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Abstract

Hypoxia in tumors signifies resistance to therapy. Despite a wealth of tumor histology data,
including anti-pimonidazole staining, no current methods use these data to induce a quanti-
tative characterization of chronic tumor hypoxia in time and space. We use image-process-
ing algorithms to develop a set of candidate image features that can formulate just such a
quantitative description of xenographed colorectal chronic tumor hypoxia. Two features in
particular give low-variance measures of chronic hypoxia near a vessel: intensity sampling
that extends radially away from approximated blood vessel centroids, and multithresholding
to segment tumor tissue into normal, hypoxic, and necrotic regions. From these features we
derive a spatiotemporal logical expression whose truth value depends on its predicate
clauses that are grounded in this histological evidence. As an alternative to the spatiotem-
poral logical formulation, we also propose a way to formulate a linear regression function
that uses all of the image features to learn what chronic hypoxia looks like, and then gives a
quantitative similarity score once it is trained on a set of histology images.

Introduction

As a tumor grows, it rapidly outstrips its blood supply. High proliferation causes high cell den-
sity that overtaxes local oxygen supply. This leaves portions of the tumor with an oxygen con-
centration significantly lower than in healthy tissues. This stress condition is tumor hypoxia.
Hypoxia is strongly correlated with poor prognosis as it renders tumors less responsive to che-
motherapy and radiotherapy [1-3].

Hypoxia-inducible factors (HIFs) are transcription factors that respond to changes in avail-
able oxygen in the cellular environment, specifically to hypoxia. When activated, HIF-1 upre-
gulates several genes to promote survival in low-oxygen conditions. These include glycolysis
enzymes that allow cells to synthesize ATP in an oxygen-independent manner, and vascular
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endothelial growth factor (VEGF) that cells release to promote angiogenesis. So hypoxia is
directly instrumental in tumor progression.

Prolonged or extreme hypoxia can lead to necrosis, and tumors often have central regions
called necrotic cores [4]. Necrosis in turn activates inflammatory responses that produce cyto-
kines that stimulate tumor growth [3]. Recent research has investigated the interactions
between hypoxic tumor cells and immune cells (tumor-associated macrophages [5]) and cells
that synthesize extracellular matrix (tumor-associated fibroblasts [6, 7]). Both are involved
with inflammatory processes tied to tumor progression. In the context of the tumor microenvi-
ronment, these interactions regulate tumor properties like spatial patterns of cell localization,
angiogenesis, and collective invasion and migration [8, 9].

Thus it is of theoretical and clinical significance to understand how, and under what condi-
tions, hypoxia arises in tumors. More fundamentally, we need to better characterize tumor
hypoxia from available evidence, so it can be reliably detected in its various states and contexts.

Tumor hypoxia exhibits two major forms—intermittent and chronic. Intermittent hypoxia
derives from the pervasive presence of fluctuating oxygenation in whole tumors, and operates
in a length scale that exceeds the locality of specific vessels [10]. Chronic hypoxia derives from
a vessel-dominant oxygenation dynamics whose parameters correspond to vessel and tissue
properties, and the radial distance from the vessel.

In this study we choose to investigate chronic tumor hypoxia situations where there is a pre-
sumed steady-state gradient of oxygen near a source vessel, diminishing in magnitude as a func-
tion of radial distance away from that vessel. This phenomenon has been investigated since the
clinical study of Thomlinson and Gray [4] first characterized “tumor cords”. Red blood cells
release oxygen by diffusion into the tumor tissue regions in need. The oxygen is metabolized by
respiring cells near the blood vessel, and consequently oxygen tension diminishes as a radial dis-
tance away from the vessel. At radial distances in excess of ~ 100 pm, there is insufficient oxy-
gen to maintain cell viability. Between the bands of viable and necrotic cells, one typically finds
aregion 1-2 cell layers thick where oxygen tension is hypoxic—this is consistent with our
tumor image data, described below. Moreover, in a solid tumor mass, mitotic index and cell via-
bility decreases as a function of radial distance away from the nearest blood vessel [4, 11].

We develop a method to induce a quantitative characterization of these chronic tumor hyp-
oxia situations from histological evidence, namely image data taken from H&E and anti-pimo-
nidazole stained slices of tumors. In this way, we take a reductionist approach, which we
understand does not integrate the full complexity of tumor vascularity and hypoxia. Rather, we
choose to focus on our simplified biological system to better characterize it by way of our
computational modeling techniques—assembling a logical description comprising quantitative
image features, and assembling a linear function whose terms comprise quantitative image fea-
tures and are weighted according to a linear regression. We show how one can use the image
features we develop (and an unbounded set of other image features) to produce an automated,
scalable, and unbiased spatiotemporal characterization of chronic tumor hypoxia.

The quantitative study of chronic hypoxia near blood vessels is part of a well established lit-
erature that seeks to improve our understanding of microvascular oxygen transport in tissues
by building theoretical models.

Krogh (1919) was one of the first to systematically investigate the architectural relationship
between blood capillaries and muscle cells, and the conditions under which oxygen flows from
blood cells to muscle cells [12-14]. In particular, the Krogh cylinder model [13] gives a quanti-
tative, predictive description of oxygen tension within an idealized system of a single capillary.
It defines two concentric cylinders, one of muscle tissue (having radius R) surrounding another
of vessel (having radius r); it describes the oxygen tension at distance x into the muscle tissue
(T,) as a function of: the oxygen tension in the capillary (pO,), the diffusion constant for
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oxygen in muscle [12], the rate of oxygen consumption, and the the radii R and r. When x = R,
the model gives the maximum tension difference (T, — Tr) necessary to supply the muscle with
oxygen at any point along the capillary. If T; — Tj is greater than the oxygen tension of venous
blood, then the same portion of muscle (near the venous end of the capillaries) will be hypoxic;
if Ty — Tgis less than the oxygen tension of venous blood, then oxygen tension is positive
everywhere within the muscle tissue.

