5. As cell size increases, Cln3 accumulates and begins to phosphorylate Whi5. PhosphorylatedWhi5 loses its
ability to bind to SBF. As a result, SBF is free and promotes the production of ClbS (Cln2 and Clb5). ClbS exerts positive feedback on its own
accumulation by further phosphorylating Whi5. The activation of SBF correlates with the onset of the START transition. Subsequent
accumulation of ClbS promotes both bud emergence and the G1/S transition. (B) Wiring diagram of the MultiP model. The first three forms of
Whi5 (Whi5, Whi5P1, andWhi5P2) bind to SBF and inhibit its ability to activate the synthesis of ClbS. The higher phosphorylated forms are
inactive and do not bind to SBF. The model also includes mRNA species for each protein component. (C) Wiring diagram of the standard
component model. The 10 distinct forms of Whi5 in the MultiP model are replaced by two forms of Whi5 (active and inactive). For panels B
and C, solid lines indicate chemical reactions (synthesis and degradation, phosphorylation and dephosphorylation, association and
dissociation) and dashed lines indicate activatory or inhibitory influences of components on chemical reactions.

doi:10.1371/journal.pone.0153738.g001
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the triply-phosphorylated Whi5 is assumed to immediately release SBF. We also assume, in the
MultiP model, that the dissociation rate of SBF:Whi5Pi complexes is negligible.

4. An SCM for the Start transition
Fig 1C is the SCM representation of the START transition. We assign the components in this dia-
gram to the three classes of variables proposed above.

Cln3 and ClbS are described by class-1 variables:

dCln3
dt

¼ ks;n3 � V2 � ks;mn3

kd;mn3|ffl{zffl}
mn3

�kd;n3 � Cln3 ð9Þ

dClbS
dt

¼ ks;bS � V � ks;mbS

kd;mbS

� SBF

SBF þ kd;g �V
ka;g

0
@

1
A

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Ga|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

mbS

�kd;bS � ClbS: ð10Þ

In these equations, V = cell size, which we assume increases exponentially in time, V(t) =
V0e

μt, where μ is the specific growth rate of the cell. For each protein, its rate of synthesis is the
product of (rate of translation, ks,. . .) × (number of mRNAs,m. . .) × (cell size, V). We explicitly
account for the number of mRNAs in our synthesis rates (the factors labeledmn3 andmbS), as
the mRNA number will be important later for representing noise terms. For simplicity, we
assume (in the deterministic SCM) that mRNAs are always at their steady state levels. As in the
MultiP model, we assume that the synthesis rate of Cln3 is proportional to the square of cell
size (V2) so that the concentration of Cln3 (number/volume) will increase exponentially as the
cell grows. The activity of the gene encoding ClbS, Ga, depends on active SBF binding to the
promoter region of the gene.

Since multisite phosphorylation of Whi5 gives rise to its ultrasensitive response to total
CDK activity, we use a class-2 variable for the active form of Whi5 and a class-1 variable for
the total amount of Whi5:

dWhi5A

dt
¼ g � ðWhi5T � Hðs �Wi5Þ �Whi5AÞ ð11Þ

Wi5 ¼
odp;i5

V
� Hi5� op;i5

V
� Cln3� o0

p;i5

V
� ClbS ð12Þ

dWhi5T

dt
¼ ks;i5 � V � ks;mi5

kd;mi5

 !
|fflfflfflfflffl{zfflfflfflfflffl}

mi5

�kd;i5 �Whi5T ð13Þ

dHi5
dt

¼ ks;hi5 � V � ks;mhi5

kd;mhi5

 !
|fflfflfflfflffl{zfflfflfflfflffl}

mhi5

�kd;hi5 � Hi5 ð14Þ

whereH(x) is the soft-Heaviside function defined earlier (see S1 Fig). We assume that the phos-
phorylation and dephosphorylation of Whi5 are independent of its binding state to SBF. In
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this way, we are able to use two differential equations (Eqs 11 and 13) to represent 10 distinct
states of Whi5 andWhi5:SBF complexes. Here,Whi5A (Eq 11) represents the total amount of
active Whi5 both free and bound to SBF (it includesWhi5,Whi5P1,Whi5P2, Cmp, CmpP1, and
CmpP2 in the MultiP model); whereas (Whi5T –Whi5A) represents the other four inactive
forms of Whi5 (Whi5P3 toWhi5P6). Hi5 (the phosphatase that re-activates Whi5) is described
by a class-1 variable in Eq 14.

In Eq 12, the interaction coefficients ωp,i5, ω0
p,i5 and ωdp,i5 are all positive numbers. The

signs—positive or negative—in front of each term determine whether the interaction is activat-
ing or inhibiting (dephosphorylation or phosphorylation, in this case).

Assuming that binding between active forms of Whi5 and SBF is rapid and strong, we
describe free SBF as a class-3 variable

SBF ¼ maxð0; SBFT �Whi5AÞ : ð15Þ

This equation indicates that free SBF is equal to the excess of the total SBF over the total
active Whi5, where SBFT (Eq 16) is represented by a class-1 variable.

dSBFT

dt
¼ ks;bf � V � kd;bf � SBFT ð16Þ

Because the original model of Barik et al. [27] did not have an mRNA species for SBF, we
have not included mRNA for SBF in the SCM.

Using the SCM approach, we reduce the complexity of the START model to seven differential
equations plus one algebraic equation (from 20 equations in S1 Text for the MultiP model).
The parameter values used in the SCM (Table 1) are inherited, for the most part, from the
parameter values in Barik et al. [27]. The parameter values assigned by Barik et al. were esti-
mated from experimental data wherever possible. For example, protein degradation rates were
calculated from protein half-life measurements in the literature, and synthesis rate constants
were assigned to agree with the average number of protein molecules observed for an asynchro-
nous population of yeast cells growing on glucose medium. For phosphorylation and dephos-
phorylation reaction, there are no experimentally measured rate constants. Barik et al. assigned
values to these rate constants so that their model compared well with the observations of Di
Talia et al. [38], and we have done the same in assigning values to γ, σ and the ω’s in Eqs 11
and 12. (S1 Table specifies four additional parameter values needed for the MultiP model.)

In both models, initial conditions are set as follows: Cln3 = ClbS = SBF = 0, and initial condi-
tions for all other variables are set at their steady state levels (see Table 2 for the SCM and S2
Table for the MultiP model). In the MultiP model, at the beginning of the simulation, all Whi5
is in the unphosphorylated form and all SBF is complexed with Whi5. In the SCM, at the begin-
ning of the simulation, all Whi5 is in the active form and all SBF is complexed with active Whi5.

5. Stochastic version of SCM
Deterministic models are usually sufficient to predict the average behavior of a population of
cells. However, at the level of individual cells, molecular regulatory networks operate under
noisy conditions. A major source of noise inside cells are fluctuations of the numbers of mole-
cules of biochemical species undergoing random events of synthesis and degradation. These
inevitable fluctuations are referred to as “molecular noise”. Under the influence of such noise,
the number of molecules, N, of a biochemical species fluctuates around the value predicted by
the deterministic model. For a simple synthesis-degradation process, the variance of these fluc-
tuations is equal to the mean value, hNi, of the number of molecules [39]. Hence, the coefficient
of variation (CV = standard deviation/mean) of the number of molecules is expected to be
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Table 2. Initial conditions for simulations of the standard component model of the START transition in
Figs 3 and 5.

Variable Number Concentration

ClbS 0 0 nM

Cln3 0 0 nM

Hi5 1275 213 nM

SBFT 1530 255 nM

Whi5A 5363 894 nM

Whi5T 5363 894 nM

V 10 fL

doi:10.1371/journal.pone.0153738.t002

Table 1. Parameter values for the standard component model of the START transition.

Parameter Description Value

ka,g Rate constant for association of SBF to CLBS promoter 0.25 fL molec−1 min−1

kd,bf Rate constant for degradation of SBF 0.01 min−1

kd,bS Rate constant for degradation of ClbS protein 0.1 min−1

kd,g Rate constant for dissociation of SBF from CLBS promoter 12 min−1

kd,hi5 Rate constant for degradation of Hi5 phosphatase 0.01 min−1

kd,i5 Rate constant for degradation of Whi5 0.01 min−1

kd,mbS Rate constant for degradation of CLBS mRNA 0.25 min−1

kd,mhi5 Rate constant for degradation of HI5 mRNA 0.7 min−1

kd,mi5 Rate constant for degradation of WHI5 mRNA 0.7 min−1

kd,mn3 Rate constant for degradation of CLN3 mRNA 1 min−1

kd,n3 Rate constant for degradation of Cln3 protein 0.14 min−1

ks,bf Rate constant for synthesis of SBF 1.53 molec fL−1 min−1

ks,bS Rate constant for synthesis of ClbS protein 0.3 fL−1 min−1

ks,hi5 Rate constant for synthesis of Hi5 phosphatase 0.1275 fL−1 min−1

ks,i5 Rate constant for synthesis of Whi5 protein 0.715 fL−1 min−1

ks,mbS Rate constant for synthesis of CLBS mRNA 11.5 molec min−1

ks,mhi5 Rate constant for synthesis of HI5 mRNA 7 molec min−1

ks,mi5 Rate constant for synthesis of WHI5 mRNA 5.25 molec min−1

ks,mn3 Rate constant for synthesis of CLN3 mRNA 7.5 molec min−1

ks,n3 Rate constant for synthesis of Cln3 protein 0.0024 fL−2 min−1

<mmin,bS> Minimum number of CLBS mRNA molecules 1 molec

<mmin,hi5> Minimum number of HI5 mRNA molecules 0

<mmin,i5> Minimum number of WHI5 mRNA molecules 0

<mmin,n3> Minimum number of CLN3 mRNA molecules 0

γ Rate constant for Whi5 dephosphorylation 0.15 min−1

μ Specific growth rate of cells 0.007 min−1

σ Steepness of soft-Heaviside function 0.1

ωdp,i5 Interaction coeff for dephos’n of Whi5 by Hi5 phos’tase 0.12 fL molec−1

ωp,i5 Interaction coeff for phos’n of Whi5 by Cln3-dep kinase 6.2 fL molec−1

ω'
p,i5 Interaction coeff for phos’n of Whi5 by ClbS-dep kinase 0.33 fL molec−1

doi:10.1371/journal.pone.0153738.t001
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1=
ffiffiffiffiffiffiffiffihNip

, becoming proportionally larger as the mean number of molecules becomes smaller.
For yeast cells, which carry only a few copies of some macromolecules (e.g., mRNA species),
the fluctuations are potentially large.

To adapt an SCM for stochastic simulations, we add Langevin-type fluctuations to our equa-
tions for class-1 variables:

DXi

Dt
¼ Ai � Bi � Xi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai þ Bi � Xi

p � z1ðtÞffiffiffiffiffi
Dt

p|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Protein noise

þXi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bi �

1

hmii
� Bi
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s
� z2ðtÞffiffiffiffiffi

Dt
p

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
mRNA�inherited noise

: ð17Þ

In this equation, molecular noise is attributed to random fluctuations at two levels: protein
and mRNA. Fluctuations at the protein level are described by the chemical Langevin approxi-
mation [40]. Ai and Bi represent the protein synthesis and degradation rates as described in
Eqs 2 and 3, respectively. z1 (t) and z2 (t) are independent random variables, each chosen from
a normal distribution N(0, 1) with mean = 0 and standard deviation = 1. Δt is the step size of
the numerical integration. The last term in Eq 17 represents noise at the protein level inherited
from fluctuations in mRNAmolecules, and we next explain the origin of this term.

