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Abstract
The Turing instability was proposed more than six decades ago as a mechanism leading to

spatial patterning, but it has yet to be exploited in a synthetic biology setting. Here we char-

acterize the Turing instability in a specific gene circuit that can be implemented in vitro or in

populations of clonal cells producing short-range activator N-Acyl homoserine lactone

(AHL) and long-range inhibitor hydrogen peroxide (H2O2) gas. Slowing the production rate

of the AHL-degrading enzyme, AiiA, generates stable fixed states, limit cycle oscillations

and Turing patterns. Further tuning of signaling parameters determines local robustness

and controls the range of unstable wavenumbers in the patterning regime. These findings

provide a roadmap for optimizing spatial patterns of gene expression based on familiar quo-

rum and gas sensitive E. coli promoters. The circuit design and predictions may be useful

for (re)programming spatial dynamics in synthetic and natural gene expression systems.

Introduction
Self-organization and self-assembly govern the emergent properties of spatial structures from
the molecular to the galactic scale [1, 2]. In the nano-to-millimeter range chemical processes
coordinate gene expression essential to the spatial organization of biological systems, including
populations of microorganisms [3–6] and developing tissues [7–11].

One mechanism by which ensembles of cells could self-organize is the Turing instability [2,
12, 13] that occurs due to interplay of short-range activation and long-range inhibition. This
instability then drives the formation of spatially periodic patterns. The Turing instability has
been implicated in morphogenetic processes of amoebae [14], plants [15, 16], and animals [9,
10, 17–20]. The large number of unknown factors often makes it challenging to elucidate the
essential determinants of morphogenesis in biological systems, but the instability has also been
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directly engineered in low-component chemical reactions (malonic acid [21] and platinum sur-
face [22]).

Despite the ubiquity of Turing patterns at the multi-cellular scale, they have yet to be dem-
onstrated in gene expression sytems. This is surprising given the many alternative pattern
forming mechanisms found in natural [3, 4, 6] and engineered [5, 6, 23–27] colonies of cells.
For example, researchers have created gene circuits to produce stationary ring patterns in
growing colonies of bacteria [5, 24, 28]. However, these stationary patterns required colony
expansion and very particular initial conditions to form. Hsia et al. [29] have presented a theo-
retical model of a quenched oscillator circuit with one diffusible element that produces a
Turing-like instability. There however, the temporal dynamics never settled to a stable fixed
state due to persistent temporal oscillations. Another group [30] has recently developed a
model of Turing pattern circuit using single promoter. However, even with common promot-
ers, the activator and inhibitor genes would result in different production rate functions, espe-
cially if the compounds are to have largely differing diffusion rates. The lack of convincing
examples raises the question of whether Turing patters can really be produced by genetic
circuits.

If it is possible, then Turing patterning of gene expression could be quite useful for basic sci-
ence and biotechnology applications. These include self-organized spatial sequestration of gene
expression and downstream metabolites (as is currently done inside cells to improve yield
[31]), spatially-patterned delivery of proteins [32], reprogrammed morphogenesis of cell popu-
lations [33], filtering of paracrine inputs from adjacent cells in populations [34], and chemical
sensing [27]. Biosensing applications are particularly promising inasmuch as the Turing insta-
bility is inherently capable of amplifying small differences in initial conditions.

Motivated by this, we propose a realistic synthetic gene circuit that implements repressor-
activated degradation using activating homoserine lactone and inhibitory peroxide gas, and
demonstrate how this system can be switched between stable uniform states, limit cycles, and
Turing patterns. We characterize the effects of experimentally relevant parameter changes on
the presence and properties of the expected Turing patterns. We conclude by discussing our
plans to experimentally implement the circuit and to refine the mathematical model that
describes it.