Krogh approached the complex problem of microvascular oxygen transport in tissues by
parsing it into three aspects: “(1) The physical problem of the rate at which oxygen diffuses
into and through the tissues; (2) the anatomical problem of the number and distribution of
capillaries with respect to the cells; and (3) the physiological problem of regulating the supply
of blood and by that the availability of oxygen under the conditions of rest and in exercise.”
[15]. Since Krogh’s groundbreaking work, many researchers have developed theoretical models
to address the biochemical, structural, geometric, and hemodynamic complexity involved in
the problem. In the past two decades, multi-vessel models have been developed to consider
microvascular arrays and networks. These models have shown the physiological significance of
heterogeneities in vessel spacing, oxygen supply, flow path of red blood cells, and interactions
between capillaries and arterioles [16].

Some of these models consider tumor tissue in various respects. Kang, et al [17] models oxy-
gen transport during tumor hyperthermia. Kavanagh, et al [18] models tumor oxygenation
under varying hemoglobin-oxygen affinities. Kirkpatrick, et al [19] explores the influence of
kinetic and physical factors on substrate metabolism in a Krogh tumor model. Secomb, et al
[20] presents theoretical simulations of oxygen delivery to tumor tissues by networks of micro-
vessels, based on in vivo observations of vascular geometry and blood flow in the microcircula-
tion in mammary adenocarcinoma tumors. This is a rich area of active research.

In our study, we are not concerned with modeling any particular aspect of microvascular
oxygen transport in tissues, let alone the full dimensionality of this complex phenomenon.
While we acknowledge the Krogh and multi-vessel models could provide their own set of
quantitative features for characterizing chronic tumor hypoxia near a vessel, we have taken a
simpler approach, to empirically measure the anti-pimonidazole gradients by image analysis.
Such measured gradients are but one of a potentially large set of image features to be combined
logically and functionally in a later phase of processing, discussed below.

Helmlinger, et al [21] experimentally measured interstitial pO, in vivo in a number of xeno-
graphed tumors. Profiles of pO,, where the interstitial regime is delineated by the centroids of
two adjacent blood vessels, show expected gradients whose slope is negative moving away from
the first vessel, then eventually become positive moving toward the second vessel. The slope
property in these experiments qualitatively matches the slope property in our data involving sin-
gle vessels (negative slope moving away from the vessel). It is not clear to us, however, whether
their pO, profiles would provide a meaningful quantitative comparison with the analogous anti-
pimonidazole intensity gradients we measure in our image data. More analysis is required to
establish the compatibility of these two lines of evidence before in vivo studies like Helmlinger,
et al could provide an empirical validation of our histological results, or vice-versa. Moreover,
the authors make three findings of interest to our study: (1) they found no correlation between
PO, and blood flow rate; (2) they found no correlation between intravascular pO, and blood
flow rate; and (3) pO, did not correlate with the two measured parameters used to compute
blood flow rate—red blood cell velocity and vessel diameter (within respective specified ranges).
Taken together, these findings highlight the admissibility of histology images as a source of data
for measuring oxygen gradients. Although histology images represent single time points, and
capture a range of vessel diameters conveying a range of possible blood flow rates, the evidence
of oxygen gradients in these images is intact to the extent it can be measured in these images.
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There has been recent progress in automated tumor segmentation on histological images,
for example example by Wang, et al [22]. They developed a robust tumor segmentation tech-
nique and tested it on H&E and immunohistochemistry stain slides. Their method comprised
a tissue architecture extraction approach and a tumor texture learning model. The tissue archi-
tecture extraction approach used a stain separation method and an unsupervised multistage
entropy-based segmentation method, and the tumor texture learning uses a Markov random
field image segmentation system. Their method allowed fine pixel based segmentation for
small tissue samples. Their tissue domain was human lung tumors. For their purposes they
defined three classes of tissue morphology: tumor, stroma, and a third catch-all category for
lymphoid, inflammatory cells, and necrosis. Importantly, they did not try their method on
anti-pimonidazole stain images, which, especially in low concentrations of anti-pimonidazole,
render images that have strikingly low contrast. While their approach seems to us a promising
texture-learning-based alternative to the simple intensity-based method we employ [23], it is
unclear to us whether their method can perform effectively on anti-pimonidazole images and
thus characterize chronic tumor hypoxia.

A number of recent computational studies [24-27] have employed statistical model check-
ing algorithms to verify spatiotemporal logical propositions in biological systems. They used
Probabilistic Bounded Linear Temporal Logic (PBLTL) to characterize phenomena of interest
in: a fibroblast growth factor signaling model, circadian rhythm, yeast heterotrimeric G protein
cycle control, and the HMGBI signaling pathway in cancer. In one study, Grosu, et al [28]
developed a system to tackle the problem of learning and detecting emergent behavior in net-
works of cardiac myocytes. They constructed a Linear Spatial-Superposition Logic (LSSL) for-
mula that characterized spatial patterns such as spirals, whose multiscale spatial
characterizations are learned through a classification process. Their system successfully
detected the emergence of spiral patterns and hence the approaching state of fibrillation. In the
spirit of these studies, we aim to develop a spatiotemporal logical proposition—composed of
explicit image feature predicates—that captures at least some characteristics of chronic tumor
hypoxia.

In addition, we construct a linear regression function that learns what hypoxia is in terms of
estimated linear coefficients on the image feature terms. We adapt this method from our earlier
work [29] in a different image processing domain where it showed promising results.

Materials and Methods
Experimental setup

Our study is based on experiments that demonstrate hypoxia arising in human colon cancer.
In this experiment, 2 x 10° human colon cancer cells were injected into both flanks of nude
mice. When the tumor volume reached ~ 1500 mm” ( ~ 4 weeks post-injection), pimonidazole
was administered via intraperitoneal injection. Ninety minutes after pimonidazole administra-
tion mice were euthanized, the tumors were excised and immediately fixed in formalin. Slides
were then prepared from sections 10 ym apart, alternating between H&E and anti-pimonida-
zole stains. Mice were euthanized by carbon dioxide-induced narcosis. All animal work was
approved by New York University Langone Medical Center Institutional Animal Care and Use
Committee.

