@'PLOS ‘ ONE

CrossMark

click for updates

E OPEN ACCESS

Citation: Firouzabadi N, Ghazanfari N, Alavi
Shoushtari A, Erfani N, Fathi F, Bazrafkan M, et al.
(2016) Genetic Variants of Angiotensin-Converting
Enzyme Are Linked to Autism: A Case-Control Study.
PLoS ONE 11(4): e0153667. doi:10.1371/journal.
pone.0153667

Editor: Masaki Mogi, Ehime University Graduate
School of Medicine, JAPAN

Received: December 21, 2015
Accepted: April 1,2016
Published: April 15,2016

Copyright: © 2016 Firouzabadi et al. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper.

Funding: The authors have no support or funding to
report.

Competing Interests: The authors have declared
that no competing interests exist.

RESEARCH ARTICLE

Genetic Variants of Angiotensin-Converting
Enzyme Are Linked to Autism: A Case-Control
Study

Negar Firouzabadi'®*, Nima Ghazanfari2®, Ali Alavi Shoushtari*®, Nasrallah Erfani**,
Farshid Fathi**, Mozhdeh Bazrafkan®*, Ehsan Bahramali®*

1 Department of Pharmacology & Toxicology, School of Pharmacy, Shiraz University of Medical Sciences,
Shiraz, Iran, 2 Department of Pharmacology, School of Pharmacy, Shiraz University of Medical Sciences,
International Branch, Shiraz, Iran, 3 Department of Psychiatry, School of Medicine, Hafez Hospital, Shiraz
University of Medical Sciences, Shiraz, Iran, 4 Cancer Immunology Group, Shiraz Institute for Cancer
Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, 5 Department of Speech
Therapy, School of Rehabilitation, Shiraz University of Medical Sciences, Shiraz, Iran, 6 Noncommunicable
Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

@® These authors contributed equally to this work.
I These authors also contributed equally to this work.
* Firouzabadi@sums.ac.ir; nfirouzabadi@yahoo.com

Abstract

Background

Autism is a disease of complex nature with a significant genetic component. The importance
of renin-angiotensin system (RAS) elements in cognition and behavior besides the interac-
tion of angiotensin Il (Ang Il), the main product of angiotensin-converting enzyme (ACE),
with neurotransmitters in CNS, especially dopamine, proposes the involvement of RAS in
autism. Since the genetic architecture of autism has remained elusive, here we postulated
that genetic variations in RAS are associated with autism.

Methods

Considering the relation between the three polymorphisms of ACE (I/D, rs4343 and rs4291)
with the level of ACE activity, we have investigated this association with autism, in a case-
control study. Genotype and allele frequencies of polymorphisms were determined in DNAs
extracted from venous blood of 120 autistic patients and their age and sex-matched healthy
controls, using polymerase chain reaction (PCR) and PCR-restriction fragment length poly-
morphism (PCR—RFLP) methods.

Results

There were strong associations between both DD genotype of ACE I/D and the D allele, with
autism (P =0.006, OR=2.9, 95% Cl = 1.64-5.13 and P = 0.006, OR = 2.18, 95% Cl = 1.37—
3.48 respectively). Furthermore, a significant association between the G allele of rs4343 and
autism was observed (P = 0.006, OR = 1.84, 95%Cl = 1.26—-2.67). Moreover, haplotype anal-
ysis revealed an association between DTG haplotype and autism (P = 0.008).
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Conclusion

Our data suggests the involvement of RAS genetic diversity in increasing the risk of autism.

Introduction

Autism is a neuropsychiatric disability, characterized by impairments in social interaction and
communication and also by restricted repetitive and stereotyped patterns of behavior [1]. A
survey in 2014 revealed the overall prevalence of autism to be 14.7 per 1,000 (one in 68) in chil-
dren aged 8 years in the United States [2]. The prevalence of autism in Iran was estimated to be
6.2 per 1,000 in children aged 5 years [3]. Literature survey shows a marked male preponder-
ance, with the male-to-female ratio of about 4:1 in autistic patients [4]. While the exact etiology
of autism remains unknown, the significant role of genetics is not negligible.