Methods
The fixed points, eigenvalues and unstable wavenumbers of the differential equations were
computed using the symbolic and variable-precision solvers in Matlab [35]. Bifurcation analy-
sis was performed using the Matcont continuation package [36], and analysis of the Turing
instability was performed as stated in the text, with a customMatlab script. Spatio-temporal
simulations were performed using custom Fortran code [37] using forward Euler with five
point discretized Laplacian. Convergence of solutions was validated by simulating successively
smaller spatial and temporal step sizes. For most cases we also tested both periodic and no-flux
boundary conditions and used dx = 11.5 μm and dt = 10−5 min. We rescaled space by assuming
DL = 5.6 × 10−3 μm2/min. S1 Table lists nominal parameter values used in the model equations.

Results

Turing pattern gene circuit with homoserine lactone and hydrogen
peroxide gas
Based on our experience with using quorum-sensing signaling in synthetic circuit design [26,
27], we decided to use acyl homoserine lactone (AHL) as the short-range activator signal and
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hydrogen peroxide gas (H2O2) as the long-range inhibitor signal (Fig 1). The choice to focus
on a pure activator-inhibitor system [38] (where the activator self-activates and inhibitor self-
inhibits) was based on the fact that the AHL quorum sensing system has a native positive feed-
back, and H2O2 does not. Several of the circuit components presented in Fig 1 have already
been used to construct gene circuits that produced sustained temporal oscillations of fluores-
cent proteins [27]. The synthase LuxI produces AHL, and the Ndh protein generates H2O2.
AHL binds with LuxR and activates the plux-like promoters (p1 and p2 in Fig 1). The luxR pro-
moter (p3 in Fig 1) is constitutive (unregulated). Controlled degradation of AHL is mediated
by the AHL-lactonase, AiiA [39]. The aiiA gene can be activated by H2O2 by putting it under
the control of a promoter (p4 in Fig 1) such as: ptopA, which responds to H2O2 via the Fis path-
way [40], or a synthetic promoter containing the ArcAB binding site of plux, which relieves
inhibition by transcription factors ArcAB in the presence of the peroxide [41]).

Fig 1. The proposed gene circuit for generation of Turing patterns. AHL activates its own production, but is degraded by Aiia. H2O2 is produced via the
ndh gene, and activates the transcription of the aiiA gene. Intercellular transport and diffusion of AHL and H2O2 are represented by the thick arrows. The
circuit is modeled by Eqs (1)–(4).

doi:10.1371/journal.pone.0153679.g001
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The compound chemical reactions (transcription, translation, protein binding processing)
underlying the proposed gene circuit are:

; �!a1 f1ðPÞ L �!g1gðLÞ ;

; �!a2 f2ðPÞ H �!g2 ;

; �!a3 f3ðHÞ
A �!g3 ;

Lþ LR �!k1 P �!k2 Lþ LR

where L, H, A, LR, P represent AHL, H2O2, Aiia, LuxR and the AHL-LuxR complex, respec-
tively. Production is controlled by fi(Z) = (δi + Z)/(ci + Z), where c1 = kPL, c2 = kPH, c3 = kHA are
the thresholds for production of each species. Degradation is first order for H2O2 and Aiia, but
enzymatic for AHL, with g(L) = A/(kLD + L). Total LuxR is assumed to be constant, and the
AHL-LuxR complex (with relatively fast association and dissociation rates k1, k2) is assumed to
be relatively stable to degradation.

Including mass-action dynamics of these reactions along with diffusion, and rescaling x by

DL
�1=2 such that D ¼ DH

DL
, results in the following equations,

@tL ¼ a1

d1 þ P
kPL þ P

� g1A
L

kLD þ L
� k1ðPm � PÞLþ k2P þr2L ð1Þ

@tP ¼ k1ðPm � PÞL� k2P ð2Þ

@tH ¼ a2

d2 þ P
kPH þ P

� g2H þ Dr2H ð3Þ

@tA ¼ a3

d3 þ H
kHA þ H

� g3A ð4Þ

where Pm is the total amount of LuxR. The parameters of Eqs (1)–(4), and their nominal values
used are listed in S1 Table.