H&E staining

Hematoxylin and eosin stain (or “H&E stain”) is a common staining method in histology. It col-
ors cell nuclei blue, then counterstaining colors non-nuclear, eosinophilic structures graded
shades of orange, pink, and red. In our study, we use H&E stains of the tumor tissue for the
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primary purpose of locating blood vessels and for discriminating collagen. In Fig 1 (top), we see
blood vessels appear within the boundary of the tissue as open lumens (white) populated with
several to many red blood cells (small, bright pink spheroids). Collagen deposits appear as con-
tinuous structures (light pink) that infuse the tumor lesions and usually do not extend into the
necrotic tissue (lightest pink, with interstitial spacing and much smaller, unenclosed nuclei).

Anti-pimonidazole staining

Anti-pimonidazole staining is an immunohistochemical stain protocol used to detect and
locate live cells undergoing hypoxia. In plasma, pimonidazole has a half-life of 25 minutes. It
distributes to all tissues following injection, but it forms stable covalent adducts with thiol
groups in proteins, peptides, and amino acids, only in those cells that have an oxygen concen-
tration less than 14 micromolar (equivalent to a partial pressure pO, = 10 mm Hg at 37 C). In
the immunohistochemistry, anti-pimonidazole binds to these adducts allowing their detection.
In addition to hypoxic regions in tumors, normal tissues of certain organs such as liver, kidney,
and skin possess cells at or below pO, of 10 mm Hg; these normal tissues, and only these, will
bind pimonidazole. In Fig 1 (bottom) we see an anti-pimonidazole stain of one of our study’s
canonical tumor sections. Hypoxic cells stain brown by degree of hypoxia. Notice the blood
vessels are much more difficult to locate, though it is still possible. In most cases our procedure
to locate vessels is to first manually register the H&E and anti-pimonidazole images (see note
below), where the sections of the tumor are taken 10 ym apart; second, locate the vessels on the
H&E stain; then finally use this position on the anti-pimonidazole to approximate the vessel
position, or to simply guide a more detailed examination of the anti-pimonidazole image until
the vessel can be positively identified. Collagen complicates our study structurally and colori-
metrically, which can be seen in the figure: collagen is difficult to distinguish from the necrotic
tissue that surrounds the lesions.

Aligning Z-stack images

To align two images, we match points in one image to corresponding points in the other to
determine the displacement. In our H&E and anti-pimonidazole histology images we use
blood vessel locations (the ones used above as centers of circular gradients) as our respective
point sets, since these structures are easy to identify and match in both images. In S7 Fig we see
the canonical anti-pimonidazole image with a vector field overlay. The three blue vectors
denote the displacements of the three gradient centers. Each blue vector is labeled with P; at the
head (center position i in the anti-pimonidazole image) and H; at the tail (the corresponding
center position i in the H&E image). The vector lengths (in pixels) are labeled, as are the vector
angles (in radians), measured relative to their respective dotted blue horizontal lines.

Notice the vector lengths and angles vary. If this were a straightforward image registration
between identical, but translated, images, then we would expect the vectors to have identical
lengths and angles. But several factors complicate the simple displacement alignment process.
First, each image is a slice of an asymmetrical three-dimensional object undergoing morpho-
logical transformation. Second, the structures we chose are blood vessels, which presumably
grow in directionally independent ways. Third, the microtome used to slice the tumor sample
exerts nonuniform directional force upon the tissue. These and other, lesser, factors contribute
to the complex transformation between the two images that involves translation, rotation, and
scaling—yet even these taken together cannot account for the tissue’s morphological change
between slices. If we assume rotation as a function of x and magnitude as a function of y, then
we can fit two respective second-order polynomials to these three positional data with low
error, and thereby create the vector field shown in red.
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Fig 1. Histology stains. H&E (top) and anti-pimonidazole (bottom) stains of one of our study’s canonical
tumor sections.

doi:10.1371/journal.pone.0153623.g001

Image analysis

Our approach consists in extracting qualitative and quantitative features from the histology
images, namely the anti-pimonidazole stains. We classify these as: (1) features that derive from
segmenting the image into the three tissue types depicted: viable tumor cells, hypoxic tumor
cells, and necrotic tumor cells; (2) features related to the intra-lesion hypoxia gradient, as mea-
sured from radial distance away from the nearest vessel; (3) features that derive from multiscale
analysis; and (4) features that relate to qualitative generalities about bounded and nested
structure.

Once we have a set of image features, we proceed in two separate but related directions.
First, we attempt to construct a logical proposition to describe hypoxia in space and time using
an extension of Bounded Linear Temporal Logic (BLTL), whose primitives are image feature
predicates. This is a human-driven process, following from human learning and generalization.
Second, we attempt to construct a linear regression function that learns what hypoxia is in
terms of estimated linear coefficients on the image feature terms. This is a machine-driven
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process, kept on the rails by a combination of false-positive and false-negative control, and fea-
ture dimensionality reduction where possible.

Stratifying image data

For our initial examination of anti-pimonidazole images, the only selection criterion we
applied was to keep to the interior of the tumor, away from its extremities. Since these are
xenographed tumors, there are potentially many confounding factors at work near the interface
between human tumor and mouse stroma. This was a baseline criterion, applied to all of the
images we investigated, regardless of any further stratification. This gave us a set of 20 high-
concentration anti-pimonidazole images, taken at 20x magnification, of various regions of the
tumor interior. But as we became interested in the role vessels play in oxygenation of the tissue,
we decided to further stratify the data, and select just those images whose 10x fields of view are
>90% filled with non-necrotic cancer cells, and contain at least one blood vessel. This stratifi-
cation gave us 8 such high-concentration anti-pimonidazole images, each taken at 10x and 20x
magnification, having corresponding registered H&E images from a section 10 ym away.

