
RESEARCH ARTICLE

Mitigation of Variability among 3D
Echocardiography-Derived Regional Strain
Values Acquired by Multiple Ultrasound
Systems by Vendor Independent Analysis
Cole Streiff, Meihua Zhu, Eriko Shimada, David J. Sahn, Muhammad Ashraf*

Oregon Health & Science University, Portland, Oregon, United States of America

* ashrafm@ohsu.edu

Abstract

Introduction

This study compared the variability of 3D echo derived circumferential and longitudinal

strain values computed from vendor-specific and vendor-independent analyses of images

acquired using ultrasound systems from different vendors.

Methods

Ten freshly harvested porcine hearts were studied. Each heart was mounted on a custom

designed phantom and driven to simulate normal cardiac motion. Cardiac rotation was digi-

tally controlled and held constant at 5°, while pumped stroke volume (SV) ranged from 30-

70ml. Full-volume image data was acquired using three different ultrasound systems from

different vendors. The image data was analyzed for longitudinal and circumferential strains

(LS, CS) using both vendor-specific and vendor-independent analysis packages.

Results

Good linear relationships were observed for each vendor-specific analysis package for both

CS and LS at the mid-anterior segment, with correlation coefficients ranging from 0.82–0.91

(CS) and 0.86–0.89 (LS). Comparable linear regressions were observed for results deter-

mined by a vendor independent program (CS: R = 0.82–0.89; LS: R = 0.86–0.89). Variability

between analysis packages was examined via a series of ANOVA tests. A statistical differ-

ence was found between vendor-specific analysis packages (p<0.001), while no such differ-

ence was observed between ultrasound systems when using the vendor-independent

program (p>0.05).

Conclusions

Circumferential and longitudinal regional strain values differ when quantified by vendor-spe-

cific analysis packages; however, this variability is mitigated by use of a vendor-independent
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quantification method. These results suggest that echocardiograms acquired using different

ultrasound systems could be meaningfully compared using vendor-independent software.

Introduction
Strain imaging is an increasingly prevalent method of quantifying myocardial mechanics. This
technology is used to determine global and regional myocardial deformation throughout a car-
diac cycle and is affiliated with cardiac magnetic resonance imaging (cMRI), cardiac computed
tomography (CT) and echocardiography (echo)[1, 2]. Strain-based imaging techniques are
predominantly used to monitor cardiac function and direct therapy under a variety of condi-
tions such as myocardial infarction [3–6], mechanical dyssynchrony [7–10] and cardiomyopa-
thy [11–18]. These strain-based methods provide a unique and sensitive approach to
quantitatively express the function of the myocardium, which represents cardiac health [1–3, 5,
6, 9].

Speckle-tracking echocardiography (STE) derived strain has been validated both experi-
mentally and clinically [19, 20]. Two-dimensional (2D) STE tracks the motion of natural
acoustic markers between acquisition frames to detect the direction and magnitude of segmen-
tal wall motion. 2D STE is angle independent; however, it has been shown to be limited by
through-plane motion and the complex architecture of the heart [21, 22].

Three-dimensional echocardiography (3DE) enables the measurement of myocardial defor-
mation within a volumetric acquisition and is not subject to many of the limitations of 2D STE.
The temporal resolution of 3DE suffers relative to that of 2D STE and there are concerns
regarding the accuracy of 3DE-derived strain values [23, 24]. However, experimental and clini-
cal studies have validated the strain determining capabilities of multiple vendor-specific analy-
sis packages based on 3DE acquisitions [25–27].

It has been shown that, while comparable in accuracy to 2DE-based methods, 3DE-derived
strain values acquired from different vendors’ ultrasound systems and analysis packages lack
reproducibility [28, 29]. The variability in myocardial strain measurements of different analysis
programs has not been extensively studied. Vendor-independent analysis packages, such as
TomTec Image Arena (TomTec Imaging Systems, Unterschleissheim, Germany), provide a
means by which 3D volumes from multiple ultrasound systems can be analyzed [30]. The
strain values determined by TomTec Image Arena have been shown to accurately and reliably
quantify myocardial deformation [31, 32].

Koopman et al showed that vendor independent software was capable of determining global
strain values from B-mode images acquired using multiple ultrasound systems [33] while
Risum et al confirmed this finding using 2D STE [34]. However, strain quantification from 3D
volumes across ultrasound systems has not been adequately explored using vendor-indepen-
dent software. This study aimed to establish the variability of circumferential and longitudinal
strain values acquired from different vendors and demonstrate a reduced variability due to
analysis using a vendor-independent analysis package.