Several lines of evidence suggest that autism is one of the most heritable neuropsychiatric
disorders [5]. Family studies have shown a sibling prevalence risk of 2%-6% which is remark-
ably higher than that in general population [6]. A number of candidate genes assumed to be
involved in the pathophysiology of autism, have been proposed in association studies in the
last few years [7-12] among which the neurotransmitter system was of great attention. Proba-
ble dysfunction of the dopamine system in the pathogenesis of autism is frequently reported [9,
13]. Serum level of homovanillic acid, the main dopamine metabolite, is shown to be elevated
in the cerebrospinal fluid of autistic patients [14]. Moreover, most autistic children are also
diagnosed with attention-deficit hyperactivity disorder (ADHD) [15]. Dysfunction of the
dopaminergic system contributes substantially to the etiology of ADHD [16, 17]. According to
a recent report, 31% of autistic children take an antipsychotic medication [18] among which
risperidone is vastly prescribed. Risperidone was shown to be well effective in treating aggres-
siveness, hyperactivity, irritability, self-injurious, stereotypic behavior, social withdrawal and
lack of interest [19, 20]. Pharmacological efficacy of this drug is primarily initiated by dopa-
mine receptor blockade [21] which further supports the role of dopamine in pathophysiology
of autism.

Renin angiotensin system (RAS) has been hypothesized to have pivotal role in some psychi-
atric and neurological diseases [22-28]. Angiotensin-converting enzyme (ACE) is the essential
enzyme in this system and catalyzes the conversion of angiotensin I (AngI) to Ang II. ACE
also plays a major role in the degeneration of neurokinins, a family of neurotransmitters in the
central nervous system (CNS). The implication of neurokinins in psychiatric disorders is sup-
ported by their function in regulation of emotions, cognition, behavior and memory [29-32]
which are disrupted in autism. [33, 34]. Ang II, the ultimate product of RAS, is also assumed to
interact with neurotransmitters such as dopamine and serotonin in CNS which proposes a pos-
sible mechanism of action for Ang II in behavioral and cognitive processes [35, 36]. Brain Ang
IT has been proposed to induce dopaminergic cell death via production of reactive oxygen spe-
cies (ROS) [37]. Besides a loss of dopamine secreting capacity, the resultant neuro-inflamma-
tory ramifications are thought to be involved in autism as well as other neurodevelopmental
conditions [38, 39]. Ang II, with pro inflammatory characteristics, exerts most of it physiologi-
cal action via two main receptors of angiotensin II type 1 and type 2 receptor which have been
found to be widely distributed in different areas of the brain associated with cognitive functions
[40] including areas affected in autism.

Activity of RAS is governed by genetic determinants in a variety of ways. It has been sug-
gested that several single nucleotide polymorphisms (SNPs) on the ACE gene such as rs4343,
rs4291 and also ACE I/D, determine the activity of this enzyme and the level of AngII [27, 41].
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Considering the complexity of autism’s etiology and multiple parameters being involved in
this disease, of which genetic factors are more significantly involved, in this case control study,
for the first time, we have evaluated the association of three genetic variants of the ACE gene
(I/D, rs4343, rs4291) with autism.

Methods

One hundred and twenty outpatient autistic children (86 males, 34 females) age of 3 to 12
years old (mean + S.D: 7.5+2.8) with a clinical diagnosis of autism (DSM-IV-TR) and 120 age
and sex matched healthy control cases (86 males, 34 females) from Imam Reza Hospital, Shi-
raz, Iran were included in the study between the years 2012-2014. Healthy control subjects
were from the same geographical area as our patient groups. All individuals in control group
were behaviorally and somatically healthy. They had no history of psychiatric disorders and
never took medications for psychiatric conditions. This work was carried out in accordance
with The Code of Ethics of the World Medical Association (Declaration of Helsinki) and Uni-
form Requirements for manuscripts submitted to biomedical journals. The study was approved
by the local committee of ethics of medical experiments on human subjects of Shiraz University
of Medical Sciences. Informed written consent (approved by The Institutional Ethical Commit-
tee) was obtained from parents/legal representatives of all individual participants included in
the study. Diagnosis of autism was based on DSM-IV-TR criteria, ASD Diagnostic Interview-
Revised [42], expert clinical evaluation; Clinical Global Impressions-Severity (CGI-S) rating of
4 or greater [43] and Autism Behavior Checklist (ABC) [44].