Image preprocessing

We used Fig 1 as our canonical image for running examples. We did this for presentational
convenience; our intuitions were developed examining many images, and our methods are
applied to all specified images. The first step in our image preprocessing algorithm was to con-
vert the RGB histology image into an 8-bit grayscale image. See S1 Fig (top).

Then we applied Gaussian smoothing (using a 5 x 5 mask and standard deviation of 5.0)
iteratively until the high frequency structural information was averaged away (stopping at 100
iterations). See S1 Fig (bottom). We used no formal criteria for establishing these parameters,
assuming that a consistent protocol for smoothing all images prior to downstream processing
was more important than the degree of smoothness. We will address this issue in future work.

Segmenting by histogram multithresholding

To get a qualitative feel for how we might identify tissue type by intensity level, we performed a
preliminary investigation using two types of plot on our canonical image. When we viewed
image intensity as a mesh plot (S2 Fig (top)), we observed three distinct planes of intensity in
the image: necrotic tissue above, hypoxia tissue in the deepest recesses along the outer contour
of the lesion, and viable (non-hypoxic) tissue rising up from that, but not to the height of the
necrotic tissue. We also observed the backbone of collagen that runs along the middle of the
lesion, and we were unable to distinguish collagen intensity levels from those of the necrotic tis-
sue. We decided more information was given in the contour plot (S2 Fig (bottom)), where the
proximity of equipotential curves conveys the steepness of the gradients in intensity.

To get a quantitative feel for how we might identify tissue type by intensity level, we exam-
ined image intensity histograms (S3 Fig). The histogram of the whole image showed a clear
bimodal distribution, but selected sub-images showed a trimodal distribution. Using this distri-
bution as a guideline, we segmented our canonical image into three non-overlapping intensity
intervals: [0, 156] for hypoxic, [157, 175] for viable, and [176-255] for necrotic tissue, depicted
as red-colored pixels in the top, middle, and bottom of S4 Fig, respectively. Naturally, because
sharp thresholds truncate neighboring distributions, false-positive and false-negative cases are
bound to emerge from this coarse approach. In the viable interval we saw false-positive outer
contours around the hypoxic tissue, and the false-negative inner backbone areas where there
are collagen deposits; and in the necrotic interval we saw false positive areas where collagen
forms an inner backbone that partitions the viable tissue.
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Since our canonical image is taken from a set of high-concentration anti-pimonidazole
images, where the viable-hypoxic distinction is visually and numerically easier to make, we
expected this intensity interval partition approach to perform worse on the low concentration
anti-pimonidazole images, which we found (data not shown).

Given the cross-image variation we observed in the average intensity level for each tissue
type, we became convinced that the manually-derived, fixed values we used for the intensity
level partitions above could not be applied to all of our images. Thus we sought to use an adap-
tive approach, deciding on Otsu’s method [23] for automatic multiple thresholding, imple-
mented in the Matlab Image Processing Toolkit as multithresh.

Despite the obvious Type I and Type II errors discussed above, we believed intensity-level-
based segmentation could still be used to compare gross measures of viable-like and hypoxic-
like cell areas within a whole image, and then provide characteristic ratios that could become
image features.

Measuring image intensity gradients

One of the most salient and consistent features of the anti-pimonidazole images under investi-
gation is the presence of a gradient in the brown stain for hypoxia. In any given lesion, stain
density is maximal at the outermost contour of the lesion, abutting necrotic tissue that sur-
rounds it, and then diminishes steadily as a function of distance away from the extremity,
toward the center (or central 1D spine) of the lesion. Equivalently, stain density decreases
steadily as a function of radial distance away from the center (or orthogonally from the central
1D spine). The central area of a lesion is usually marked by a vessel.

The Intensity-Sample-Ray-Bundles algorithm. For our gradient measurement analysis,
we designed an algorithm to perform radial intensity level sampling, along rays that extend
from a given lesion center. One specifies three parameters: a center, (x, y.), usually in the cen-
troid of a blood vessel; #, the number of equal-angle-spaced rays that will sample the circle’s
area; and m, the number of equal-angle-defined “bundles” (sectors) into which the rays will be
considered for statistical analysis. For example, if # = 80, then a sample ray will be extended
every 7 radians, and if m = 1, then the rays that fall within 27 radians (all of the rays) will be
considered for that bundle’s statistical analysis.

The image is first smoothed, as before. For a given ray, intensity level is sampled radially,
from the inside out, until it encounters the edge of the image. One may specify (as optional
parameters) the distance between samples along the ray, d in pixels (1 by default), and the
square neighborhood radius, r,, in pixels, over which to average for that sample (0 by default
since the image is already smoothed).

Once the samples have been taken along all of the rays, the rays are “stacked” and “sliced” in
the following way. Each ray is an array or integers, whose index value (in the case of default
value of d;) corresponds 1:1 to pixel distance away form the center. So if we “stack” all of the
rays, aligning their array representations by their start index, we will have a measurement

matrix, M, that has m rows and ¢ columns, where ¢ = e and Lo = \/xdim? + y.dim?, the

d,

length of the hypotenuse of the triangle whose right angle sides are the x and y dimensions of
the image being sampled. If d; = 1 (by default), then ¢ = I,,,,,. To see why c takes this value, con-
sider the following extreme case we must be prepared to handle. If we place a center in one cor-
ner of the image, then a ray may extend to the opposite corner, requiring I, array locations
for its measurements.