Since the number of mRNA molecules in a cell is typically much less than the numbers of
protein molecules encoded by the mRNA, stochastic effects arising from mRNA fluctuations
could contribute significantly to fluctuations in protein abundance. Instead of explicitly includ-
ing mRNA dynamics in our SCM, as done in the Barik et al. model [27], we take an alternative
approach. Pedraza and Paulsson [39] have shown that the square of the CV of protein numbers
caused by mRNA fluctuations (at steady state) follows the equation

CV2
mRNA�inherited noise ¼

1

hmi �
tm

tm þ tp
; ð18Þ

Where hmi is the average number of mRNAmolecules at steady state, and τm and τp are half-
lives of mRNAs and proteins, respectively. The last term of Eq 17 was derived to approximate
the CV2 predicted by Eq 18 under steady state conditions for the protein and mRNA levels (see
S2 Text for the derivation). In Eq 17, kdm is the rate constant for mRNA degradation; so the
term Bi /(Bi + kdm) is equal to τm /(τm + τp) in Eq 18.

There is still a problem with the mRNA noise term in Eq 17. When hmii is small (e.g., the
case of a low level of the transcription factor SBF in Eq 10), the Langevin approximation breaks
down and the noise term becomes very large. To avoid this, we replace hmii with hmii + hmmin,ii
in our simulation, where hmmin,ii is assumed to be a minimum number of mRNAmolecules
always present in the cell. Eq 17 then becomes

DXi

Dt
¼ Ai � Bi � Xi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ai þ Bi � Xi

p � z1ðtÞffiffiffiffiffi
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Protein noise
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mRNA�inherited noise

;

ð19Þ

We treat hmmin,ii as a parameter, and its value may vary from one mRNA species to
another.

We do not incorporate protein and mRNA noise terms into variables of classes 2 and 3. We
assume that protein phosphorylation and dephosphorylation reactions and the association and
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dissociation of protein complexes occur fast enough to bring any fluctuations quickly back to
the average dynamics.

To create a stochastic SCM for the budding yeast START transition, we modify the equations
of class-1 variables by adding Langevin-type noise terms, as in Eq 19. For example, the stochas-
tic equation for Cln3 is:

DCln3
Dt

¼ An3 � Bn3 � Cln3þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
An3 þ Bn3 � Cln3

p
� z1ðtÞffiffiffiffiffi

Dt
p
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bn3

1

hmn3i þ hmmin;n3i
� Bn3

Bn3 þ kd;mn3

s
� z2ðtÞffiffiffiffiffi

Dt
p

An3 ¼ ks;n3 � V2 � ks;mn3

kd;mn3

Bn3 ¼ kd;n3

hmn3i ¼
ks;mn3

kd;mn3

;

ð20Þ

where An3 and Bn3 represent the synthesis and degradation rates of Cln3 protein, and hmn3i is
the average number of CLN3mRNAmolecules calculated at steady state. hmmin,n3i is a param-
eter representing the minimum number of CLN3mRNAmolecules present in the cell. The full
list of stochastic equations is given in S3 Text.

Barik et al. [27] used Gillespie's SSA to simulate all chemical reactions in their stochastic
model. They assumed that hyper-phosphorylation of Whi5 corresponds to its nuclear export
(as an indication of the START transition). Their model accurately predicted the timing of the
transition and its dependence on cell size at birth, when compared with experimental observa-
tions of Di Talia et al. [38].

In the next section, we compare deterministic and stochastic simulations of our SCM to
deterministic and stochastic simulations of the MultiP model in S1 Text, and we show that the
SCM, a model considerably less complex than MultiP, accounts for most of the dynamic prop-
erties of the system.

6. Comparisons of the Start model simulations
To validate our approach, we compare qualitative and quantitative aspects of the SCM to the
MultiP model. Fig 2 shows the one-parameter bifurcation curves for both models, in which we
plot the steady-state number of ClbS molecules as a function of cell volume (V) as the bifurca-
tion parameter. Both models exhibit bistability within a range of V from ~6 fL to ~30 fL.
Hence, both models agree on cell size at the START transition (~30 fL) for wild-type cells. New-
born cells in G1 phase of the cell cycle are captured by the stable steady state with ClbS level
very low. They must grow to a size of ~30 fL, before the lower stable steady state disappears at a
saddle-node bifurcation point. For V> 30 fL, the number of ClbS molecules rises rapidly to
the high steady-state level, corresponding to the START transition. In S2 Fig, we use two-param-
eter bifurcation diagrams to show how the SCM and the MultiP model behave when the syn-
thesis rates of Cln3 and ClbS are varied at various (fixed) cell size.

Next we compare time-series dynamics of the two models in their deterministic formula-
tions (i.e., simulations of the nonlinear ODEs). In Fig 3, we show simulations of a cell that starts
with V = 10 fL at t = 0. The two models show very similar time courses for the control proteins.
As in the multisite phosphorylation paper [27], we mark the START transition as the time when
the concentration of active SBF increases above 15 nM and the G1/S transition as the time
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when ClbS concentration increases above 37.5 nM. Concentration in nM is calculated from
molecule number N and volume V in fL by the formula

concentration ðnMÞ ¼ number of molecules

NA ðmol�1Þ � V ðfLÞ � 109 nmol
mol

� 1015
fL
L

¼ N
0:6 VðfLÞ

where NA is Avogadro’s number, 6.02 × 1023.
Since it is well known that the smaller is cell size at birth the longer is the time to initiate

bud formation and to enter S phase, we measure the durations from birth (t = 0) to the START
transition (T1) and to the G1/S transition (TG1) for various values of initial volume, V0. In Fig 4,
we plot T1 and TG1 as functions of initial cell size. (The left-most bars of the figure correspond
to the time-series simulations in Fig 3). The results show that the SCM is quantitatively compa-
rable to the more complex MultiP model. The figure also shows that T1 and TG1 decrease as
birth size increases, consistent with experimental observations [38]. The gap between START
and the G1/S transition, T2 = TG1 –T1, is small in both models (S3 Fig) and nearly independent
of birth size [38].

Next we study stochastic properties of the models. The MultiP model is simulated by SSA
[13] while the SCM is simulated by the CLE approximation described above. S4 Fig compares
the steady-state distributions of Cln3, SBF and ClbS at fixed volume for the MultiP model and
the SCM. Fig 5 shows envelopes of sample trajectories from stochastic simulations of both
models, starting with V = 10 fL at t = 0. Distributions of T1 and TG1 can be computed for the
stochastic models as functions of V0. For each value of V0, we do 100 independent simulations
of each model and compute the average values and standard deviations of T1 and TG1. The
average values show similar patterns to the deterministic simulations in Fig 4 (see S5 Fig). The
coefficient of variation (CV) is shown in Fig 6 and the distributions of T1 and TG1 are shown in
S6 Fig. The results show that the noise intensities of both models agree well at small V0 but not
at large V0 (red and green bars in Fig 6). Our SCM without mRNA fluctuations (i.e., discarding
the mRNA-inherited noise term from the equations) shows less intensity of noise (blue bars in

Fig 2. One-parameter bifurcation diagram. The steady-state number of ClbS molecules is plotted as a
function of (fixed) cell volume. Solid line: stable steady states; dashed line: unstable steady states; blue lines:
multisite phosphorylation (MultiP) model; red lines: standard component model (SCM). Both models exhibit a
region of bistability between V� 6 fL and V� 30 fL. The right bifurcation point (at V� 30 fL) corresponds to
the threshold size for the START transition.

doi:10.1371/journal.pone.0153738.g002
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Fig 6), indicating that mRNA fluctuations are important. By expanding the SCM to include
mRNA synthesis and degradation explicitly and simulating mRNA fluctuations using CLEs
(see equations in S4 Text), we obtained much better agreement with the fully stochastic MultiP
model (Fig 7), but at a cost of considerably more complexity.

With this simple model of the START transition in budding yeast, we have shown that the
SCM approach can capture essential dynamical features of a complex control network in quan-
titative detail. Encouraged by these results, we built an SCM of the full network of molecular
controls of the budding yeast cell cycle, as described in the next section.

7. An SCM for the budding yeast cell cycle control system
Our cell cycle model (Fig 8) is based on the interaction network proposed in [41] with some
modifications in the START transition (by adding the inhibition of SBF by Whi5) and mitotic
exit (by adding the stimulatory effects of Polo kinase and separase Esp1 on Cdc14 release),
according to the models proposed in [36] and [42], respectively. In the model of Chen et al.
[41] (Chen-2004, hereafter), each component is represented in terms of a concentration that
has been scaled to a dimensionless number, called its normalized concentration, [] n. Cell vol-
ume, Vn, is also dimensionless. In order to compare SCM simulations directly to Chen-2004,
we switch from numbers of molecules to normalized concentrations, using the “characteristic

Fig 3. Deterministic trajectories simulated by the MultiP model and the SCM of the Start transition. Both models are simulated for 300
min, starting with V = 10 fL at t = 0. Initial conditions for the SCM are specified in Table 2 and for the MultiP model in S2 Table. In these
panels we plot concentration (in nM), which is calculated frommolecule number and volume (in fL) by the formula “concentration” =
“number”/(0.6 × “volume in fL”). In the MultiP model,Whi5A =Whi5 +Whi5P1 +Whi5P2 + Cmp + CmpP1 + CmpP2. In both models,Whi5i =
Whi5T –Whi5A. The changes inWhi5A andWhi5i over the first 100 min are quite different in the two models because their descriptions of the
Whi5 activation process are quite different. Nonetheless, they predict similar timing for the cell cycle transitions. We presume that the START

and G1/S transitions occur when [SBF] = 15 nM and [ClbS] = 37.5 nM, respectively. (These values are 50% of the maximum concentrations
from the original MultiP model [27], not 50% of the final concentrations shown in this figure). The MultiP model (left panels) executes the
START and G1/S transitions at t = 142 min and t = 152 min, respectively. The SCM (right panels) executes the START and G1/S transitions at
t = 145 min and t = 153 min, respectively.

doi:10.1371/journal.pone.0153738.g003
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concentrations” listed in Table 3. To be more specific, [S]n = [S]/cS = NS/(0.6 V�cS), where [S] =
concentration of species S in nM, cS = characteristic concentration of S in nM, NS = number of
S molecules in volume V (in fL), and V = Vn cvol.

In budding yeast, as in all eukaryotes, cyclin/Cdk complexes are the main regulators of cycle
progression. The kinase subunit, Cdc28, being far more abundant than all cyclin proteins, is
always available to bind to any cyclins present in the cell [31]. Therefore, we use concentrations
of cyclins to indicate the activities of cyclin/Cdc28 complexes (neglecting Cdc28 itself in the
model). As in previous models, components that have similar functions are treated as single
variables; for instance, “SBF” stands for SBF and MBF, “Cln2” for Cln1 and Cln2, “Clb2” for
Clb1 and Clb2, “Clb5” for Clb5 and Clb6, and “CKI” for Sic1 and Cdc6.

For the cell cycle control system, class-1 variables include proteins whose concentrations
change slowly over time due to the activities of transcription factors and proteolytic enzymes.
This class includes, for example, the total concentrations of cyclin proteins (Cln2, Cln3, Clb2,
and Clb5) and the total concentration of the stoichiometric inhibitor CKI. The synthesis of
Cln2 and Clb5 is regulated by the transcription factor SBF, the synthesis of Clb2 is regulated by

Fig 4. Deterministic simulations of the relation between initial cell size (V0) and cell age at the Start
transition (T1) (upper panel) and cell age at the G1/S transition (TG1) (lower panel) for the Start models.
Red bars: MultiP model; green bars: SCM. The left-most bars of the figure correspond to the time-series
simulations in Fig 3.

doi:10.1371/journal.pone.0153738.g004
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the transcription factor Mcm1, and the synthesis of CKI is controlled by the transcription fac-
tor Swi5. The degradation of Clb2 and Clb5 is regulated by the proteolytic factors Cdc20 and
Cdh1 in association with an E3 ubiquitin ligase called the Anaphase Promoting Complex
(APC).