Genotyping

Genomic DNAs were extracted from whole blood leukocytes, using the salting out method
[45]. The extracted DNAs were dissolved in sterile distilled water and stored at 4°C for further
PCR analysis. PCR amplification/detection of ACE I/D was carried out using a standard proto-
col [46]. In order to avoid mistyping of ID as DD genotype, all DD genotypes were reconfirmed
by another typing system [47]. PCR amplification of rs4291 and rs4343 was performed as
described in detail previously by Firouzabadi et al. [48]. It is to mention that all of the samples
were genotyped at least twice and reconfirmed.

Statistics

The data were analyzed using SPSS®) 22.0 for windows® (SPSS Inc.,Chicago, Illinois). All
continuous variables are presented as mean + S.D. Genotype frequencies are expressed in per-
centage (%). Hardy-Weinberg equilibrium (HWE) for the distributions of genotypes was esti-
mated by chi-square ()2) test. Distribution of all continuous variables was tested for normal
distribution with the Kolmogorov-Smirnov test.

Pearson's chi-square or Fisher's exact test were applied to assess differences in the genotype
and allelic (respectively) distribution between groups of patients and controls. Pair-wise com-
parisons were performed by Bonferroni’s post-hoc test. Odds ratio (OR) and 95% confidence
intervals (CI) were obtained. P value <0.05 was considered as statistically significant. Relation-
ship between different haplotypes and autism was calculated using Arlequin 3.1 software pack-
age [49].

Results

One hundred and twenty children with a diagnosis of autism were molecularly genotyped for
ACE I/D and two SNPs within the ACE gene (rs4291 and rs4343). Genotypic and allelic
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Table 1. Genotype distribution and allele frequencies in depressed patients and healthy controls.

Variables

rs4291
AA

AT

TT
Alleles
A

T
rs4343
AA
AG
GG
Alleles
A

G
ACE I/D
Il

ID

DD
Alleles
|

D

Autistic patients N (%)

38 (31.6%)
77 (64.2%)
5 (4.2%)

153(63.75%)
87 (36.25%)

37 (30.8%)
59 (49.2%)
24 (20%)

133 (55.4%)
107(44.6%)

8 (6.7%)
17 (14.2%)
95 (79.2%)

33 (13.75%)
207 (86.25%)

Healthy controls N (%) P-value Adjusted P-value* OR (95%Cl)
0.033 0.182 0.56 (0.33-0.96)
54 (45%)
56 (46.7%)
10 (8.3%)
0.335 0.913 1.23 (0.84-1.79)
164 (68.3%)
76 (31.7%)
0.012 0.069 1.97 (1.16-3.32)
58 (48.3%)
51 (42.5%)
11 (9.2%)
0.001 0.006 1.84 (1.26-2.67)
167(69.6%)
73 (30.4%)
0.001 0.006 2.9 (1.64-5.13)
10 (8.3%)
42 (35%)
68 (56.7%)
0.001 0.006 2.18 (1.37-3.48)

62 (25.8%)
178(74.2%)

*: P-value after applying Bonferroni's post-hoc test.

doi:10.1371/journal.pone.0153667.1001

distributions were compared to those obtained from 120 age and sex-matched healthy subjects
of Caucasian origin (86 males, 34 females). Genotypes were in Hardy-Weinberg Equilibrium in
control individuals (P-value for rs4291, rs4343, ACE I/D = 0.391, 0.965, 0.343 respectively).
Table 1 shows genotype distribution, allele frequencies and associations between study variants
and autism. GG genotype of rs4343 was more frequent in autistic patients (P = 0.012,