Given M, we now compute mean, median, and standard deviation along column “slices” of

M. This results in méan, median, and std vectors, whose array representation indices corre-
spond to radial pixel distance away from the center. Since rays have different lengths—they
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each encounter the edge of the image in a different place, at a different distance from the center
from the other rays—they each populate a row of M to a different extent, up to a certain col-
umn index; the remaining columns are populated with oo so that the part of our algorithm

computing mean, median, and std knows when to drop this ray from the computation.
Now we compute the radius of the measurement area, r,,, in the following way. One may
specify (as an optional parameter) a threshold length, /; (defaults to 1000 pixels), over which to

locate the global minimum (darkest point) in median. That is, 7, = min Sig,t{mejian(i)}.
Our algorithm now creates three plots of the data, where the x-axis denotes distance from
the center, and the y-axis denotes intensity level. The first shows every ray measurement (vari-

ous colors), upon which mean (blue) and median (red) are overlaid; its title gives r,,,. The sec-

ond shows mean (blue) + std (gray), overlaid with segmented least squares fits to mean (black);
its title gives the length (I), slope (s), and least squares error (e) for each fitted segment. The

third shows median (red) + std (gray), overlaid with segmented least squares fits to median
(black); its title gives the length (I), slope (s), and least squares error (e) for each fitted segment.
The segmented least square fits are given by a dynamic programming algorithm [30], using a
cost parameter C = 200. We should note now that this entire process is bounded by, and

repeated for, each bundle. So for example, if m = 4, then mean, median, std, and r,, are com-
puted, and plots are created, for those rays that fall within each successive 7 of the circle.

Fig 2 shows the circles (red) defined by the r,, found for each of the three centers specified
in our canonical image (n = 80, m = 1), corresponding to vessel locations in the registered H&E
image. The intensity analysis for the three circles’ areas is given in Fig 3. S6 Fig shows the sec-
tors (red) defined by the r,, found for each bundle of each of the three centers specified in our
canonical image (n = 80, m = 8), corresponding to vessel locations in the registered H&E
image. We do not show the corresponding 24 intensity analysis figures.

Stratifying image data with respect to gradients. Our first examination of high-concen-
tration anti-pimonidazole images using this method was inconclusive. While it provided

Fig 2. Loci of single-bundle hypoxia gradients. Circles (red) defined by the r,,, found by the Intensity-
Sample-Ray-Bundles algorithm for each of the three centers we specified, corresponding to vessel locations
in the registered H&E image. Here we show m = 1 sector (21 radians per sector) for each center. Sectors are
labeled with red numbers, counterclockwise, just outside of the red sector contour.

doi:10.1371/journal.pone.0153623.g002
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Fig 3. Hypoxia gradient analysis. Intensity level analysis produced by the Intensity-Sample-Ray-Bundles algorithm for centers 1 (left 3 panels), 2 (middle 3
panels), and 3 (right 3 panels). Intensity-Sample-Ray-Bundles creates three plots of the data, where the horizontal axis denotes distance from the center

(pixels), and the vertical axis denotes intensity level. The first panel shows every ray measurement (light gray), upon which méan (blue) and median (red) are
overlaid; its title gives r,,, (pixels). The second panel shows méan (blue) + std (gray), overlaid with segmented least squares fits to méan (black); its title gives
the length (/, pixels), slope (s), and least squares error (e, pixels) for each fitted segment. The third panel shows median (red) + std (gray), overlaid with

segmented least squares fits to median (black); its title gives the length (/, pixels), slope (s), and least squares error (e, pixels) for each fitted segment. The
segmented least square fits are given by a dynamic programming algorithm using a cost parameter C = 200.

doi:10.1371/journal.pone.0153623.g003

evidence for the presence of a gradient following the description above, the slopes of the rele-
vant segments in the linear fit to the mean and median intensity measurements contained too
much varijation for a meaningful measurement of gradient steepness. It is common practice in
many biology experiments to stain tissues using at least two concentration levels. The higher
(or highest) concentration functions as a binary test for effectiveness of the stain. It answers: Is
the phenomenon captured? Did it stain correctly? Provided that it did, follow up staining is
conducted at lower concentrations. In the case of our data set, two concentrations, high and
low, were used. Since the high-concentration images might contain excessive contrast, saturat-
ing the regions of hypoxia—beneficial for intensity-level-based image segmentation—this may
swamp the more subtle gradient signal. We realized that we should attempt the same analysis
on a corpus of low-concentration anti-pimonidazole images. For the purposes of measuring
gradients, we sought to stratify the data differently than before, and select low-concentration
anti-pimonidazole images, taken at 10x magnification, that contain one or more complete
lesions, each containing one or more blood vessels. This gave us 23 such anti-pimonidazole
images, each taken at 10x magnification, having corresponding registered H&E images from a
section 10 ym away.

Measuring Quad-Tree statistics

To examine the property of intensity variance at different scales in the image, we employed the
Quad-Tree algorithm, adapting it to work with any aspect ratio, not just square images. This
works in the following way. For the given rectangle R, consider the set of pixels, P, within it,

and the corresponding set of intensity values, Ip. If the CV(I,) = Zgi ; > (.02 then decompose

R into four equal-size rectangles, Ry, R,, R3, Ry, and perform the quad-tree algorithm on Ry, R,,
R;, Ry. This method quickly locates those regions of the image that contain a sufficiently high
noise-to-signal ratio. S5 Fig shows the quad-tree decomposition of our canonical image.

We implemented a version of Quad-Tree, that we call Ply-Stats-Quad-Tree, that reports sta-
tistics related to the search tree for the image that it processes. These include the count, sum,
mean, median, standard deviation, and coefficient of variation (CV) for the number of leaves
at each ply, and a histogram of the counts of leaves at each ply. We use CV in intensity value of
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the current frame’s pixels as our splitting property, where CV exceeding a given threshold, T,
generates a split. The algorithm reports search tree statistics for the Quad-Tree dissection at a
given value of 7.

Deriving canonical EPC signatures

The Euler-Poincaré characteristic (EPC), one of the Minkowski functionals [31-33], is a mea-
sure of structural connectedness (or alternatively, porousness), and it has been used recently in
two applications. The first concerns measuring bone density. Rath, et al [34] used the EPC to
visualize and assess local trabecular bone structure; and Roque, et al [35] used the EPC to iden-
tify low bone density from vertebral tomographic images. The second application is in classify-
ing tumors. Hutterer, et al [36] used the EPC to assign a characteristic signature curve to each
AFM image of different tumor types, then used that curve as the basis of a classification
method. We were intrigued by the use of characteristic EPC curves as an image feature by
which to logically characterize, or functionally classify, chronic tumor hypoxia, and so apply
this algorithm in our analysis.