The properties of many cell cycle-control proteins can be regulated by phosphorylation and
dephosphorylation. For instance, phosphorylated Whi5 is a less potent inhibitor of SBF, and
phosphorylated CKI is more susceptible to proteolysis. We use class-2 variables to represent
the fractions of these proteins that are in “active” forms. The regulation of protein activity by
phosphorylation and dephosphorylation is believed to be essential for the bistable switches that
govern cell cycle transitions [6, 27, 36, 41, 43–45]. Class-2 variables capture the nonlinear
behavior of these reactions in terms of the “soft-Heaviside” functions built into the SCM
formulation.

Class-3 variables represent the free forms of proteins that form tight complexes with stoi-
chiometric binding partners. For example, both Clb5 and Clb2 are inhibited by binding to CKI,
as is Cdc14 inhibited by binding to Net1. In these cases, the “max” function employed by
SCMs is a reasonable approximation because stoichiometric inhibitors usually bind strongly
and rapidly to their partners. This strong-binding assumption is part of the original ODE
model as well [41].

In Fig 8 we have divided the regulatory network into three modules (START, S/G2/M, and
EXIT), which provides a useful framework for constructing the SCM. In Table 3 we classify the
regulatory proteins into the three classes of SCM variables, and in Table 4 we translate Fig 8
into the differential and algebraic equations that define the dynamics of the network according
to the SCM approach.

Fig 5. Stochastic trajectories generated by the MultiP model and the SCM of the Start transition.Means (lines) and standard deviations
(shadows) calculated from 100 independent trajectories are shown for each model, starting with V = 10 fL at t = 0. Initial conditions for the SCM
are specified in Table 2 and for the MultiP model in S2 Table. As in Fig 3 we plot “concentration in nM” = “number of molecules”/(0.6 × “volume
in fL”). The MultiP model is simulated by Gillespie’s SSA and the SCM is simulated by the chemical Langevin approach described in the text.

doi:10.1371/journal.pone.0153738.g005
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Formulation of the Start module. Components involved in the START transition (for a
review, see [46]) are governed by Eqs 22–30. The molecular mechanism of the START transition
considered here (Fig 8A) is more complex than the test case (Fig 1C) considered earlier. First,
instead of lumping Cln2 and Clb5 into one variable (ClbS), we separate them (Eqs 24 and 31)
because they are controlled differently: unlike Clb5, Cln2 is not inhibited by CKI [47] and not
degraded by Cdc20 [48]. Second, we add a component Bck2 (Eq 23), which is known to acti-
vate SBF in parallel to Cln3 [49, 50]. Third, the dephosphorylation of Whi5 by Hi5, an
unknown phosphatase, is considered as a background dephosphorylation (ωdp,whi5) since we
assume that the concentration of Hi5 is always constant. Finally, Cdc14, a component that is
active in late mitosis, also contributes to dephosphorylation of Whi5 during mitotic exit [51].

Fig 6. Stochastic simulations of T1 and TG1 for the Start models. As in Fig 4, we compute the times from
birth (t = 0, V = V0) to the START transition (T1, when [SBF] = 15 nM for the first time; upper panel) and to the
G1/S transition (TG1, when [ClbS] = 37.5 nM for the first time; lower panel). For each model we compute 100
stochastic trajectories and calculate the mean and standard deviation of the time to the event. The mean
times agree well with the deterministic simulations in Fig 4. Here we plot the coefficient of variation
(CV = standard deviation/mean) of the times, in order to judge how well stochastic CLE simulations of the
SCM (green bars) compare with SSA simulations of the MultiP model (red bars). Clearly the SCM under-
estimates the variability of the transitions at large birth size. Removing mRNA noise from the SCM (blue bars)
makes matters worse, as expected.

doi:10.1371/journal.pone.0153738.g006
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Concentrations of Cln3, Bck2, and Cln2 are controlled by synthesis and degradation and
described by class-1 variables (Table 4, Eqs 22, 23 and 24, respectively). The G1/S transition
(START) in budding yeast is known to be sensitively dependent on cell size [33], and START is
known to be strongly dependent on the expression of CLN3 and BCK2 genes [31, 34, 52]. To
account for these facts, we assume that the synthesis rates of Cln3 and Bck2 proteins are pro-
portional to cell size, V. (This assumption was also made in Chen-2004 [41] and in the stochas-
tic model of Barik et al. [27].) The production of Cln2 is controlled by the SBF transcription
factor.

The activity of SBF is controlled by binding to an inhibitor, Whi5 [29, 30], and by phosphor-
ylation (inactivation) by Clb2 [53, 54]; see Table 4, Eqs 27, 28 and 29. In order to bind to SBF,
Whi5 must also be in its unphosphorylated form. Therefore, functional SBF, [SBF]n in Eq 29, is
the amount of unphosphorylated SBF, denoted [SBFA]n, that is not bound to unphosphory-
lated Whi5, denoted [Whi5A]n. For simplicity, we assume that phosphorylated SBF does not
bind to unphosphorylated Whi5.

Fig 7. Stochastic simulations of T1 and TG1 for the Start SCMwith explicit account of fluctuating
mRNA species. As in Fig 6, except now we have added synthesis and degradation of mRNA species
explicitly to the SCM. The remaining discrepancies are attributable in part to differences between the models
and in part to simulating mRNA noise by CLE rather than SSA.

doi:10.1371/journal.pone.0153738.g007
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Fig 8. Wiring diagram of the full cell cycle control network in budding yeast. The network consists of three major modules: START,
S/G2/M, and EXIT. Red and blue icons: active forms of components; orange icons: inactive forms. Solid lines: chemical reactions
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In early G1, Clb2 level is low, so SBF is unphosphorylated, but it is not active because Whi5 is
also unphosphorylated, andWhi5A binds rapidly and strongly to SBFA [29, 30]. As the cell
grows, Cln3 and Bck2 accumulate and phosphorylate Whi5. PhosphorylatedWhi5 dissociates
from SBF and translocates from nucleus to cytoplasm [29, 30], leaving SBF free to do its job as a

(synthesis and degradation, phosphorylation and dephosphorylation, association and dissociation); dashed lines: activatory or
inhibitory influences of components on chemical reactions. T-shaped reaction arrows with black circles on the reactants side of the
arrow indicate reversible association of two proteins to form a complex. T-shaped arrows without black circles represent irreversible
reactions. Not all reactions are shown on this figure; see the equations in Table 4 for complete details.

doi:10.1371/journal.pone.0153738.g008

Table 3. Variables, initial values and characteristic concentrations for the standard component model of the full cell cycle control system.

Variable* Description Class Initial Value Characteristic Concentration

[APCP]n Active (phosphorylated) form of APC 2 0.1216 150 nM

[Bck2]n Total concentration of Bck2 1 0.0308 40 nM

[BUD]n Progress to bud emergence - 0.0488 -

[Cdc14]n Active form of Cdc14 phosphatase 3 1.8914 18 nM

[Cdc15A]n Active form of Cdc15 kinase 2 0.9823 8 nM

[Cdc20T]n Total Cdc20, an APC partner 1 1.2422 150 nM

[Cdc20A]n Active form of Cdc20 3 0.7925

[Cdc20A:APCP]n Complex between Cdc20A and APCP 3 0.1216

[Cdc20A:APC]n Complex between Cdc20A and APC 3 0.6710

[Cdh1A]n Active form of Cdh1, an APC partner 2 0.9574 150 nM

[CKIP]n Phosphorylated forms of Sic1 & Cdc6 2 0

[CKIT]n Total cyclin inhibitors Sic1 & Cdc6 1 0.4012 40 nM

[Clb2]n Active forms of cyclins Clb1 & Clb2 3 0.1011

[Clb2T]n Total cyclins Clb1 & Clb2 1 0.2687 40 nM

[Clb5]n Active forms of cyclins Clb5 & Clb6 3 0.1412

[Clb5T]n Total cyclins Clb5 & Clb6 1 0.3752 40 nM

[Cln2]n Total cyclins Cln1 & Cln2 1 0.1343 40 nM

[Cln3]n Total cyclin Cln3 1 0.0757 40 nM

[Esp1]n Active form of separase 3 0.4706 3.3 nM

[Mad2A]n Active form of Mad2, a spindle assembly checkpoint protein 2 0.4497 150 nM

[Mcm1A]n Active form of transcr factor for Clb2 2 0 100 nM

[Net1A]n Active form of inhibitor of Cdc14 2 0.1086 18 nM

[ORI]n Progress to DNA synthesis - 0.0710 -

[Pds1T]n Securin, an inhibitor of Esp1 1 0.0294 3.3 nM

[PoloA]n Active form of Cdc5 kinase 2 0.2073

[PoloT]n Total Cdc5 kinase 1 0.2915 100 nM

[PPXA]n Active form of a phosphatase 2 0.0128 100 nM

[SBF]n Active (free) form of SBF transcription factor 3 0 22 nM

[SBFA]n Unphosphorylated form of SBF 2 0.6560

[SPN]n Progress to spindle assembly - 0.0389

[Swi5A]n Active form of Swi5 2 0.6333

[Swi5T]n Total Swi5, transcription factor of CKI 1 0.6333 57.5 nM

[Tem1A]n Active form of Tem1, a G-protein kinase 2 0.8592 8 nM

[Tem1A:Cdc15A]n Complex between Tem1A and Cdc15A 3 0.8592

[Whi5A]n Active (unphosphorylated) form of Whi5 2 1.7238 22 nM

Vn Cell size (in normalized volume unit) - 1.1460 28 fL

* [. . .]n refers to normalized (dimensionless) concentration variables

doi:10.1371/journal.pone.0153738.t003
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Table 4. Equations for the standard component model of the full cell cycle system.

Cell Growth
dVn
dt ¼ m � Vn

(21)

START Module
d½Cln3�n

dt ¼ ks;cln3 � Dcln3 �Vn
Jcln3þDcln3 �Vn � kd;cln3 � ½Cln3�n (22)

d½Bck2�n
dt ¼ ks;bck2 � Vn � kd;bck2 � ½Bck2�n (23)

d½Cln2�n
dt ¼ ks;cln2 þ ks;cln2;bf � ½SBF�n � kd;cln2 � ½Cln2�n (24)

d½Whi5A �n
dt ¼ g � ð½Whi5T�n � Hðs �WWhi5Þ � ½Whi5A�nÞ (25)

WWhi5 ¼ odp;whis5 þ odp;whis5;14 � ½Cdc14�n
�op;whis5;n3 � ½Cln3�n � op;whis5;k2 � ½Bck2�n � op;whis5;n2 � ½Cln2�n �op;whis5;b5 � ½Clb5�n

(26)

d½SBFA �n
dt ¼ g � ð½SBFT�n � Hðs �WsbfÞ � ½SBFA�nÞ (27)

Wsbf ¼ odp;sbf � op;sbf;b2 � ½Clb2�n (28)

½SBF�n ¼ maxð0; ½SBFA�n � ½Whi5A�nÞ (29)
d½BUD�n

dt ¼ ks;bud;e � ðebud;n3 � ½Cln3�n þ ebud;n2 � ½Cln2�n þ ebud;b5 � ½Clb5�nÞ � kd;bud � ½BUD�n (30)

S/G2/M Module

d½Clb5T�n
dt

¼ ks;clb5 þ ks;clb5;bf � ½SBF�n
�ðkd;clb5 þ kd;clb5;20 � ½Cdc20A : ABCP�n þ kd;clb5;20;i � ½Cdc20A : ABC�nÞ � ½Clb5T�n