Materials and Methods
A closed-circuit pulsatile harvested pig heart model was designed for this study. Pig hearts
were purchased from Carlton Farms (Carlton, Oregon), which processes pork for commercial
sale and is licensed to provide organs for in vitro research. OHSU does not require IACUC
approval for in vitro projects.
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Ten freshly harvested porcine hearts had atria and major vessels removed. The aortic leaflets
were sutured together. A latex balloon was fixed within the left ventricle (LV) at the mitral
annulus and connected to a pulsatile pump. Each phantom model was mounted on a custom
mechanized base plate with the apex fixed (Fig 1A). The base plate was driven by a rotary actu-
ator motor which was interfaced with the pulsatile pump and set to rotate 5° and compact
10mm in phase with the simulated cardiac cycle according to a simulated QRS Complex.

Three sonomicrometry crystals were sutured into the myocardial wall of the LV within the
region adjacent to the left anterior descending coronary artery (LAD) (depicted in Fig 1B). The
LAD was used as a landmark for the orientation of crystals numbered 1 and 2 which repre-
sented longitudinal strain (LS) and were perpendicular to crystal 3 which, coupled with crystal
2, provided circumferential strain (CS) reference values.

Each phantom was pumped at a stroke rate of 60 beats per minute (bpm) with a stroke vol-
ume (SV) ranging from 30-70ml. SV was increased in increments of 10ml with the appropriate
volume added to the system to maintain a static end systolic volume (ESV). Full-volume 3DE
data was acquired on the following ultrasound systems at each SV; GE Vivid E9 with a 3V-D
transducer (GE Healthcare; Horten, Norway); Toshiba Aplio Artida with a PST-25SX trans-
ducer (Toshiba Medical System Corporation, Tochigi, Japan); and ACUSON SC2000 with a
4Z1c transducer (Siemens Medical Solutions USA Inc., Mountain View, CA). Each transducer
was positioned in the same apical acquisition window and other parameters were conserved
among ultrasound systems. The relative displacement between sonomicrometry crystals was
recorded at each SV to provide reference strain values.

Data was analyzed offline by vendor-specific analysis packages: GE EchoPAC PC; Toshiba
3D-WMT; and Siemens VMM (Fig 2). Three isolated observers, each experienced with one of
these analysis packages, obtained peak negative circumferential and longitudinal strain (CS
and LS) values at the mid anterior (MA) segment of the LV for each SV of each phantom. The
volumes used for each vendor-specific analysis were then stripped of identifying information
and exported into TomTec Image Arena. Each observer analyzed a complete dataset using
TomTec Image Arena to determine CS and LS at the MA for each volume (Fig 3). The sonomi-
crometry-derived displacement values were analyzed using SonoVIEW (SonoMetrics Corpora-
tion, Ontario, Canada) to generate reference CS and LS values at the MA segment.

Inter-observer variability was determined from a sample of 20% of the volumes analyzed by
a different user blinded to the previously determined values. Intra-observer reproducibility was
examined according to a sample of 20% of the volumes analyzed by the blinded initial operator
six weeks after initial analysis. The intraclass correlation coefficients (ICCs) were calculated
and presented.

Results
Ten hearts were imaged by three distinct ultrasound systems at five different stroke volumes,
resulting in a total of 150 full-volume acquisitions analyzed. Negative peak CS and LS were
determined from each of these volumes using both vendor-specific and vendor-independent
analysis programs. Including reference sonomicrometry results, over 750 data points were gen-
erated and used to determine the results presented in this study. The following data was
excluded from all analysis due to inconsistent border tracking: Siemens Heart 4 CS SV 30-70ml
and EchoPAC Heart 2 LS SV 40ml.

Circumferential and longitudinal strain data were analyzed separately. Linear regression
analyses were performed on vendor specific echo-derived CS and LS values against sono-
derived strain. The echo-determined strain values for GE EchoPAC PC, Toshiba 3D-WMT
and Siemens VMMwere plotted on the same xy coordinate plane against sonomicrometry
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Fig 1. A) Experimental apparatus: Each heart is passively pumped in phase with a rotary actuator baseplate with images
acquired from a fixed apex. B) Sonomicrometry crystal placement: Relative displacement between crystals 1 and 2 is used to
determine reference longitudinal strain while displacement between crystals 2 and 3 represents reference circumferential
strain.

doi:10.1371/journal.pone.0153634.g001
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determined strain (Fig 4A and 4B). Good linear agreement was observed for all analysis pack-
ages (CS: R = 0.82–0.91; LS: R = 0.86–0.89). Bias was gauged by a series of Bland-Altman analy-
ses (CS: 1.8–6.1%; LS: 2.9–6.7%). Inter-vendor variability was determined significant for both
CS and LS by one-way analysis of variance (ANOVA) tests (Table 1) with ICC values ranging
from 0.52–0.66 (CS) and 0.59–0.77 (LS).