We implemented an algorithm that follows directly from the approach taken by Hutterer,
et al [36] to construct an Euler-Poincaré signature curve for an image. First, it converts the
RGB image 7 to an 8-bit gray level image 7 , but does not smooth. Then for each gray level
i=1,...,255, it produces a binary intensity-thresholded image Z, and records EPC(Z,) for
each i. This method gives a signature EPC curve for each Z that could serve as an image
feature.

Spatiotemporal logical characterization of hypoxia in tumor histology

Next we consider spatial partitioning, where continuous boundaries that separate tissue types
are introduced into the image. This requires some degree of familiarity to manually parse these
histology images, and so lacks the scalability in the number of images we require for statistical
analysis. In Fig 4 we have another canonical anti-pimonidazole image, its manual partitioning,
and its labeled partitions. Segmentation by partitioning reveals containment properties of the
different regions and leads us to infer which tissue structures are nestable.

We first make some observations about the histological data that we can formulate as gram-
matical transformations. Then, in the results and discussion section, we use these transforma-
tions to globally constrain spatiotemporal logic predicates comprising the specific image
processing features discussed above.

Using a grammar to describe how tissue regions transform. In Fig 4 (bottom), we seg-
ment and unambiguously identify viable (V), hypoxic (H), and necrotic (N) tissue regions in
our anti-pimonidazole images. After identifying these regions on our full set of images, we
observe the following qualitative patterns. Temporally: N always expands. Spatially: at any
given time, in any given image, selecting a point and proceeding in a single direction away
from the point will traverse either the V — H (ascending gradient) — N — H (descending gra-
dient) — V cycle, or the V — H (ascending gradient — descending gradient) — V cycle; and
the variation in the width of H, measured in the V. — N direction, is much less than the varia-
tion in the width of the N or V regions measured in any direction—where N and V are blobs,
H tends to be a well-defined band about V.

From these observations, we formulate the following two axioms for the tissue regions.

Al (spatial) V and N are invalid neighbors; H must separate them.

A2 (temporal) There is a temporal monotonicity in how a region develops: V becomes H, and
H becomes N, where N is the absorbing state.
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Fig 4. Tissue types by manual spatial partitioning. Another (unsmoothed) canonical anti-pimonidazole
image (top), its manual partitioning (middle), and its labeled partitions (bottom). Key: V = viable, N = necrotic;
unlabeled, brown regions are hypoxic.

doi:10.1371/journal.pone.0153623.g004
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From axioms A1 and A2, we can derive both context-free and context-sensitive grammar
production rules for the spatiotemporal transformation of hypoxia. The context-free produc-
tion rules correspond to origination of a new tissue type, to nesting, to diversification. The con-
text-sensitive production rules correspond to elimination of an existing tissue type, to
collapsing, to homogenization. Axioms Al and A2 lead us to derive valid production rules and
restrict us from deriving invalid production rules.

Here are the four valid production rules:

1. V— VHYV (H origination in V) by A2
2. H— HN H (N origination in H) by A2
3. HV H — H (V elimination in H) by A2
4. NHN — N (H elimination in N) by A2
Here are the eight invalid production rules:
1. H— HV H (V origination in H) by A2
2. N — N H N (H origination in N) by A2
3. N — N V N (V origination in N) by A2
4. V— VNV (N origination in V) by AI
5. HNH — H (N elimination in H) by A2
6. VHV — V (H elimination in V) by A2
7. NV N — N (V elimination in N) by A1
8. VNV — V (N elimination in V) by Al

Using a logic to describe hypoxia. We have defined above some quantitative and qualita-
tive image features we now wish to incorporate into a logical proposition that describes what
hypoxia is like in space and time. We will apply thresholds to the quantitative features to render
them as predicates, and thus build up our final proposition out of these predicates.

Extending Probabilistic Bounded Linear Temporal Logic. The logic we develop here is
an adaptation of Probabilistic Bounded Linear Temporal Logic (PBLTL) [24] that accommo-
dates the three dimensions of space as well as time.

For a stochastic model simulation S, let the set of state variables SV be a finite set of real-
valued variables. A Boolean predicate over SV is a constraint of the form u ~ v, where u € SV,
~ €{>,<,=},and v € R. ABLTL property is built on a finite set of Boolean predicates over
SV using Boolean connectives and spatiotemporal operators. The syntax of the logic is given
by the following grammar: ¢ ::= u ~ v|(¢, V ¢,)|(d, A &,)| =, |(p U 172%5:1 ¢,), where
ueSV,~e{><,=}veQandx, x,x,t € Q.. We can define additional spatiotempo-
ral operators such as F*1=%:h) = TrueUt 2%t and G ~sth) = aF2%4 ) in terms
of the bounded until U*1*2%, A PBLTL formula is a one of the form P~ ¢(¢), where ¢ is a
BLTL formula and 6 € (0, 1). We say that S satisfies PBLTL property P~4(¢), denoted by
S E P~4(¢), if and only if the probability that an execution of S satisfies BLTL property ¢ is
greater than or equal to 0.

Let x,; denote the spatial dimension x;, x,, or x; we wish to specify, and let x;;,,, and t;,,,
denote the limits in spatial dimension x, and time dimension ¢, respectively, we wish to specify.
The spatiotemporal operators can be interpreted as follows:
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o ¢, U*¥im g, means within xj;,,, spatial units in x4 ¢; holds until ¢, holds.
o ¢, U"'n ¢, means within t;;,, time units in ¢, ¢, holds until ¢, holds.

o Frim g means within x;;,, spatial units in x4, ¢ holds.

o F"im ¢y means within f;;,,, time units in ¢, ¢ holds.

o G**Yimp means for xy;,,, spatial units in x4, ¢ holds.

o G"im ¢ means for t;,, time units in ¢, ¢ holds.