(31)

d½Clb2T�n
dt

¼ ðks;clb2 þ ks;clb2;m1 � ½Mcm1A�nÞ � Vn � ðkd;clb2 þ kd;clb2;20 � ½Cdc20A : APCP�n
þkd;clb2;20;i � ½Cdc20A : APC�n þ kd;clb2;h1 � ½Clb1A�nÞ � ½Clb2T�n

(32)

d½CKIT �n
dt ¼ ks;cki þ ks;cki;swi5 � ½Swi5A�n � kd;cki � ð½CKIT�n � ½CKIP�nÞ � kd;ckip � ½CKIP�n (33)

d½CKIP �n
dt ¼ gcki � ð½CKIT�n � Hðs �WckiÞ � ½CKIP�nÞ � kd;ckip � ½CKIP�n (34)

Wcki ¼ op;cki;n3 � ½Cln3�n þ op;cki;k2 � ½Bck2�n þ op;cki;n2 � ½Cln2�n þ op;cki;b5 � ½Clb5�n
þop;cki;b2 � ½Clb2�n � odp;cki � odp;cki;14 � ½Cdc14�n

(35)

½Clb5�n ¼ max 0; ½Clb5T �n
½Clb5T �nþ½Clb2T �n � ð½Clb5T�n þ ½Clb2T�n � ½CKIT�nÞ

� �
(36)

½Clb2�n ¼ max 0; ½Clb2T �n
½Clb5T �nþ½Clb2T �n � ð½Clb5T�n þ ½Clb2T�n � ½CKIT�nÞ

� �
(37)

d½Swi5T �n
dt ¼ ks;swi5 þ ks;swi5;m1 � ½Mcm1A�n � kd;swi5 � ½Swi5T�n (38)

½Swi5A�n ¼ ½Swi5T�n � Hðs �Wswi5Þ (39)

Wswi5 ¼ oa;swi5;14 � ½Cdc14�n �oi;swi5;b2 � ½Clb2�n (40)
d½ORI�n

dt ¼ ks;ori;e � ðeori;b5 � ½Clb5�n þ eori;b2 � ½Clb2�nÞ � kd;ori � ½ORI�n (41)

d½Cdh1A �n
dt ¼ gð½Cdh1T�n � Hðs �Wcdh1Þ � ½Cdh1A�nÞ (42)

Wcdh1 ¼ oa;cdh1 þoa;cdh1;14 � ½Cdc14�n
�oi;cdh1;e � ðoi;cdh1;n3 � ½Cln3�n þoi;cdh1;n2 � ½Cln2�n þ oi;cdh1;b5 � ½Clb5�n þ oi;cdh1;b2 � ½Clb2�nÞ

(43)

½Mcm1A�n ¼ ½Mcm1T�n � Hðs �Wmcm1Þ (44)

Wmcm1 ¼ oa;mcm1;b2 � ½Clb2�n � oi;mcm1 (45)
d½APCP �n

dt ¼ gapcð½APCT�n � Hðs �WapcÞ � ½APCP�nÞ (46)

Wapc ¼ oa;apc;b2 � ½Clb2�n � oi;apc (47)
d½Mad2A �n

dt ¼ g � ð½Mad2T�n � Hðs �Wmad2Þ � ½Mad2A�nÞ (48)

Wmad2 ¼ oa;mad2 � Budna � ð1� BspcÞ � oi;mad2 (49)
d½SPN�n

dt ¼ ks;spn � Heavð½Clb2�n � JspnÞ � kd;spn � ½SPN�n; (50)

d½Cdc20T �n
dt ¼ ks;cdc20 þ ks;cdc20;m1 � ½Mcm1A�n � kd;cdc20 � ½Cdc20T�n (51)

½Cdc20A�n ¼ maxð0; ½Cdc20T�n � ½Mad2A�nÞ (52)

½Cdc20A�n ¼ minð½Cdc20A�n; ½APCP�nÞ (53)

½Cdc20A : APC�n ¼ minð½Cdc20A�n � ½Cdc20A : APCP�n; ½APCT�n � ½APCP�nÞ (54)

(Continued)
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transcription factor for Cln2 and Clb5 (Table 4, Eqs 24 and 31. We assume that the phosphoryla-
tion and dephosphorylation ofWhi5 are independent of its binding to SBF (Table 4, Eq 25).

Functional SBF promotes the synthesis of Cln2 and Clb5. As Cln2 accumulates, it further
phosphorylates Whi5, enabling faster production of Cln2 [55]. Cln3, Cln2, and Clb5 all pro-
mote bud emergence [56]. The BUD variable represents progression to bud emergence, and we
assume that a bud emerges when [BUD]n = 1 (Table 4, Eq 30).

Formulation of the S/G2/M module. Fig 8B and Eqs 31–54 of Table 4 describe the S/G2/
M module. CKI (the collective name of Sic1 and Cdc6) is a stoichiometric inhibitor that keeps,
as we assume, Clb5 and Clb2 inactive during G1 phase. (In fact, Clb2 is inhibited by both Sic1
and Cdc6, whereas Clb5 is inhibited mainly by Sic1 and not by Cdc6 [47, 57, 58].) We track the
total concentrations of Clb5, Clb2, and CKI by class-1 variables (Eqs 31, 32 and 33,

Table 4. (Continued)

EXIT Module

d½Pds1T�n
dt

¼ ks;pds1 � ðks;pds1 þ kd;pds1;20 � ½Cdc20A : APCP�n
þkd;pds1;20;i � ½Cdc20A : APC�n � ½Pds1T�n

(55)

½Esp1�n ¼ maxð0; ½Esp1T�n � ½Pds1T�n (56)
d½PPXA �n

dt ¼ g � ð½PPXT�n � Hðs �WppxÞ � ½PPXA�nÞ (57)

Wppx ¼ oa;ppx � oi;ppx;p1 � ½Esp1�n (58)
d½Net1A �n

dt ¼ g � ð½Net1T�n � Hðsnet1 �Wnet1Þ � ½Net1A�nÞ (59)

Wnet1 ¼ odp;net1 þ odp;net1;14 � ½Cdc14�n þ odp;net1;px � ½PPXA�n
�op;net1;b2 � ½C1b2�n � op;net1;en � ½Tem1A : Cdc15A�n
�op;net1;15 � ð½Cdc15A�n : ½Tem1A : Cdc15A�nÞ

(60)

½Cdc14�n ¼ maxð0; ½Cdc14T�n � r14;net1 � ½Net1A�nÞ (61)
d½PoloT �n

dt ¼ ks;polo;m1 � ½Mcm1A�n � ðkd;polo þ kd;polo;h1 � ½Cdh1A�nÞ � ½PoloT�n (62)

d½PoloA �n
dt ¼ g � ð½PoloT�n � Hðs �WpoloÞ � ½PoloA�nÞ (63)

Wpolo ¼ oa;polo;b2 � ½Clb2�n � oi;polo (64)
d½Tem1A �n

dt ¼ gtem1 � ð½Tem1T�n � Hðs �Wtem1Þ � ½Tem1A�nÞ (65)

Wtem1 ¼ oa;tem1;lo � ½PoloA�n � oi;tem1 � oi;tem1;px � ½PPXA�n (66)
d½Cdc15A �n

dt ¼ g � ð½Cdc15T�n � Hðs �Wcdc15Þ � ½Cdc15A�nÞ (67)

Wcds15 ¼ oa;cdc15;14 � ½Cdc14�n � oi;cdc15 � oi;cdc15;b2 � ½Clb2�n (68)

½Tem1A : Cdc15A�n ¼ minð½Tem1A�n; ½Cdc15A�nÞ (69)

Definitions:

HðXÞ ¼ 1=ð1þ e�xÞ; HeavðxÞ ¼ 1; if x � 0; ¼ otherwise

Rules:

1) Bud emerges when [BUD]n = 1.

2) DNA synthesis starts when [ORI]n = 1; provided that Boriflag = 1. Then Boriflag is reset to 0 and Budna = 1.

3) Spindle assembly is complete and chromosomes are properly aligned when [SPN]n = 1. Set Bspc = 1.

4) The cell divides asymmetrically between mother and daughter cells when [Clb2]n drops below KEZ. The

mother:daughter size ratio at birth, (1−f):f, is computed from the formula f = 0.3364 exp(22.2/Td), where Td
= mass-doubling time of the culture [43]. In glucose medium (Td = 100 min) the ratio is 58:42 and in

galactose and raffinose media (Td = 150 min) the ratio is 61:39. At cell division, [BUD]n, [SPN]n, Budna and

Bspc are all reset to 0.

5) [ORI]n is reset to 0 (origins of replication are relicensed) when [Clb2]n+[Clb5]n drops below KEZ2. Set

Boriflag = 1.

doi:10.1371/journal.pone.0153738.t004
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respectively) and use class-3 variables to calculate free forms of Clb5 and Clb2 (Eqs 36 and 37).
In these equations, we assume that CKI has comparable association and dissociation rates with
both Clb2 and Clb5, so that CKI is distributed equally between them. (Again, note that this is
not true for Cdc6 [57].)

The rise of Cln2 after the START transition causes the phosphorylation and rapid degradation
of CKI (Eqs 34 and 35) [59]. The falling level of CKI releases Clb5, which further phosphorylates
CKI. Free Clb5 activates components responsible for DNA synthesis [60] (Eq 41). The ORI vari-
able represents initiation of DNA replication, which starts (we assume) when [ORI]n = 1.

Cln2 and Clb5 also inactivate Cdh1, a protein that degrades Clb2 during G1 phase [61, 62]
(Eqs 42 and 43), allowing Clb2 to accumulate. However, at this point (in late G1-early S), the
total concentration of Clb2 is low because its transcription factor, Mcm1, is inactive. Clb2 pro-
duction ramps up as Clb2-dependent kinase activates its own transcription factor Mcm1 [53,
63] (Eqs 44 and 45). In addition, Clb2 phosphorylates and inactivates SBF [53, 54] (Eqs 27 and
28), thereby stopping synthesis of Cln2 and Clb5 and preparing the cell for mitotic exit.

Swi5 is the transcription factor for CKI [64] (Eq 33). We use a class-1 variable to track the
total amount of Swi5 (Eq 38) and a class-2 variable to track its activity (Eq 39). Eq 39 calculates
the activity of Swi5, [Swi5A]n, at steady state, assuming its phosphorylation and dephosphory-
lation are very rapid.

As the accumulation of Clb2 drives the cell into M phase, it also sets up conditions for
mitotic exit by phosphorylating and activating the APC [65] (Eqs 46 and 47). APC activity—
which requires the cooperation of an auxiliary subunit, Cdc20—is essential for chromosome
segregation at the metaphase-anaphase transition [66, 67] and the initiation of mitotic cyclin
degradation [68]. But, during early M phase, Cdc20 is kept inactive by the spindle assembly
checkpoint (SAC) [69]. The SAC activates a checkpoint protein, Mad2, which sequesters and
inactivates Cdc20. In our model, the Mad2-dependent checkpoint is invoked by the onset of
DNA synthesis (when [ORI]n = 1) and released once the mitotic spindle is fully assembled
(when [SPN]n = 1) (Eqs 48 and 49). The mitotic spindle starts to assemble, we assume, when
the concentration of Clb2 exceeds a certain threshold (Jspn) and is complete when [SPN]n = 1
(Eq 50). We use a class-1 variable to describe the total concentration of Cdc20 (Eq 51) and
then compute the concentration of Cdc20A (unbound to the active form of Mad2) using a
class-3 variable (Eq 52).