OR =1.97, 95%CI (1.16-3.32); however after applying Bonferroni's correction this association
was not significant (adjusted P = 0.069). In addition, G allele of rs4343 was significantly associ-
ated with autism after using Bonferroni's correction [adjusted P = 0.006, OR = 1.84, 95%CI
(1.26-2.67) respectively]. On the other hand, DD genotype of ACE I/D as well as D allele of
this variant revealed a significant association with autism [adjusted P = 0.006, OR = 2.9, 95%
CI (1.64-5.13) and adjusted P = 0.006, OR = 2.18, 95% CI (1.37-3.48) respectively]. Regarding
haplotype analysis (Table 2), DTG haplotype was significantly higher in autistic patients com-
paring with healthy controls (adjusted P = 0.008). Moreover, IAA haplotype was significantly
higher in healthy subjects vs. patients group (adjusted P = 0.047).

Discussion

This is the first study examining the association of selected polymorphisms on ACE gene in a
population of autistic children. The inspiration of the present study was the significant role of
RAS in several neurological and psychiatric diseases [23, 24, 26, 27, 50] as well as in the ability
of learning and memory [51, 52].

The novel findings of our study are the significant association of two polymorphisms, [ACE
(I/D and rs4343)] located on ACE gene, with autism. The G allele of rs4343 increased the risk
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Table 2. Comparison of haplotype frequencies in autistic patients and healthy individuals.

ACE /D
D

D

rs4291

T

A

rs4343
G

A

Case group Control group P-value Adjusted P-value*
57 23.7% + 33 13.7% 0.001 0.008
183 76.3% - 207 86.3%

83 34.6% + 86 35.8% 0.670 0.426
157 65.4% - 154 64.2%

24 10.0% + 43 17.9% 0.006 0.047
216 90.0% - 197 82.1%

41 17.1% + 26 10.8% 0.031 0.222
199 82.9% - 214 89.2%

4 1.7% + 5 2.1% 1.000 1.000
236 98.3% - 235 97.9%

26 10.8% + 33 13.7% 0.294 0.938
214 89.2% - 207 86.3%

5 2.1% + 9 3.7% 0.271 0.920
235 97.9% - 231 96.3%

0 0% + 5 2.1% 0.061 0.396
240 100% - 235 97.9%

*: P-value after applying Bonferroni's post-hoc test.

doi:10.1371/journal.pone.0153667.t002

of autism by 1.84 fold versus carriers of the A allele (adjusted P = 0.006; OR = 1.84; 95%

CI = 1.26-2.67). Another finding was the significant associations of DD genotype of ACE with
autism. Inheritance of two D alleles increased the risk by 2.9 fold (adjusted P = 0.006; OR = 2.9;
95% CI = 1.64-5.13). Likewise, the D allele increased the risk by 2.18 fold (adjusted P = 0.006;
OR =2.18;95% CI = 1.37-3.48).

As reported previously both alleles of D (ACE 1/D) and G (rs4343) are assumed to be func-
tional and increase serum ACE activity and as a result, produce higher levels of Ang IT [41].
Furthermore, a recent report has shown a strong association of G allele of rs4343 with higher
serum ACE concentration in a population of depressed patients. In the same study no associa-
tion was observed between rs4291 and serum ACE activity [27]. The increased ACE activity
may then explain the observed association of the mentioned polymorphisms with autism in
our population. In addition, in our study population, DTG haplotype of study variants, was sig-
nificantly higher in the patients group (adjusted P = 0.008) and IAA haplotype was signifi-
cantly higher in the control group (adjusted P = 0.047) which suggests that the two variants of
G (rs4343) and D (ACE 1I/D) may be linked to predisposition to autism, confirming the results
obtained from genotype analysis.