Continuing to follow Jha, et al [24], we define the semantics of our extended BLTL with
respect to executions of S. Let 0 = ¢ denote that an execution trace o of S satisfies ¢. Let
0 = (S0, to), (51, 11), - . . be an execution of the simulator along states sy, s, . . . with durations
t),t,, ... € R. We denote the execution trace starting with state i by o’. The value of the state
variable x in o at state i is denoted by V(o, i, x). The semantics of our extended BLTL for a
trace o* starting at the k™ state (k € N) is defined as follows:

o FEX~ Viff V(o k x)~v

« FEPV§,iff F ¢ ord E @,
« FE G A iff " = ¢y and F E ¢,
« 0" & =¢ iff o E ¢ does not hold

o ot | ¢ U e¥ing, iff i € N such that (1) Too; < (Xa, k1 = X1, kei-1) < Xiins (2) e ¢,, and
(3) for each 0 < j<i, & & ¢,.

o o5 | ¢ UMimgh, iff 3i € N such that (1) Zo< | < j tess < b (2) e ¢, and (3) for each
0<j<i,dE¢,.

Each of the last two semantic statements has three necessary conditions, which we clarify as
follows. (1) In the case of spatial units, the sum of the spatial intervals in x, along the state
sequence k, k+1, . . ., k+i should be less than or equal to the limit value of x;;,,, specified—this
implements “within x;;,, spatial units in x,.” In the case of time units, the sum of durations
along the state sequence k, k+1, . . ., k+i should be less than or equal to the limit value of t;;,,
specified—this implements “within #;;,, time units.” (2) This implements “at some state i
beyond state k, ¢, holds.” (3) This implements “For each state from k up to but not including
state i, ¢; holds.”

Linear regression functional characterization of hypoxia in tumor
histology

We now propose a second way to characterize hypoxia in tumor histology, using a simple
machine learning approach to adaptively weigh the contributions of each and every image pro-
cessing feature to score candidate histology images (or simulation results) for their similarity to
ones containing stable local regions of hypoxia.

Ergodic assumption. We assume the chronic tumor hypoxia process that generates our
image data to be ergodic: since we see so many instances of lesions, we are likely seeing every
temporal state of a typical lesion, and so, in the limit of static images, we observe the temporal
and spatial phenomenon of hypoxia.

Linear regression learning. We would now like to incorporate the quantitative image
features defined above into a linear functional form, whose weights are learned by regression
[37], for a lesion hypoxia similarity metric. Our approach here is adapted from earlier work
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in a different domain [29]. This entails solving an overdetermined system of equations, given
bya, fi,j+. . .+a,f,, j=1, wherethea;, i=1, ..., nare the n feature coefficients to be learned
and the f; pi=1,..,nj=1,...,mare the corresponding n feature values over m > n obser-
vations forming the feature matrix, F. We train a linear regression model on m calibrating

lesions, having known similarity score 1, using values from the n features, giving F@ = 1. The

model has the analytic solution @ = (F'F) ' F'1. This gives a trained similarity estimator,
Sy=af +..+af,.

This formulation of S; assumes all lesions, i.e. their associated feature values, have equal
weight, owing to their equivalent validity as observations. However, such an assumption may
be challenged on the grounds that upon taking into consideration the difference between the
empirically measured null distribution and the actual shape of the distribution in feature mea-
surements, certain observations appear to be false positives, and others false negatives—a
notion formally addressed by robust regression, namely, the Beaton-Tukey formulation.

Weighting training data to address Type I and Type II errors. Normally, false positive
examples appear as ones that deviate significantly from the null-distribution, and if not discarded,
can affect the statistical estimators adversely. However, instead of discarding such outliers using
sharp-thresholds, and using the filtered examples in the estimator, one may assign to each data
point a positive weight that signifies how likely it is that a particular example is an outlier. Such a
weighting scheme could be based on the ideas underlying robust M-estimators—a class of central
tendency measures that make them resistant to local misbehavior caused by outliers (e.g., false
positives). We adapted the Beaton-Tukey biweight [38] —an iteratively reweighted measure—for
this purpose of central tendency. We note that other schemes, such as Huber’s M-estimator,
could have been used with similar performance. Both the biweight and the Huber weight func-
tions are available in standard statistical packages. Here we use Matlab’s robustfit command with
default parameters (weight function “bisquare,” using a tuning constant of 4.685).

In the context of our system, the x;, i = 1, . . ., m are the feature values of the m calibrating
lesions in the training set. Each lesion is assigned a weight, w;. If its weight is zero, then the cor-
responding lesion is discarded from the training set. Of the m training molecules, 7’ remain.
This gives a weighted-trained similarity estimator, S,, = a,f, + ... + a,f,.

In our modeling of estimation error above, one or more features in training may introduce
too much variance (systematic error) or dependence (model error). We would like our model
to have an extensible and adaptive structure, where any number of features may be used, and
proceed with confidence, knowing that noisy or dependent features will have a contribution to
the estimate that shrinks to zero. We now apply one of the following patterns of shrinkage to
the feature coefficients, d.

Shrinking feature coefficients to reduce feature space dimensionality. In 1961, James
and Stein published their seminal paper [39] describing a method to improve estimating a
multivariate normal mean, i = [y, ..., i, under expected sum of squares error loss, pro-
vided the degree of freedom k > 3, and the y; are close to the point to which the improved
estimator shrinks.

When extreme y; are likely, then spherical shrinkage may give little improvement. This may
occur, for instance, when the y; arise from a prior distribution with a long tail. A property of
spherical shrinkage is that its performance is guaranteed only in a small subspace of parameter
space, requiring that one select an estimator designed with some notion of where /i is likely to
be, such that the estimator shrinks toward it. An extreme y; will likely be outside of any small
selected subspace, implying a large denominator and so little, if any, shrinkage in d, thereby
giving no improvement. To address this problem, Stein proposed a coordinate-based (or trun-
cated) shrinkage method.
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Applying the metric. Once the weighted-trained model feature coefficients, a;, have
undergone shrinkage, a;, we have our final hypoxia similarity estimator, S,, = a\f, + ... + a.f,
that can measure out-of-sample lesions for their similarity to hypoxic lesions. S, gives a [0, 1]
numerical score instead of a {0, 1} outcome. A simulator that implements this scoring function
can then feed a branch-and-bound (optimization) process that can explore the simulator’s con-
figuration parameter space.