Cdc20A binds to both the phosphorylated and unphosphorylated forms of APC. Because
Cdc20A:APC is much less active than Cdc20A:APCP in degrading Clb5 and Clb2, the degrada-
tion of Clb proteins at the end of the cycle is dependent on both the phosphorylation of APC
and the release of the spindle assembly checkpoint. Both processes are promoted by Clb2. We
calculate the concentrations of Cdc20A:APCP and Cdc20A:APC by Eqs 53 and 54, which are
alternative forms of a class-3 variable. We assume tight binding between Cdc20A and APCP; so,
the concentration of Cdc20A:APCP is the concentration of either Cdc20A or APCP, whichever
is the lesser (Eq 53). Cdc20A that is in excess of APCP is assumed to bind tightly to APC (Eq
54). (We are assuming that Cdc20A binds primarily to APCP [65] and secondarily to unpho-
sphorylated APC.)

Formulation of the Exit module. For a budding yeast cell to exit frommitosis and return
to G1 it must transiently activate a phosphatase, Cdc14, which dephosphorylates many proteins
that had been phosphorylated by cyclin-dependent kinases in S/G2/M. In particular, Cdc14 acti-
vates Cdh1 and CKI. These two factors stabilize G1 phase of the cell cycle by repressing the activ-
ity of Clb-dependent kinases. The activation of Cdc14, as described by the EXIT module in Fig
8C, is accomplished by two pathways: FEAR (Cdc fourteen early anaphase release) and MEN
(mitotic exit network) (for a review, see [70]). In the FEAR pathway, active Cdc20 cleaves Pds1
(securin) [66] and releases Esp1 (separase) [67]. Free Esp1 is responsible for chromatid
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separation [67] and inactivation of PPX (PP2ACdc55), a phosphatase that dephosphorylates Net1
[71]. Subsequent phosphorylation of Net1 causes Cdc14 to be released from Net1:Cdc14 com-
plexes in the nucleolus, and free Cdc14 is the phosphatase that drives exit from mitosis [71–75].
A schematic diagram of the FEAR pathway is: Cdc20! Esp1—| PPX!Net1—| Cdc14.

We use a class-1 variable to describe the total concentration of Pds1 (Eq 55) and a class-3
variable to represent free Esp1, i.e., Esp1 that is not bound to Pds1 (Eq 56). The active forms of
PPX and Net1 are described by class-2 variables (Eqs 57 and 59, respectively). The active
(unphosphorylated) form of Net1 is a stoichiometric inhibitor of Cdc14, so we use a class-3
variable to represent free Cdc14 (Eq 61). In Eq 61 we introduce a stoichiometric factor, ρ14,net1,
in order to simulate two mutants, net1-ts and TAB6-1, that show reduced association between
Net1 and Cdc14 [74–76]. For wild-type cells we set ρ14,net1 = 1 and for net1-ts and TAB6-1 cells
we set ρ14,net1 < 1.

The FEAR pathway is not sufficient to return cells to G1 phase because Cdc14 activates
Cdh1 which degrades Clb2, allowing Net1 to regain its ability to sequester Cdc14 in the nucleo-
lus. To get robust phosphorylation of Net1 and full release of Cdc14 from the nucleolus, the
FEAR pathway must be supplemented by the MEN pathway, whose role is to activate Cdc15
and Tem1 (see Fig 8C). Active Cdc15 then supports continued phosphorylation of Net1 even
as Clb2-dependent kinase activity is dropping. Premature activation of Cdc15 is prevented by
Clb2-dependent phosphorylation (inactivation) of Cdc15 in metaphase. Hence, Cdc15 activity
is low as cells enter anaphase and rises abruptly as Clb2 is degraded by Cdc20A:APCP and
Cdc14 is activated by the FEAR pathway (Eqs 67 and 68) [77].

Meanwhile, Polo kinase, which was activated in prometaphase when Clb2-kinase activity
was high (Eqs 62–64) [78], is able to activate Tem1 after PPX is inactivated by the FEAR path-
way (Eqs 65 and 66) [71, 79]. Together, Tem1 and Cdc15 form an active complex (Tem1A:
Cdc15A) (Eq 69) that phosphorylates Dbf2/Mob1 (not modeled explicitly), which then phos-
phorylates and inactivates Net1, resulting in full Cdc14 release. In this way, the transient release
of Cdc14 by the FEAR pathway initiates a positive feedback loop between the activation of
Tem1A:Cdc15A (MEN) and further release of Cdc14 [42].

Full release of Cdc14 re-sets the cell to G1 by two complementary actions. First of all, Cdc14
dephosphorylates and activates Cdh1, and active Cdh1 (in association with APC) fully
degrades Clb2 [68, 80, 81] and Polo kinase [82]. In addition, Cdc14 stabilizes CKI and activates
its transcription factor, Swi5 [62, 83]. Abundant CKI and active Cdh1 are characteristic molec-
ular signatures of G1 phase in budding yeast.

We assume that cell division occurs when the concentration of Clb2 drops below a threshold
value, KEZ. Because budding yeast cells divide asymmetrically, we set the sizes of mother and
daughter cells after division equal to 58% and 42% of the size of the dividing cell in glucose
medium, which are close to the proportions observed by Di Talia et al. [36]. In galactose
medium, for which cells grow more slowly and divide more asymmetrically [84], we take these
proportions to be 61% and 39%.

BUD, ORI, and SPN, the dimensionless variables used to mark bud emergence, onset of
DNA synthesis, and spindle assembly, are reset to 0 as the cell exits mitosis. We reset [BUD]n
and [SPN]n to 0 at cell division, when [Clb2]n = KEZ. We reset [ORI]n to 0 when
[Clb2]n+[Clb5]n drops below KEZ2, because origins of replication are relicensed only if all Clb-
dependent kinase activity is extinguished in G1 phase.

Full lists of initial conditions and kinetic constants used to simulate wild-type cells are given
in Tables 3 and 5, respectively.

The full SCM (Table 4) tracks 33 protein species (not counting V, BUD, ORI and SPN) and
requires ~100 parameter settings (Table 5). By comparison, Chen-2004 tracks the same num-
ber of protein species and requires ~120 parameter settings.
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Table 5. Parameter values for wild-type cells.

Rate constants (min−1) (subscripts: “s” for synthesis, “d” for degradation)

ks,bck2 0.00675 kd,bck2 0.5

ks,bud,e 0.33 kd,bud 0.01

ks,cdc20 0.006 ks,cdc20,m1 0.6 kd,cdc20 0.3

ks,cki 0.024 ks,cki,swi5 0.24 kd,cki 0.005 kd,ckip 1.7

ks,clb2 0.0066 ks,clb2,m1 0.044

kd,clb2 0.003 kd,clb2,20 0.14 kd,clb2,20,i 0.0366 kd,clb2,h1 0.6

ks,clb5 0.0006 ks,clb5,bf 0.029

kd,clb5 0.012 kd,clb5,20 0.1 kd,clb5,20,i 0.015

ks,cln2 0 ks,cln2,bf 0.27 kd,cln2 0.12

ks,cln3 0.11 kd,cln3 0.4

ks,ori,e 2 kd,ori 0.06

ks,pds1 0.03 kd,pds1 0.05 kd,pds1,20 3 kd,pds1,20,i 0.3

ks,polo,m1 0.03 kd,polo 0.01 kd,polo,h1 0.1

ks,swi5 0.005 ks,swi5,m1 0.08 kd,swi5 0.08

ks,spn 0.1 kd,spn 0.06

Other time-scale factors (min−1)

μ 0.00693 (mdt = 100 min in glucose medium)

γ 1 γcki 2 γapc 0.8 γtem1 0.1

Interaction coefficients (dimensionless) (subscripts: “a” for activation, “i” for inactivation, “p” for phosphorylation, “dp” for dephosphorylation)

ωa,apc,b2 0.65 ωi,apc 1

ωa,cdc15,14 15 ωi,cdc15 1 ωi,cdc15,b2 0.25

ωa,cdh1 1 ωa,cdh1,14 4.3 ωi,cdh1,e 1 ωi,cdh1,n3 1

ωi,cdh1,n2 0.6222 ωi,cdh1,b5 4.5 ωi,cdh1,b2 2.8

ωp,cki,n3 4.2 ωp,cki,k2 0.4 ωp,cki,n2 0.3556 ωp,cki,b5 1.5

ωp,cki,b2 2.2 ωdp,cki 1 ωdp,cki,14 1.8

ωa,mad2 20 ωi,mad2 0.4

ωa,mcm1,b2 5 ωi,mcm1 3

ωp,net1,b2 0.125 ωp,net1,en 1 ωp,net1,15 0.03

ωdp,net1 0.1 ωdp,net1,14 0.1 ωdp,net1,px 3

ωa,polo,b2 5 ωi,polo 1

ωa,ppx 1 ωi,ppx,pl 3

ωp,sbf,b2 2.5 ωdp,sbf 1

ωa,swi5,14 2 ωi,whi5,b2 4.25

ωa,tem1,lo 6 ωi,tem1 1 ωi,tem1,px 22

ωp,whi5,n2 1.7778 ωp,whi5,n3 12 ωp,whi5,k2 16 ωp,whi5,b5 0

ωdp,whi5 1 ωdp,whi5,14 0.5

Total concentrations (dimensionless)

[APCT]n 25 [Cdc14T]n 2 [Cdc15T]n 1 [Cdh1T]n 1

[Esp1T]n 0.5 [Mcm1T]n 1 [Net1T]n 3.55 [PPXT]n 1

[SBFT]n 1 [Tem1T]n 2 [Whi5T]n 2.5 [Mad2T]n 25

Other parameters (dimensionless)

Dcln3 1 ebud,b5 0.25 ebud,n2 0.4444 ebud,n3 0.2

eori,b2 0.35 eori,b5 0.21 Jcln3 6 Jspn 0.26

KEZ 0.4 KEZ2 0.4 ρ14,net1 1

σ 10 σnet1 8

Extra parameters used in stochastic simulations

Kflag 0.8

ktr 0.15 protein molecules per mRNA molecule per fL per min for all proteins

(Continued)
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8. Deterministic simulations of wild-type and mutant cells
To simulate cell cycle progression in wild-type and mutant yeast cells, we solve the ODEs in
Table 4 with the parameter values in Table 5. To simulate a broad selection of mutant yeast
strains (S3 Table), we made appropriate changes to the “wild-type” parameter values, as out-
lined in S4 Table.

Our choice of wild-type parameter values (Table 5) was guided initially by the rate constant
assignments in Chen et al. [41] and then adjusted manually to give a good fit to the observed
phenotypes of the 133 mutant strains in S3 Table. We were able to account for the observed
phenotypes of 125 of the 133 mutant strains (94%) in the data set we used to constrain the
model. We tried automatic exploration of parameter space by a genetic algorithm (“Differential
Evolution”) but could not find a set of parameter values that improves on the 94% success rate
achieved manually [85].

The simulation of wild-type cells (Fig 9) shows oscillating patterns of cell cycle control vari-
ables that are in agreement with observations and expectations. The START transition (Fig 9A)
is initiated by the inactivation of Whi5 as Cln3 accumulates, followed by the positive feedback-
driven expression of Cln2. Fig 9B shows an alternating pattern of G1 phase (during which G1

stabilizers CKI and Cdh1 are abundant) and S/G2/M phase (during which Clb5 and Clb2 are
abundant). During mitotic exit, the release of Cdc14 resets the system back to G1 phase. Quan-
titative comparisons to experimental data will be discussed in the next section on stochastic
simulations.

To verify our model, we computed the expected phenotypes of 133 mutant strains (S3
Table) and compared our results to the original model of Chen et al. [41] and to available
experimental observations. (See our web site at http://mpf.biol.vt.edu for the observed pheno-
types of mutant strains and references to the original literature.) Simulations that exhibit peri-
odic cell division correspond to viable mutants, and simulations that arrest at some point in
the cell cycle correspond to inviable mutants, with phenotypes assigned according to the rules
in S5 Table. In our simulations, 125 mutants show phenotypic characteristics in agreement
with the original model and experiments. (Notice that our SCM achieves the same accuracy as
Chen-2004.) The eight mutant simulations that are not in agreement with observed phenotypes
are listed in S6 Table and discussed in detail in S5 Text.