Reducing Degradation Feedback Generates Limit Cycles and Turing
Patterns
Restricting AiiA dynamics to reasonable relative production and degradation rates [26, 27], we
find parameter regimes of stable fixed points, limit cycles, and Turing patterning. The maximal
Aiia production rate, α3, can be adjusted with plasmid copy number, ribosome binding site
strength, or by using a hybrid promoter tuned with an inducer. Numerical analysis of the
eigenvalues of the stable fixed point in Eqs (1)–(4) shows that slowing this maximal production
rate leads to a stable limit cycle oscillation through a supercritical Hopf bifurcation, followed
by a Turing instability, and a saddle node bifurcation (Fig 2a). The Turing instability bifurca-
tion point is found by examining the characteristic equation,

jJ� lI� k2Dj ¼ 0 ð5Þ
for eigenvalues λ, where J is the Jacobian, I is the identity matrix,D is the matrix of diffusion
coefficients, and k is the wavenumber. This equation is solved for different α3, with the largest
positive real parts of the eigenvalues plotted in Fig 2b. Having only two diffusable substances
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leads to a quadratic equation in k2, A(λ)(k
2)2 + B(λ)(k

2) + C(λ) = 0. Finding the root of the dis-
criminant of the quadratic, B2

ðl¼0Þ � 4Aðl¼0ÞCðl¼0Þ, gives the condition for the Turing instability

boundary (α3 = 3.1 min.−1 in Fig 2a)).
Numerical simulations of the system in one spatial dimension with periodic boundary con-

ditions further confirm a stable focus at α3 = 3.5 min.−1 (Fig 3a), a stable limit cycle at α3 = 3.2
min.−1 (Fig 3b), and Turing instability at α3 = 2.5 min.−1 (Fig 3c). In two spatial dimensions the
instability leads to formation of spot patterns (for snapshots of simulations with periodic
boundary conditions, see Fig 3d, and for movies with no-flux boundary conditions, see S1
Movie). Our observation of Turing instability taking over from Hopf instability has previously
seen in other systems [42–44]. Lowering the AiiA degradation rate (or the slowing of AiiA
dynamics in general) leads to a similar sequence of transitions from a homogeneous steady
state to temporal oscillations followed by Turing patterns, but this was not investigated in
detail, as such parameters would be more difficult to control experimentally.

Overall, the results indicate that slowing AiiA feedback on AHL degradation can lead to
limit cycle oscillations before the onset of Turing patterns. This is consistent with previous
studies showing that an increased time delay in a negative feedback signal produces limit cycle
oscillations [45–47]. It is interesting to note that for the cases shown in Fig 2, the fixed point is
already unstable at k = 0 (a limit cycle) when undergoing the transition to the Turing instabil-
ity. This means that the classic notion of Turing patterns arising from a stable fixed point can
be extended to include some cases with an unstable point inside a limit cycle.

Fig 2. Slowing AiiA production in Eqs (1)–(4) leads to oscillations and Turing patterns. A codimension one bifurcation of the AHL fixed point, L*, losing
stability through a Hopf bifurcation and into a Turing instability as Aiia production rate is decreased. (b) Eigenvalue-wavenumber curves at various AiiA
maximal production rates, corroborating the bifurcation analysis results above. At the cusp of each curve the eigenvalues become a complex conjugate pair,
with each low eigenvalue left off the plot for clarity.

doi:10.1371/journal.pone.0153679.g002
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Fig 3. Numerical simulations of spatial dynamics in the model, Eqs (1)–(4), with periodic boundary conditions. (a-c) For 1-D space, slowing Aiia
production confirms (a) stable focus at α3 = 3.5 min.−1, (b) limit cycle at α3 = 3.2 min.−1, and (c) Turing patterns at α3 = 2.5 min.−1. (d) The same parameters
as (c) lead to spot patterns in 2-D simulations with periodic boundary conditions (4.87 × 4.87 cm2 panels taken every 13 mins).