CS and LS values were determined by a vendor independent analysis package (TomTec
Image Arena) and plotted in distinct datasets, based on the ultrasound system upon which the
image loops were acquired, on the same xy coordinate plane against sonomicrometry deter-
mined strain (Fig 4C and 4D). Linear regression analyses were performed for each dataset and
a good linear correlation was observed for all ultrasound systems (CS: R = 0.82–0.89; LS:
R = 0.86–0.89). A series of Bland-Altman analyses revealed bias values for each dataset of 9.1–
10.9% (CS) and 9.3–10.2% (LS). Inter-vendor variability was determined not to be significant
by one-way analysis of variance (ANOVA) tests (Table 1) with ICC values ranging from 0.71–
0.87 (CS) and 0.82–0.90 (LS). The variability of strain measurements computed from vendor
specific and vendor independent analyses was determined by intra-class correlation (ICC). The
ICC values using 1000 bootstrap samples are 0.5457392 (95% bootstrap CIs: [0.4445, 0.6390])

Fig 2. A) GE EchoPAC PC: Peak strain analysis using EchoPAC PC. B) Toshiba 3D-WMT: Peak strain analysis using Toshiba 3D-WMT. C) Siemens
VMM: Peak strain analysis using Siemens VMM.

doi:10.1371/journal.pone.0153634.g002
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for vendor specific, and 0.793742(95% bootstrap CIs: [0.7182, 0.8465]) for vendor independent
strain measurements. The lower bound of the 95% CI for ICC with vendor independent is
higher than the upper bound of the 95% CI for ICC with Vendor specific. Higher intra-class
correlation (ICC) indicates smaller inter-variability.

For standardization across SVs, CS and LS values were normalized by dividing the echo-
derived strain by the reference strain. Normalized strain values were averaged across all hearts
and SVs for each vendor-specific and -independent analysis package. These averages were plot-
ted against each other with the error being represented by the Standard Error of the Mean
(SEM). These normalized strain values were used to compare the vendor-specific derived CS
and LS (Fig 5A and 5B) as well as the vendor-independent CS and LS (Fig 5C and 5D).

Analysis of Variance (ANOVA) tests were used to compare the difference of the strain val-
ues acquired from each vendor dependent and independent analysis package (Table 1). A sta-
tistical difference was found between vendor-specific analysis packages (F>Fcrit; p<0.001),
while no such difference was observed between ultrasound systems when using the vendor-
independent program (F<Fcrit; p>0.05) for both CS and LS.

Inter-observer variability for the vendor-specific software was relatively good with ICC val-
ues ranging from 0.83 to 0.96 (CS) and 0.90 to 0.98 (LS) while the intra-observer reproducibil-
ity was found to range from 0.97 to 0.99 (CS) and 0.96–0.99 (LS). For the vendor-independent
program, inter-observer variability ranged from ICC = 0.93 to 0.99 (CS) and 0.98 to 0.99 (LS)
while intra-observer reproducibility ranged from 0.98 to 0.99 (CS) and 0.99 (LS) (Fig 6).

Discussion
A fundamental obstacle to inter-institutional, and in some cases intra-institutional, collabora-
tion on echocardiography-based studies is the lack of reproducibility between vendors [28, 29].
Badano et al concluded that longitudinal 3D-echocardiography studies must be conducted

Fig 3. TomTec Image Arena: Peak strain analysis using TomTec Image Arena.

doi:10.1371/journal.pone.0153634.g003
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using the same imaging platform to assure accuracy [29]. Previous inter-vendor reproducibility
studies have shown a statistically significant difference in 3DE-derived CS and LS values
between ultrasound systems [28, 29, 35]. These findings are in agreement with the results of
this study, which verify that CS and LS values determined by vendor-dependent software
exhibit low levels of agreement. Recognizing the critical need for standardization in strain
imaging, the European Association of Cardiovascular Imaging, EACVI) and the American
Society of Echocardiography (ASE) has also published a technical document intended to create
a common standard [28]. The observed lack of reliability between vendors may result from dif-
ferences in tracking algorithms, interpolation techniques and strain calculations [29, 36].

Table 1. One-way ANOVA results: Significant difference in vendor dependent CS and LS values among ultrasound systems and no significant dif-
ference in vendor independent results among ultrasound systems.