9. A stochastic SCM of the budding yeast cell cycle
In this section, we construct a stochastic version of our SCM, in order to address three ques-
tions. (1) Is our model of the cell cycle control system robust in the face of inevitable molecular
fluctuations within single cells? (2) Is a stochastic version of our model consistent with quanti-
tative measurements of cell cycle variability among wild-type cells? (3) Do stochastic models
behave differently than deterministic models under some circumstances? With regard to the
third question, we have in mind situations where mutations may make the regulatory mecha-
nism less robust and more sensitive to molecular noise. For example, in the double mutant
strain CLB2-dbΔ clb5Δ (CLB2 destruction box deletion and CLB5 gene deletion) some cells are
able to complete the cell cycle and divide whereas other cells become arrested in telophase and
eventually die, as originally observed by Cross [86] and confirmed by Ball et al. [87]. This sort

Table 5. (Continued)

kdm 0.7 min–1 for all mRNAs

<mmin> 5 mRNA molecules for CLN2, CKI, CLB5, CLB2, and PDS1, and 0 mRNA molecule for all other genes

doi:10.1371/journal.pone.0153738.t005
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of partial viability is clearly incompatible with a deterministic model of the cell division cycle
but may be accommodated by a stochastic model.

With regard to question (2), single-cell experimental techniques (e.g., flow cytometry and
live-cell imaging of fluorescent proteins) have revealed much information about cell-to-cell
variation among genetically identical cells. In budding yeast, fluorescence microscopy has been
used to study proteins that regulate cell cycle progression and to determine the onset of cell
cycle events such as Start, bud emergence, and cell division in individual cells [38, 88, 89]. In
addition, fluorescence in situ hybridization (FISH) has been used recently to quantify mRNA
levels in individual yeast cells [90], determining that a yeast cell carries roughly 5–15 mRNA
molecules of each gene measured, including a sample of cell cycle control genes [91]. Since the

Fig 9. Simulations of wild-type cells. (A) START: As the cell grows (increasing Vn), Cln3 accumulates and phosphorylatesWhi5. At a
critical cell size, SBF is abruptly released from the inactive SBF:Whi5 complex and initiates a positive feedback loop between the
accumulation of Cln2 and the phosphorylation of Whi5. (B) G1/S/G2/M: SBF also promotes the synthesis of Clb5. Once Clb5 titrates out CKI,
then Clb5 and Cln2 together inactivate Cdh1, resulting in the accumulation of Clb2. EXIT: Clb2 triggers many mitotic events, eventually
leading to the release of Cdc14 during mitotic exit. When Clb2 drops below a normalized concentration of 0.4, the cell divides
asymmetrically between daughter and mother cells. The daughter cell receives 42% of the cell size at division, and the mother cell (not
shown here) receives the remaining 58%. (C and D) The stochastic model shows the typical fluctuations of protein concentrations around
the average dynamics predicted by the corresponding deterministic model. For easier comparison to the deterministic simulation (A and B),
we converted the numbers of molecules reported by the stochastic simulation to normalized concentrations. START and division events are
indicated by up-pointing and down-pointing black triangles, respectively.

doi:10.1371/journal.pone.0153738.g009
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number of mRNA molecules directly determines the production rate of its protein product,
noise due to low, fluctuating numbers of mRNA molecules will be significantly amplified as
fluctuations in protein abundance [39]. Consistent with this expectation, stochastic simulations
by Kar et al. [92] suggested that mRNA noise is a major source of fluctuations in the budding
yeast cell cycle control system. Therefore, to understand stochasticity in the system, inclusion
of mRNA noise seems to be necessary. The stochastic version of SCM described above was
designed specifically to deal with molecular noise derived from both protein and mRNA
fluctuations.

Model conversion. In our deterministic model (Eqs 21–69) that we reformulated from
Chen-2004, the variables ([Cln2]n, [Clb2]n, etc.) represent concentrations in “normalized”
units (i.e., scaled with respect to a characteristic concentration of each component). Stochastic
studies, on the other hand, measure protein abundances in terms of numbers of molecules.
Before constructing the stochastic model, we first convert the normalized concentration units
used in the deterministic SCM into numbers of molecules using the conversion process
described in [93]. The details of the model conversion are discussed in S6 Text.

The stochastic model. After converting “normalized concentrations” to “numbers of mol-
ecules” we add molecular noise to class-1 variables by the Langevin formalism, as described
above. For example, the stochastic rate equation for the total number of Clb5 molecules is:

dClb5T

dt
¼ Aclb5 � Bclb5 � Clb5T

þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Aclb5 þ Bclb5 � Clb5T

p � z1ðtÞffiffiffiffiffi
Dt

p

þ Clb5T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Bclb5

ktr � VfL

Aclb5 þ hmmini � ktr � VfL

� Bclb5

Bclb5 þ kdm

s
� z2ðtÞffiffiffiffiffi

Dt
p ;

where Aclb5 ¼ φ � cclb5 � ks;clb5 þ
cclb5
csbf

� ks;clb5;bf � SBF þ m � Clb5T

and Bclb5 ¼ kd;clb5 þ
kd;clb5;20
φ � ccdc20

� Cdc20A : APCP þ
kd;clb5;20;i
φ � ccdc20

� Cdc20A : APC;

ð70Þ

where Aclb5 and Bclb5 are the converted versions of the synthesis and degradation rates from
the deterministic model (see S6 Text for details). The mRNA-inherited noise term in Eq 70 is
slightly different from the term in Eq 19 because our full model does not account explicitly for
the mRNA species (see S7 Text for the derivation of Eq 70). ktr is the protein translation rate
(the number of protein molecules produced per mRNAmolecule per fL per min). VfL = Vn�cvol
is cell volume in fL, where cvol is average cell size at birth of wild-type daughter cells (28 fL).
hmmini is the minimum number of mRNA molecules of each gene always present in the cell.
kdm is the mRNA degradation rate. We treat ktr, hmmini, and kdm as tuning parameters. (See
S8 Text for the discussion of the choices of hmmin,ii in our model.) z1 (t) and z2 (t) are inde-
pendent random variables chosen from a normal distribution N(0, 1) with mean = 0 and stan-
dard deviation = 1. A term, μ�Clb5T, is added the production rate to make for consistency
between the deterministic and stochastic models (see discussion in S6 Text). cclb5, csbf, and
ccdc20 are the characteristic concentrations (in nmol/L) for the indicated proteins (listed in
Table 3), and cS � VfL � NA � 10−9 � 10−15 = cS � φ is the characteristic number of molecules of
species S in volume VfL, where φ = 0.6 VfL.

In our deterministic model, the cell divides whenever the normalized concentration of Clb2
drops below a threshold KEZ. In the stochastic model, fluctuations around the threshold could
cause multiple division events. To avoid this problem, we add an extra condition to the rule for
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cell division in the stochastic model: (1) a cell divides when [Clb2]n drops below the threshold
KEZ, and (2) the cell cannot divide again until [Clb2]n increases above a higher threshold
Kflag (Kflag > KEZ).

We do not add molecular noise to variables of classes 2 and 3, because we assume they
change on much faster time scales than class-1 variables and therefore regress quickly to their
mean values.

In addition to molecular noise from protein and mRNA fluctuations, budding yeast cells are
also subject to variations in the cell division process itself. In our simulations, the daughter cell
receives, on average, 42% of the volume and constituent proteins of the dividing cell, with a
standard deviation of 5%.

The values of the extra parameters used in our stochastic simulations are listed in Table 5.

10. Stochastic simulations of wild-type and mutant cells
Stochastic simulations of wild-type cells (e.g., Fig 9C and 9D) show high variability in progres-
sion through the cell cycle. Following the lead of Cross and his group [38], we divide the cell
cycle into three periods: T1, T2, and Tb. T1 is the duration from cell birth to START, which we
identify with SBF reaching 50% of its maximum value. T2 is the period from START to bud
emergence, which we identify with [BUD]n = 1. Finally, Tb is the duration of the “budded
phase,” from bud emergence to the next cell division.

From stochastic simulations of wild-type cells, we computed means and variances of T1, T2,
Tb, cell cycle duration, and cell size at birth, which we compare to experimental observations
[38] in Fig 10. (The full distributions of T1, cell cycle duration and Vbirth, for both mother and
daughter cells, are shown in S7 Fig.) Overall, our results show a reasonable agreement with the
experimental data, although there are some quantitative discrepancies. Our simulated T1 is lon-
ger and our simulated T2 is shorter than observed in both mother and daughter cells, which
may be attributed to a difference between our theoretical criterion for START (SBF reaching 50%
of its maximum activity) and the experimental criterion for START (Whi5 disappearance from
the nucleus). T1 + T2 = TG1 = duration of the “unbudded phase” is longer than observed in
mother cells, but quite accurate for daughter cells. The predicted and observed CVs of TG1 are
all ~50%. In our simulations the average delay from bud emergence (when [BUD]n = 1) to the
initiation of DNA synthesis (when [ORI]n = 1) is ~12 min, which is inconsistent with the
observation that the two events occur nearly simultaneously in wild-type cells.

Fluctuations in both mRNA and protein are needed to account for the variability
observed in wild-type cells. In Fig 10, we decompose the effects of noise in our model by
comparing four different cases: the full stochastic SCM, the stochastic SCM without the
mRNA-inherited noise term in Eq 70, the deterministic SCM with “extrinsic” noise only (retain
5% variation in the cell division process, which is one component of extrinsic noise, but no
intrinsic noise terms in Eq 70), and the completely deterministic SCM. (The full distributions
for the first three cases are presented in S7 Fig). The full stochastic model with protein and
mRNA fluctuations clearly shows the highest variations, which are comparable to the experi-
mental values. Interestingly, noise contributes significantly to the behavior of wild-type daugh-
ter cells before START, because the full stochastic simulation predicts an average T1 duration (27
min) that is markedly shorter than the result from the model without mRNA fluctuations (44
min), the extrinsic-only model (58 min), and the deterministic model (T1 = 59 min, no vari-
ability). In our model, the major source of intrinsic noise comes from fluctuations of Cln3 and
Bck2, because the average total amount of Cln3 is quite small (~100 molecules) [31] and we
assume that Bck2 has a similar abundance. Since the START transition is driven by a bistable
switch [36], high fluctuations of Cln3 and Bck2 combined with the positive feedback loop
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engaged by Cln2 can result in T1 duration that is much shorter than what is predicted by the
deterministic system. This shortening of T1 is a genuine divergence of the stochastic model
from the deterministic model. In the deterministic model, the cell cannot execute START until it
surpasses the saddle-node bifurcation point (Fig 2) where the pre-START steady state disappears.
In the stochastic model, however, molecular fluctuations can induce premature transitions
from the “excitable” pre-START steady state to the much more stable post-START steady state
before the system reaches the saddle-node bifurcation point [94].