doi:10.1371/journal.pone.0153679.g003
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Controlling Range of Unstable Wavenumbers and Patterning
Robustness
We next investigate how additional parameters can be used to experimentally tune spatial pat-
terning in the circuit. In contrast to the single promoter circuit model that was proposed [30],
increasing the cooperativity of transcriptional activation in our model does not appear to
increase the parameter space leading to Turing patterns, since an increased rate of activation is
not automatically balanced by an increased rate of repression. This however is not a major con-
cern since increasing cooperativity would be challenging to implement in experiments.

A more experimentally tuneable parameter is α1, affecting the maximal rate of LuxI expres-
sion, and experimentally controlled by a regulatable hybrid promoter, plasmid copy number,
or the strength of the promoter or ribosome binding site. Covarying this parameter with the
AiiA production rate creates basins for stable, Hopf unstable and Turing unstable solutions
(Fig 4a). For α3<0.16 min.−1 there is no α1 that gives rise to Turing patterning. For the parame-
ter space investigated (Fig 4a) as α1 is increased, the range of α3 leading to Turing patterning
(α3-robustness) also increases. Raising α3 also tends to increase α1-robustness (Fig 4a and 4b).
Fig 4b demonstrates that raising the AiiA production rate expands the range of wavenumbers
corresponding to the Turing instability, Re(λ(k))> 0 towards higher wavenumbers (shorter
wavelengths). Thus, tuning the maximal AiiA production rate to achieve more α1-robust
Turing patterning also results in shorter spatial periods in the resultant pattern.

Another parameter to control experimentally is Pm, representing the amount of LuxR. At
the nominal parameter set (S1 Table), the Turing instability occurs for Pm > 0.18 (Fig 4c).
Overall, the Pm-robustness of Turing patterning is not very sensitive to α1, except near the bor-
ders of the Turing space (Fig 4c). Furthermore, the α1-robustness of patterning is not much
affected by increasing Pm (Fig 4c and 4d). It is clear however that a higher amount of LuxR
leads to much shorter spatial periods in the Turing pattern (Fig 4d). Both codimension two
bifurcation plots (Fig 4a and 4c) show that the Turing regime can be adjacent in parameter
space to a regime of limit cycle dynamics (as in Fig 2), but this is not always the case (for exam-
ple, decreasing α1 when 0.5< α3 < 3.2, in Fig 4a).

Together these results show that Turing patterning with this circuit requires an AHL pro-
duction rate high enough to prevent a stable focus or limit cycle, but not so high as to lose the
fixed point through a saddle node bifurcation. Furthermore, it appears that the AiiA produc-
tion rate is the highest-priority parameter to adjust in order to achieve Turing patterning that
is robust to variations in the other experimental parameters. Once inside the Turing unstable
regime, both LuxI production rate and the amount of LuxR can be used to tune the range of
spatial periods in the solution.

Discussion
In this paper we have demonstrated the possibility of generating Turing patterns using a long-
range gas signal that induces degradation of a short-range quorum sensing molecules. The next
important step is to experimentally implement this proposed circuit in and test the predictions
made by the model. The gene circuit has features in common with previous designs [26, 27], but
there are some important differences. The Aiia promoter would likely need to be redesigned to
be activated by exclusively by H2O2 instead of LuxR-AHL. Besides the use of ndh, H2O2 genera-
tion could also be increased by addition of a lux-induced sodA gene [27]. For the lux-like promot-
ers (p1 and p3 in Fig 1), the model shows that they should be distinct from each other, with leak
and maximal production from p1 being higher than those from p3 (compare δ1,2’s and α1,2’s in S1
Table). Alternatively, this could be achieved by putting ribosome binding sites on luxI that are
stronger than those on ndh. It may also be necessary to remove the ArcAB sites on these
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promoters to eliminate crosstalk with the H2O2 part of the circuit, but preliminary analysis
shows that crosstalk as high as 20% can still lead to patterning (see S1 Equations) and S3 Fig.
One could also consider using alternative quorum sensing systems [48] and volatile signaling
molecules such as nitric oxide [49], ammonia [50], hydrogen sulfide [51], or ethylene [52].