There are several explanations for the involvement of RAS in autism. Among the proposed
pathophysiological underpinning of autism, dysregulation of neurotransmitters function is
consistently reported [9-11]. RAS is thought to interact with dopamine and serotonin in the
brain and also alters neurokinins activity through ACE function [31, 32]. Neuro-inflammatory
properties of Ang II may also describe the pathophysiological implications of RAS in autism
[38, 39]. The pro inflammatory characteristics of circulating and tissue Ang II, is consistently
reported to be involved in end organ damages after acute injuries like ischemia [53]. It is
emphasized that blunting of RAS reduces the negative remodeling after myocardial infarction
for example, and improves outcomes [54]. Similar consequences of local RAS activation in the
brain may also explain the proposed role for RAS in cognitive and behavioral disorders. Brain
is affected by systemic inflammation as well, like peripheral organs [55]. Patients with autism
have been found to exhibit higher peripheral blood inflammatory biomarkers [56] which alter
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the permeability of the blood-brain barrier and may result in poor maintenance of the brain’s
stability. Brain inflammation and the resultant damage [55], has major roles in the pathophysi-
ology of various psychiatric and neurological disorders [57, 58].

Immune mediators such as interleukin-6 (IL-6) exert a regulatory function in all phases of
central nervous system (CNS) development [59, 60]. Neurotropic properties of IL-6 are impor-
tant in cell differentiation and axonal guidance in CNS [59, 61]. Alongside Ang II is considered
a pleiotropic factor as well, secreted from most tissues including the brain [62]. Documents
suggest that Ang II stimulates IL-6 synthesis and release. It is also demonstrated that Ang II
and IL-6 are co-localized in atherosclerotic plaques, suggesting the potential immune modula-
tory role of Ang Il in tissues [63]. Moreover dopamine synthesis is further induced in inflam-
matory conditions of the brain. IL-6 stimulates hypothalamus-pituitary-adrenal (HPA) axis
and the release of catecholamines such as dopamine [64]. The over production of Ang II is also
one of the major causes of HPA axis dysregulation which has been observed in autism [65].

Ang IT mediates most of its physiological action via two main receptors: angiotensin II type
1 and type 2 receptors, vastly distributed in the areas of the brain associated with cognitive
function [40] including areas affected in autism. Implication of angiotensin receptor inhibitors
(ARBs) has shown potent central anti-inflammatory properties of these agents [58]. The sug-
gested role of inflammation in autism alongside the neuro inflammatory and oxidative actions
of Ang II on one hand, and the role of neurotransmitters in autism [9, 66] and their interac-
tions with RAS on the other hand [37, 67], constitute the justifications of our hypothesis of the
contribution of RAS in the development of autism. However, this is the first report of such
associations and needs to be replicated in other populations. Moreover to the best of our
knowledge, the suggested proposal regarding the role of RAS in pathophysiology of autism is
first described here and further evidence would saturate the idea. Inspired by the overwhelming
evidence on the serious involvement of RAS after tissue injuries, regulating the local immune
response and the overall tissue homeostasis, we believe further research is guaranteed regarding
the role of RAS in autism.

Heterogeneity in expression of phenotypes in autism and its etiology has hindered the
search for specific genes being involved in biological mechanisms that underlie its behavioral
symptoms. Genome wide association studies have not yet identified the polymorphisms in
RAS to be involved in autism. However, etiology of autism as a multifactorial disorder with the
complex interplay of genetic and enviromental effectors, needs to be viewed in a broader con-
text. Activity of the major neurohormonal systems of human body like RAS is believed to be
echoed in response to extrinsic and intrinsic insults. Genetic determinants of RAS activity then
would be prominent after the unfavorable outcome, here autism, has been occurred and may
modulate the disease course, complications and response to therapy. It is of great interest to
find out the exact pathophysiological mechanisms underlying the involvement of RAS in
autism, as a widely distributed system involved in the homeostasis of virtually all tissues. The
present study may provide some supporting evidence then.

Conclusions

To conclude, the present study indicates that ACE I/D and rs4343 polymorphisms can be a
risk factor associated with autism and this highlights the role of RAS in this illness. However,
further genetic studies in various ethnicities and populations are warranted.

Ethical approval: “All procedures performed in studies involving human participants were
in accordance with the ethical standards of the institutional and/or national research commit-
tee and with the 1964 Helsinki declaration and its later amendments or comparable ethical
standards.”
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