ANOVA

P-value F F-crit F > F-crit

Vendor-Dependent Analysis Package Circumferential Strain 5.04E-12 31.41741 3.059831 Yes

Longitudinal Strain 1.8E-15 43.22723 3.05805 Yes

Vendor-Independent Analysis Package Circumferential Strain 0.060119 2.867829 3.059831 No

Longitudinal Strain 0.361086 1.025779 3.05805 No

doi:10.1371/journal.pone.0153634.t001

Fig 4. A) Circumferential strain derived from vendor specific analysis. B) Longitudinal strain derived from vendor specific analysis. C) Circumferential strain
derived from vendor independent analysis. D) Longitudinal strain derived from vendor independent analysis. All echocardiography-derived strain values (y-
axis) are plotted against sonomicrometry derived strain values (x-axis).

doi:10.1371/journal.pone.0153634.g004
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The ability to convert full-volume acquisitions from multiple ultrasound systems to digital
imaging and communications in medicine (DICOM) data allows the use of a single vendor-
independent analysis utility [33]. In this study, the use of vendor-independent software to
determine CS and LS values was shown to reduce the variability between ultrasound systems
such that there was no significant difference. The ability of a vendor-independent analysis
package to reduce inter-vendor variability has been shown in previous studies [28, 37].

Clinical Significance
The use of this vendor-independent quantification technology in a clinical setting has a wide
variety of beneficial applications. Previous studies have indicated that the same ultrasound sys-
tem and vendor-dependent analysis package must be used for a longitudinal study to assure
accuracy [30, 36, 37]. However, the results of this study suggest that the use of a vendor-inde-
pendent software package obviates the variability in both CS and LS values between ultrasound
systems. This technology has the potential to reduce health care costs by precluding the reac-
quisition of images previously captured by a different ultrasound system than the one currently
in use at a particular facility. Additionally, the quality of patient care may be improved by the

Fig 5. A) Normalized circumferential strain values from vendor specific analysis. B) Normalized longitudinal strain values from vendor specific analysis. C)
Normalized circumferential strain values from vendor independent analysis. D) Normalized longitudinal strain values from vendor independent analysis. All
error bars are represented as the standard error of the mean (SEM).

doi:10.1371/journal.pone.0153634.g005
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ability to compare previous 3DE studies to present values and subsequently determine the pro-
gression of cardiac function.

This technology could also promote an increase in inter-institutional collaboration resulting
from the ability to analyze data acquired on multiple ultrasound systems. This would allow
studies to be completed in shorter periods of time with greater subject diversity. Due to the
increased potential patient population associated with collaborative studies, uncommon or rare
disorders could be much more comprehensively studied. Additionally, the application of this
vendor-independent analysis package may allow unprecedented longitudinal study of disease
progression.

Study Limitations
Temporal resolution was optimized, but not explicitly examined as a source of variability in
this study. Previous studies have determined that temporal resolution values consistent with
those used in this study are not a source of variability [30, 38].

The nature of this in vitromodel prevents examination of the effects of image quality as all
acquisitions occurred under optimal conditions. The proposed model of the CS in this study,
however, is different with respect to the in vivo situation, as it does not keep in consideration
electrical conduction, which causes a delay in contraction of different sections of the heart.
Additionally, this phantom study used extrinsic pump to generate pulsatile cardiac motion,
which is quite different than intrinsic myocardial contraction. Based on the results of this study
and the known limitations of strain quantification reproducibility, especially associated with
CS, it is important to continue this research using in vivo acquisitions.

This study utilized regional strain values at the mid-anterior segment due to its presence in
the near field to optimize resolution. These values were used as surrogates for global strain;

Fig 6. Intra-Class Correlation plots to assess the variability of strain measurements derived from
vendor specific and vendor independent analyses. The plots show no overlapping between the 95% CI
for ICC between the two approaches: vendor specific (blue) vs. vendor independent (red).

doi:10.1371/journal.pone.0153634.g006
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however, they may not accurately represent global strain values due to position relative to the
transducer. This limitation in study design was necessary due to the practical constraints of
using sonomicrometry crystals to determine stain in a passively driven cardiac model. Variabil-
ity, therefore, could have been reduced by optimized image quality allowed in the phantom set-
ting and/or amplified by regional evaluation.

Conclusions
Circumferential and longitudinal regional strain values differ when quantified by vendor spe-
cific analysis packages; however, this variability is mitigated by use of a vendor independent
quantification method. The results of this study suggest the plausibility of inter-institutional
collaborative studies, regardless of different ultrasound systems used in acquisition.
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