Pattern formation speed is relevant to producing spatial structures in time scales allowed by
experiments. This speed is reflected by the magnitude of Re(λ)> 0, that determines how fast
unstable solutions diverge from the fixed point. Although the high dimensionality of our
model makes it challenging to derive analytical expressions for the pattern formation speed (as

Fig 4. Dependence of Turing parameter space and wavenumbers on quorum sensing and AiiA parameters. (a,c) Two-parameter sections of Turing
space, with curves of limit points (green), Hopf points (red), and Turing points (blue). (b,d) Ranges of Turing unstable wavenumbers for different sections
along the maximal LuxI production rate within the Turing parameter space. Parameter values are varied from the nominal set (S1 Table).

doi:10.1371/journal.pone.0153679.g004
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was done in [30, 53] for two-dimensional models), computing dispersion relations for different
parameters demonstrates that pattern formation speed around the nominal parameter set is
inversely related to α3 (Fig 2b), but proportional to D (S1 Fig), α1 and Pm (S2 Fig). Although
pattern formation speed will typically be very slow near the transition to Turing instability, our
simulations within the Turing parameter space demonstrate formation of patterns within two
hours (Fig 3c and 3d), making the system quite accessible to experimental observation.

Bacteria engineered with this gene circuit could be tested on agar plates or inside microflui-
dic chambers, both of which are amenable to spatiotemporal data collection with an epifluores-
cence microscope. In one spatial dimension, one could use microfluidic devices like the long
trap [26], or an annular trap [54] to study periodic boundary conditions. Agar could be pat-
terned into one-dimensional spatial structures, but these are likely to exhaust nutrients or lose
moisture too quickly. Spatial patterns in two dimensions are easier to generate on agar plates
(as in [5, 23, 24]), because use of microfluidics would likely be complicated by diffusional
anisotropies resulting from constant perfusion of liquid media through the channels. If this
were not a challenge then one could exploit the gas-permeability of polydimethylsiloxane
(commonly used to fabricate microfluidic devices) to allow for selective diffusion of H2O2 (as
in [27]), or sequester the gas using vacuum channel in the microfluidic device (another use for
the vacuum channel that was originally built for shear-free loading of cells [55]).

Another potential challenge to implementing these results experimentally arises from the
assumptions made about diffusion. First, transport through and between the cells is only
approximated by the diffusion equation. Limited membrane permeability and cell crowding
can slow transport of signaling molecules, resulting in a smaller effective diffusion coefficient
[56]. The effective diffusion coefficients of AHL and H2O2 have not been measured directly for
bacterial monolayers in microfluidic devices. However, Danino and colleagues [26] measured
conduction velocity of AHL-mediated activation to be V = 8.5-35 mm

min
, which combined with the

model prediction of V = 0.17 D1=2
L , results in DL = 2.5-42 × 103 mm2

min
. This estimate is comparable

to DL = 5.9-29 × 103 mm2

min
(lower limit for biofilm; upper limit for water at 25°C) estimated by

Stewart [56]. For H2O2, DH = 72-120 × 103 mm2

min
[56], implying that the diffusion ratio, D = 4-12.

However, Prindle et al. measured H2O2-mediated fluorescence conduction velocity V� 700 mm
min

across the biopixels microfluidic device [27], so using the 0.17 prefactor that Danino [26]
found demonstrates that the ratio, D = 100, used in our model is reasonable. In addition,
decreasing D as much as fourfold from D = 100 can still allow for patterning to occur (S1 Fig).
If required, further disparity between gas and lactone diffusion could be attained by using
crowding agents like polyethylene glycol, or engineering circuits with slower diffusing quorum
sensing molecules [48].