The duration of G1 is negatively correlated with birth size in experiment and in simula-
tion. Next, we study the correlation between size at birth and duration of G1 phase (TG1). If
cell cycle progression during G1 is perfectly controlled by cell size, then a plot of μ TG1 against
ln(Vbirth) should give a straight line with slope = –1 [38], where μ is the specific growth rate
and Vbirth is the birth size of cells. In the experiment of Di Talia et al. [38], small daughter
cells show the expected negative correlation (slope = –0.7), indicating a strong size-control
mechanism operating in small budding yeast cells. Larger daughter cells show less negative

Fig 10. Statistical properties of cell cycle progression. Experimental observations for wild-type cells [38] (blue bars) are compared to
simulations from four different cases of our model: the full stochastic SCM (red bars), the stochastic SCMwithout the mRNA-inherited noise
term (green bars), the deterministic SCM with “extrinsic” noise only (magenta bars), and the completely deterministic SCM (black bars). Tc is
cell cycle duration (min) = TG1 + Tb = T1 + T2 + Tb. T1 is the duration from cell birth to START (min), which we identify with SBF reaching 50% of
its maximum value. T2 is the period from START to bud emergence (min), which we identify with [BUD]n = 1. TG1 = T1 + T2 = duration of the
“unbudded phase” (min). Tb is the duration of the “budded phase,” from bud emergence to the next cell division (min). Vbirth is cell size at birth
(fL). Asterisks indicate unreported data.

doi:10.1371/journal.pone.0153738.g010
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correlation (slope = –0.3). Mother cells seem to operate with little or no size control
(slope = –0.1). In good accord with experimental observations, our simulations (Fig 11) show
that the small and large daughter cells exhibit correlations with slopes –0.67 and –0.30,
respectively. The break between strong size control and weak size control occurs at a birth
size of	 0:69� �Vm, where �Vm = average size of mother cell at birth. The mother cells show
less correlation (slope = –0.24).

It is beyond the scope of this paper to provide a statistically rigorous analysis of the negative
correlation between G1 duration and size at birth predicted by the SCM. In a separate study, we

Fig 11. The joint distributions of cell size at birth and G1 phase duration predicted by our stochastic
model of the full cell cycle control system. (Upper panel) Daughter cells. (Lower panel) Mother cells. TG1

is the duration from cell birth to bud emergence, and μ is the specific growth rate of the cell culture. In the
plots, cell size is normalized by the average size of mother cells at birth and is plotted on a log scale. Small
dots in the background represent data collected from simulations of individual cells. Large dots represent
average μ�TG1 of the small dots binned in 2 fL intervals. For daughter cells, the binned data can be divided
into two groups (small and large cells; break point at ln(Vbirth) = −0.37) and fitted by two straight lines with
slopes of –0.67 and –0.30 (respectively). Mother cells can be fitted by one straight line with slope –0.24. The
experimental slope values, as reported by Di Talia et al. [38], are shown in parentheses. The binned data for
mother cells is slightly better fit by two straight lines with a break point at ln(Vbirth) = 0.

doi:10.1371/journal.pone.0153738.g011

A Standard-Component Model of Yeast Cell-Cycle Regulation

PLOS ONE | DOI:10.1371/journal.pone.0153738 May 17, 2016 31 / 43



have fitted our simulations to the full experimental distributions (kindly provided by Stefano
Di Talia). We subdivided the empirical joint distribution into 17 rectangles (“bins”) so that no
bin contained more than about 20 cells or less than 3, and we subdivided the simulated joint
distribution in an identical fashion. Then we computed the Hellinger distance between the two
distributions (empirical and simulated) and minimized the distance by a quasi-Newton algo-
rithm for stochastic optimization [95]. By using the full distribution (rather than the two-slope
representation) we were able to improve the fit of the model to the data, but there remained a
noticeable discrepancy in that the model predicts longer tails of G1 durations than are observed
experimentally for both mother and daughter cells. Hence, although the model is qualitatively
in accord with the observed negative correlation between TG1 and birth size, it exhibits long
tails in the TG1 distributions that appear to be statistically significant deviations from observed
G1 durations. These results will be reported in full in a later publication.

In S8 Fig we plot the correlations of cell size at birth with both TG1 and T1 and confirm the
experimental observation [38] that T2 = TG1 –T1 is relatively constant. This observation indi-
cates that the size control mechanism in budding yeast operates at the START transition, i.e., at
the phosphorylation and inactivation of Whi5. Whi5 inactivation frees up SBF to drive Cln2
and Clb5 production. The initial phosphorylation of Whi5 is the job of Cln3 and Bck2, and
since their rates of accumulation are proportional to cell size, V, small cells take a longer time
to inactivate Whi5, and large cells take a shorter time.

Simulated numbers of protein molecules for an asynchronous population are in agree-
ment with observations. Next, we study the abundances of protein species in an asynchro-
nous population, as might be measured experimentally. To this end, for each simulated cell we
select a random time point between birth and division and record the number of each protein
species present at that time. To obtain a sample of time points representative of an asynchro-
nous population of cells, we must take into account that the number of newborn cells is twice
the number of dividing cells. Hence, we select a random number θ, 0
 θ
 1, from an expo-
nential probability density function

f ðyÞ ¼ lnð2Þ � 21�y ð71Þ

and then calculate tbirth + (tdivision−tbirth)�θ as a random time point in each complete cell divi-
sion cycle. By this prescription, the probability of choosing a cell at birth is twice the probability
of choosing a cell at division. (Eq 71 is not exactly correct for asymmetrically dividing cells, like
budding yeast, but the errors introduced by this approximation are minor.)

This set of simulated protein abundances should be comparable to numerical values col-
lected from an asynchronous population of yeast cells. In Table 6 we show that our computed
average protein abundances are in good agreement with experimental values [31, 96], except
for Clb5 and Clb2, whose predicted abundances are two-fold larger and smaller, respectively,
than observed.

Stochastic simulations of the mutant strain CLB2-dbΔ clb5Δ explain its partial viability
when growing on raffinose medium. Next we study viability of the mutant strain CLB2-dbΔ
clb5Δ. In this strain, Clb2’s destruction box has been deleted from the CLB2 gene, so Clb2 pro-
tein cannot be degraded by Cdc20 and only partially so by Cdh1 [86]. This mutant strain is
inviable on glucose medium (mass-doubling time =mdt = 100 min) but can be partially res-
cued on raffinose medium, which supports slower growth (mdt = 150 min) [86, 87]. Obviously,
“partial viability” (some cells complete the cell cycle and some do not) cannot be explained by
a deterministic model in which all cells behave the same. A stochastic version of Chen's 2004
model [87] predicts that some mutant cells, growing in raffinose, divide properly while others
fail to exit from mitosis. However, the model in [87] applied Gillespie's SSA directly to Chen's
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2004 model without unpacking the complex rate laws into elementary steps, and it did not take
into account transcription-translation coupling. Hence, the results of the model in [87], though
suggestive, are not very reliable. It is challenging to test whether our SCM approach provides a
better account of the properties of this mutant strain.

Since the mutant cells cannot survive on glucose medium and are only partially viable on
raffinose, the mutant strain is kept viable in the laboratory by introducing the GAL-SIC1 gene
into the CLB2-dbΔ clb5Δ cells and growing the strain in galactose, where Sic1 is overexpressed.
In Fig 12, top panel, we show predicted growth curves for CLB2-dbΔ clb5Δ GAL-SIC1 cells
grown in media containing galactose (GAL-SIC1 is “on”) or raffinose (GAL-SIC1 is “off”).
These cells proliferate in galactose with a population number-doubling time (ndt)� 150 min,
which is equal to the mass-doubling time (mdt) of individual cells. On the other hand, for the
triple mutant cells growing in raffinose, ndt> 150 min, indicating that some cells are inviable.
Cell viability is better illustrated in Fig 12, bottom panel, where we plot cumulative distribution
functions for triple-mutant cells in galactose and in raffinose. Greater than 90% of the cells
growing in galactose (mdt = 150 min and Sic1 overexpressed) complete the cell cycle within
250 min of birth, indicating that they are mostly viable. On the other hand, for the same cells
growing in raffinose (mdt = 150 min but Sic1 not overexpressed), ~ 25% of the cells are undi-
vided even 300 min after birth, indicating that ~25% of the cells growing in raffinose never
complete the cell division cycle. This result agrees well with the experimental observation [87]
that ~15–40% of these mutant cells never divide in raffinose growth medium. Furthermore,
our simulations of mutant cells grown in glucose medium (mdt = 100 min and Sic1 not overex-
pressed) show less than 10% viability, which is consistent with the fact that these cells are invia-
ble in glucose medium [86]. In Table 7, we compare the statistical properties of this mutant
strain grown in raffinose from simulations and from experimental measurements [87].

As in the original model of Chen et al. [41], we assume that the synthesis of Clb2 is depen-
dent on cell size. By this assumption, cell size at the onset of mitotic exit is critical for the cell's
fate. Cells with larger size at the onset of mitotic exit have more Clb2 and are less likely to exit
from mitosis. (Cells exit only if Clb2 is degraded below a threshold concentration.) In wild-
type cells, the presence of both Cdc20 and Cdh1 ensures that Clb2 is fully degraded during
mitotic exit. However, Clb2 protein encoded by the CLB2-dbΔ gene lacks the sequence targeted
by Cdc20 and can be only partially degraded by Cdh1. To exit from mitosis, CLB2-dbΔ cells
depend critically on the activation of Cdh1 and Sic1, but both Cdh1 and Sic1 are also inhibited

Table 6. Average protein abundances.

Protein name Simulation (per haploid cell) Experiment [96] (per haploid cell) Experiment [31] (per diploid cell)

Cdc15 249 238 -

CKI (Sic1+Cdc6) 626 768* 214*

Clb1+Clb2 382 693 1,625

Clb5+Clb6 982 - 876

Cln1+Cln2 1,511 1,589 3,006

Cln3 83 - 216

Net1 1,991 1,590 -

PPX 3,116 3,170 -

Tem1 499 573 -

Whi5 1,714 1,440 -

*only Sic1 data is available.

doi:10.1371/journal.pone.0153738.t006
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by Clb2-dependent kinase. When grown on a rich medium such as glucose, the mutant strain
has a high growth rate and Clb2 accumulates to such a high level that it keeps Cdh1 and Sic1
inactive, resulting in telophase arrest. On a slower growth medium such as raffinose or galac-
tose, a cell may exit from mitosis if Cdh1 and Sic1 can suppress Clb2. This explains why cells
show high viability when Sic1 is overexpressed in galactose. In raffinose, however, without the
help of Sic1 overexpression, noise plays a major role in determining whether or not a cell can

Fig 12. Growth curves and cycle time distributions forCLB2-dbΔ clb5ΔGAL-SIC1 cells. (Upper panel)
Logarithm of the total number of cells is plotted against time. The increase in cell number for CLB2-dbΔ clb5Δ
GAL-SIC1 cells growing in galactose (red crosses; Sic1 overexpressed) indicates exponential growth (black
line) with the number doubling time = 150 min. The number doubling time of the same cells growing in
raffinose (blue crosses; normal level of Sic1) is greater than 150 min, indicating that some cells do not
complete the cell cycle whenGAL-SIC1 is not expressed. (In our simulations, the mutant cells are assumed
to have mass doubling time = 150 min in both galactose and raffinose media.) (Lower panel) Cumulative
distributions of cycle times for CLB2-dbΔ clb5ΔGAL-SIC1 cells growing in galactose medium (red line) or in
raffinose medium (blue line). The ordinate, P(t), is the probability that a simulated cell has a cycle time greater
than t.

doi:10.1371/journal.pone.0153738.g012
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exit from mitosis and divide. Cells with higher activities of Sic1 and/or Cdh1 or lower levels of
Clb2 may be able to divide, but cells at the other extreme will be arrested in anaphase.

In S9 Fig we show that CLB2-dbΔ GAL-SIC1 (CLB5 in place) mutant cells growing in raffi-
nose (Sic1 not produced) have comparable viability to CLB2-dbΔ clb5Δ GAL-SIC1 cells grow-
ing in raffinose, because Clb5 protein is mostly degraded by APC/Cdc20 by the time the CLB2-
dbΔ CLB5 cells are exiting (or not) from mitosis. Although CLB2-dbΔ CLB5 GAL-SIC1 cells are
inviable in glucose medium (rapidly growing cells that are not producing Sic1), there is anec-
dotal evidence that these cells are partially viable when cultured on poor growth medium, like
raffinose [86]. So, our stochastic model is consistent with a conclusion that CLB2-dbΔ CLB5
cells are on the cusp of viability/inviability when growing on poor carbon sources.