The mathematical model presented could be further investigated by incorporating several
additional layers of detail. This includes a more biophysical description of AHL production
(LuxI catalyzes the conversion of SAM to AHL), as well as H2O2 production (NDH-2 catalyzes
formation of H2O2), and regulation of the aiiA promoter (for example, H2O2 oxidizes ArcA to
relieve repression of lux promoter [27]). All of these processes have been lumped together (rep-
resented by dashed arrows in Fig 1) in the current model, but may turn out to have a non-negli-
gible effect on dynamics. Our model also lumps the processes transcription, translation and
protein maturation. Thus it would also be interesting to include these processes and also com-
pare this system to one reduced to a spatially-extended delay differential equation. Previous
work [57, 58] suggested that delays can predispose that system to oscillatory patterning, which
is consistent with what we found upon the inclusion of slower AiiA dynamics (Figs 2a and 4a).
Another feature that the current model ignores is the effect of protein dilution due to cell
growth. While this may hinder implementation in exponentially growing cells, there is also
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work suggesting that an expanding domain can help make the Turing patterning regime more
robust [57]. Furthermore, the dilution problem can be fundamentally resolved by engineering
the chemical reactions in an in vitro transcription-translation system [59].

Considering that protein numbers are low at the steady states analyzed (the nanomolar
range corresponds to tens of molecules per E. coli), it would be prudent to further examine this
system using stochastic simulations. Hsia and colleagues [29] found that such stochastic effects
changed the patterning parameter parameter space, but did not destroy the ability to produce
Turing patterning. Although external fluctuations tend to destabilize the Turing parameter
regime in a continuum setting [57], it has also been shown that when space is discrete, either
intrinsic or extrinsic noise can cause patterning over larger parameter ranges [60, 61]. Testing
these additional considerations is a good direction for future modeling studies.

Despite these theoretical and experimental challenges in further studying the proposed cir-
cuit we believe it is well worth the effort, as these types of gas and quorum sensing circuits
could be quite useful for studies of bacterial morphogenesis and several synthetic biology appli-
cations. The present work provides a conceptual foundation and guidance for the development
of gas mediated spatial patterning in multi-cellular and cell-free gene expression systems.

Supporting Information
S1 Table. Nominal parameter set.
(PDF)

S1 Fig. Effects of the diffusion coefficients ratio on the eigenvalue-wavenumber curves.
Dependence of the dispersion relation on the ratio of diffusion coefficients, D. (a) At the nomi-
nal parameter set (S1 Table) except with α1 = 2.5 and α3 = 1.5, the Turing instability persists
for D� 45. (b) For α3 = 2.5, despite a Hopf instability at k = 0, Turing patterns are maintained
when decreasing the ratio as low as D = 25.
(PDF)

S2 Fig. Effect of LuxI and LuxR parameter on the eigenvalue-wavenumber curves. Depen-
dence of the dispersion relation on LuxI and LuxR parameters. Varying these parameters
around the nominal parameter set (S1 Table) demonstrates that the pattern formation speed is
proportional to both: (a) LuxI maximal production (α1), and (b) amount of LuxR (Pm).
(PDF)

S1 Equations. The model incorporating the crosstalk between H2O2 and the plux-like pro-
moters.
(PDF)

S3 Fig. Effects of H2O2 crosstalk with plux on the eigenvalue-wavenumber curves. Disper-
sion relations for the expanded model (S1 Equations), varying the relative effect H2O2 on plux,
β. At the nominal parameter set (S1 Table) patterning still occurs with H2O2-plux crosstalk as
high as 20%.
(PDF)

S1 Movie. Spot pattern formation with no-flux boundary conditions.
(MOV)
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