Discussion
We have presented a “standard component modeling” strategy for protein regulatory networks
by grouping proteins into three classes according to the presumptive time scales of the reac-
tions involved. We assume that class-1 proteins change slowly in time due to synthesis and deg-
radation, and we describe these changes by pseudo-linear ODEs. With good estimates for the
rate constants of synthesis and degradation, the dynamics of class-1 variables can be compared
directly to experimental data (i.e., time-series data). Class-2 proteins change more rapidly in
time due to protein modifications and are described by nonlinear ODEs employing the soft-
Heaviside function, H(x) = 1/(1+e−x). The soft-Heaviside function gives us many of the advan-
tages of hybrid Boolean-ODE models (e.g., the piecewise linear ODE models of Leon Glass and
coworkers [8]) while retaining the powerful analytical tools available for nonlinear ODEs (e.g.,
bifurcation theory). Class-3 variables describe strongly bound protein complexes that form
rapidly from two subunits; hence, the total amounts of the bound and free forms can be easily
computed using the “max” function.

The SCM approach has many advantages. Its basic assumptions are natural because these
three classes of protein species are commonly encountered in PRNs. The modularity of the
components allows modelers to build mathematical representations of complicated networks
in a controlled and logical fashion. Modularity also renders the models easily modifiable and
extensible. Because the models are rendered in terms of nonlinear ODEs, the modeler has
access to well-tested software for simulation, analysis (bifurcation theory, sensitivity analysis),
and parameter estimation. Furthermore, the SCM formalism is readily adapted to stochastic
simulation by chemical Langevin equations (CLEs), and we have shown how to incorporate
transcription-translation coupling into the CLEs to account for fluctuations at the mRNA level
without necessarily having explicit mRNA species in the model.

The vulnerabilities of the approach should also be clearly recognized. Although the soft-
Heaviside function conveniently represents a sigmoidal signal-response curve, it has no basis in
biochemical reaction mechanisms, and the interaction coefficients (ωji’s) are not related to any
measurable reaction rate constants. The use of the “max” function to describe class-3 variables

Table 7. Statistical properties of simulatedCLB2-dbΔ clb5Δ cells in raffinose. Mean cycle time (in minutes) with standard deviation in parentheses.

Our Simulation Experiments [87]* Simulation in [87]

1 2 3

Mother cells 150 (50) 151 (65) 165 (63) 145 (80) 142 (23)

Daughter cells 155 (52) 151 (63) 164 (53) 143 (82) 152 (27)

*Authors in [87] used the time between successive budding events to represent the cycle time.

doi:10.1371/journal.pone.0153738.t007
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is even more restrictive. Strictly speaking it applies only to strongly bound dimeric complexes
that form rapidly and reversibly. It can be extended to other special cases, but it is easy to imag-
ine realistic situations in which the max-function approximation gives unsatisfactory results.

Nonetheless, the modularity of an SCM allows problematic situations to be spotted and
readily repaired. For example, if protein components in a mechanism form competing binary
and ternary (and higher) complexes, the max functions proposed here can be replaced by a set
of nonlinear algebraic equations (the equilibrium binding equations) for the amounts of the
complexes. In this case, the SCM becomes a system of differential-algebraic equations (DAEs),
and there are well-tested numerical algorithms (e.g., DASSL [97]) for solving DAEs accurately
and efficiently. Alternately, one could replace the equilibrium binding equations by ODEs for
the complexes themselves, and solve the larger system of nonlinear ODEs by a suitable “stiff”
ODE solver. It may also be advisable in some circumstances to replace the soft-Heaviside func-
tion, governing class-2 variables, by a more realistic (biochemically based) nonlinearity, e.g., a
Hill function for transcription factor-binding to gene promoters. The modularity of SCMs
makes such replacements easy.

Indeed, we do not want to give the impression that SCM is a take-it-or-leave-it approach. It
would be quite reasonable for parts of a model to be SCM-like and other parts more biochemi-
cally realistic. A model may start life as a Boolean network capturing the gross qualitative fea-
tures of a physiological trait, be translated into an SCM to provide more quantitative details for
comparison to experiments, and later get fleshed out with full biochemical verisimilitude.
Alternatively, we may wish to extend a biochemically detailed model, like Chen-2004 for the
budding yeast cell cycle, to new aspects of the control system. Mechanistic proposals for these
new aspects can be grafted on to the full model using the SCM approach for a quick appraisal.
If biochemical details are lacking, the new parts of the model will coexist quite peacefully with
the original ODE model. If the biochemistry is known and relevant, the SCMmodules can be
swapped out for something more realistic.

We have applied this approach to a detailed molecular mechanism of cell cycle control in bud-
ding yeast. Compared to a model based on traditional biochemical kinetics [41], our newmodel
based on “standard components” has fewer parameters that need to be estimated from experi-
mental data. Furthermore, in our experience, the standard component model (SCM) is easier to
build, easier to modify and extend, and easier to parameterize by fitting the model to experimen-
tal data. Nonetheless, the SCM is just as accurate as the detailed biochemical model [41], repro-
ducing the phenotypes of 94% of the mutant budding yeast strains in our test collection. A major
advantage of the SCM is that it can easily be converted to a stochastic model that can account for
cell-to-cell variability in wild-type and mutant strains of budding yeast. The stochastic SCM
accounts for the impact of mRNA fluctuations on protein fluctuations, without requiring explicit
modeling of mRNA dynamics. Because the stochastic SCM is formulated in terms of stochastic
differential equations of the Langevin type, it can be simulated very efficiently compared to Gilles-
pie’s “stochastic simulation algorithm” [14] applied to a fully detailed biochemical kinetic model.

Although the SCM approach has proved successful in describing cell cycle regulation by
cyclin-dependent kinases, its potential for describing other PRNs must await future attempts to
apply the approach to other problems (e.g., for circadian rhythms, epidermal growth factor sig-
naling, epithelial-to-mesenchymal cell transition).

Methods
See S9 Text for our simulation methods. All simulations (both deterministic and stochastic)
were done by Euler’s explicit, first-order method with step size Δt = 0.01 min. In S10 Text we
provide evidence that this step size is small enough to obtain reliable results.
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Supporting Information
S1 Fig. The soft-Heaviside function. H(σW) = 1/1(1 + e−σW) varies smoothly from 0 to 1 as a
function of increasingW. The parameter σ determines the steepness of the function. The soft-
Heaviside function approaches the true Heaviside function as σ!1.
(EPS)

S2 Fig. Two-parameter bifurcation diagrams for the Start models. Upper panel: The two-
parameter bifurcation diagrams show similar regions of bistability between the two models
when the synthesis rate of Cln3 (ks,n3) and (fixed) cell volume are varied. Lower panel: How-
ever, at large synthesis rates of ClbS (ks,bS), the values of (fixed) cell volume that exhibit bistabil-
ity are different between the two models. The value of ks,bS used in both models is 0.3 fL−1

min−1 (taken from the value used by Barik et al. [27]). At this value, both models show a similar
bistability region when (fixed) cell volume is varied.
(PDF)

S3 Fig. T2 durations of cells with different initial cell size (V0) from the Start models. In
both models, the gap between START and the G1/S transition, T2 = TG1 –T1, is nearly indepen-
dent of birth size.
(EPS)

S4 Fig. Steady-state distributions of Cln3, SBF and ClbS in Start models at fixed cell size.
Black lines: MultiP model in S1 Text; red lines: stochastic SCMmodel in S3 Text; blue lines:
stochastic SCM without mRNA noise (i.e., all z2(t) = 0 in S3 Text); green lines: stochastic SCM
with explicit mRNA species, as described in S4 Text. The steady-state distributions at fixed V
are shown as the Kernal density estimation. V = 10 fL is a very small yeast cell, V = 35 fL corre-
sponds to cells that have executed the START transition. At large V, the distributions from the
SCM without mRNA noise are much narrower than the distributions from the other models.
Means of SBF molecules from the three SCMmodels deviate from the SBF mean from the Mul-
tiP model (panel C).
(EPS)

S5 Fig. Stochastic simulations of the relation between initial cell size (V0) and average cell
age at the Start transition (T1) (upper panel) and average cell age at the G1/S transition
(TG1) (lower panel) for the Start models. The average values of T1 and TG1 agree well between
the models and show similar patterns to the deterministic simulations in Fig 4 of the main text.
(EPS)

S6 Fig. Distributions of cell age at the Start transition (T1) and at the G1/S transition (TG1)
from the Start models. Distributions of T1 and TG1 with initial cell size (V0) of 10, 35, and 50
fL from Figs 6 and 7 of the main text are shown as the Kernal density estimation. Similar to
what we found in Figs 6 and 7, the distributions from the SCM (red) and the MultiP model
(black) agree well at small V0 (e.g., V0 = 10 fL). The SCM without mRNA noise (blue) always
exhibits narrower deviation than the other models. The SCM with explicit mRNA species
(green) shows better agreement to the MultiP model than the SCM and the SCM without
mRNA noise at large V0 (e.g., V0 = 35 and 50 fL).
(EPS)

S7 Fig. Distributions of cell cycle properties from the full cell cycle SCM. Distributions of
some cell cycle properties from Fig 10 of the main text: cell cycle time (Tc), time from cell birth
to START (T1), and volume at cell birth (Vbirth), are shown as the Kernal density estimation. T1
duration predicted from the full stochastic simulation (Panel D, black) is markedly shorter
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than the results from the model without mRNA fluctuations (Panel D, red) and the extrinsic-
only model (Panel D, blue) (see main text for discussion).
(EPS)

S8 Fig. Average values of G1 phase (TG1) and Start phase (T1) durations of daughter cells
calculated from data collected from simulations of individual cells binned in 2 fL volume
intervals from our stochastic simulations of the full cell cycle model. Red dots: TG1 from Fig
11 (main text); blue dots: T1, the time from cell birth to SBF reaching 50% of its maximal activ-
ity. The gap between the two lines confirms the experimental observation that T2 = TG1 –T1 is
relatively constant.
(EPS)

S9 Fig. Cycle time distributions for CLB2-dbΔ GAL-SIC1 cells (CLB5 in place) in raffinose
medium. Cumulative distributions of cycle times for CLB2-dbΔ GAL-SIC1 cells (dashed line)
and CLB2-dbΔ clb5Δ GAL-SIC1 cells (solid line; from Fig 12 of the main text) growing in raffi-
nose medium (GAL-SIC1 is “off”). The ordinate, P(t), is the probability that a simulated cell
has a cycle time greater than t. Our stochastic model is consistent with Cross’s suggestion that
the inviability of CLB2-dbΔ GAL-SIC1 cells growing on glucose medium is partially rescued by
growth on alternative poor-carbon sources (e.g., raffinose rather than glucose) [86].
(EPS)

S1 File. C++ and XPP codes.
(ZIP)

S1 Table. Parameter values for the multisite phosphorylation model of the Start transition.
(DOCX)

S2 Table. Initial conditions for simulations of the multisite phosphorylation model of the
Start transition in Figs 3 and 5.
(DOCX)

S3 Table. List of mutant strains used to test our deterministic model of the full cell cycle
system.
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S4 Table. Parameter changes and initial conditions used to simulate mutant alleles.
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S5 Table. Rules for inviable mutant phenotypes.
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S6 Table. Inconsistencies between simulations and observations.
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S1 Text. Equations for the multisite phosphorylation model of the Start transition.
(DOC)

S2 Text. Derivation of the mRNA-inherited noise term.
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S3 Text. Equations for the stochastic SCM of the Start transition.
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S4 Text. Equations for the stochastic SCM of the Start transition with explicit mRNA spe-
cies.
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