Code availability

All code described in this paper is written in Matlab and available in the GitHub repository:
https://github.com/aesundstrom/tumor-hypoxia-image-processing

Histology image availability

All histology images of chronic tumor hypoxia used in this paper are available in the Harvard
Dataverse: http://dx.doi.org/10.7910/DVN/SI32FV

Results and Discussion

First, we discuss four experiments corresponding to the four image processing features we
develop here—segmenting by histogram multithresholding, measuring image intensity gradi-
ents, measuring quad-tree statistics, and deriving canonical EPC signatures. Next, we use these
image processing features to develop a spatiotemporal logical characterization of chronic
tumor hypoxia in histology images. Finally, we propose another way to characterize chronic
tumor hypoxia in histology images, using a simple machine leaning approach.

Segmenting by histogram multi-thresholding

Setup. We applied Otsu’s method to multithreshold a set of ny = 66 images across strati-
fication criteria, magnification, and high and low concentrations of anti-pimonidazole. To
distinguish between results for the high- and low-concentration images, we place, alongside
the results for the total set of images, those results for n;; = 36 high-concentration images and
n; = 30 low-concentration images, computed separately. See Table 1. The table organization
also reflects the distinction between unsmoothed and smoothed gray images. We illustrate
this distinction in Fig 5.

Results. In Table I we observed the following for unsmoothed and smoothed images.
Otsu’s method found intensity level partitions whose means are remarkably stable (CV = {0.09,
0.09}, {0.09, 0.09}) across such a variable total set of images. As expected, the stability of these
partitions increased as we stratified the images into high-concentration (CV = {0.07, 0.07},
{0.09, 0.08}) and low-concentration (CV = {0.06, 0.04}, {0.05, 0.05}) subsets. Of the pixel pro-
portions, the most stable mean value was always V:1, for the total set and both strata. The mean
H:V ratio was also stable across strata (CV = {0.24, 0.20, 0.22}) for unsmoothed images, but not
as much (CV = {0.45, 0.37, 0.33}) for smoothed images. In unsmoothed images, across strata
the H:V ratio had a similar mean value (¢ = {0.36, 0.32, 0.39}); in unsmoothed images, across
strata, the mean values varied significantly (o = {0.52, 0.39, 0.67}); between unsmoothed and
smoothed images the corresponding mean H:V ratio values seemed to have no relationship
({0.36, 0.52}, {0.32, 0.39}, {0.39, 0.67}), though the smoothed, high-concentration mean value
(0.39) did seem to fit with the cross-strata values in the unsmoothed images.

Discussion. The mean partition values, and the mean H:V ratio values for unsmoothed
images, were stable. They could serve as image features.
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Table 1. Otsu’s multithreshold segmentation of unsmoothed versus smoothed images over the total set of images (ny = 66), high anti-pimonida-
zole images (ny = 36), and low anti-pimonidazole images (n, = 30). We report pixel areas as proportions of the entire set of pixels in the image (/); hence
H:l, Vi, and N:I. We also report another proportion of interest, namely that of hypxic to viable cells in the image, H:V.

ny=66,ny=36,n. =30 HT or CVr MH [o/%} CVy I o cv,.
unsmoothed partition 1 136.23 12.25 0.09 143.47 10.74 0.07 127.53 7.31 0.06
unsmoothed partition 2 158.06 13.58 0.09 166.89 11.44 0.07 147.47 6.56 0.04
unsmoothed H:/ pixels 0.14 0.04 0.27 0.14 0.03 0.25 0.15 0.04 0.29
unsmoothed V:/ pixels 0.40 0.07 0.17 0.42 0.05 0.12 0.38 0.08 0.20
unsmoothed N:/ pixels 0.46 0.09 0.20 0.45 0.07 0.16 0.47 0.11 0.23
unsmoothed H:V pixels 0.36 0.08 0.24 0.32 0.07 0.20 0.39 0.09 0.22
smoothed partition 1 144.76 13.13 0.09 150.39 14.11 0.09 138.00 7.55 0.05
smoothed partition 2 158.03 13.91 0.09 166.19 13.03 0.08 148.23 6.80 0.05
smoothed H:/ pixels 0.21 0.09 0.41 0.16 0.06 0.38 0.27 0.07 0.27
smoothed V:/ pixels 0.41 0.07 0.16 0.41 0.08 0.19 0.41 0.05 0.13
smoothed N:/ pixels 0.38 0.11 0.29 0.43 0.11 0.26 0.33 0.08 0.25
smoothed H:V pixels 0.52 0.23 0.45 0.39 0.14 0.37 0.67 0.22 0.33

doi:10.1371/journal.pone.0153623.1001

Fig 5. Otsu segmentation and smoothing. How Otsu’s multithreshold segmentation differs between unsmoothed gray (upper left) and smoothed gray
(lower left) images. Corresponding images on the right show dark blue regions that denote hypoxic cells, light blue regions that denote viable cells, and
yellow regions that denote necrotic cells.

doi:10.1371/journal.pone.0153623.g005
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Measuring image intensity gradients

Setup. We used our Intensity-Sample-Ray-Bundles algorithm to measure gradient proper-
ties on high- and low-concentration anti-pimonidazole images that adhere to the stratification
criterion that they contain at least one complete lesion at 10x magnification, and the lesions
contain at least one blood vessel. For each image, we specified one or more landmarks, (x, y)
coordinates, that coincide with vessel locations on the corresponding H&E tumor sections
(separated orthotopically by 10 pm). These landmarks were passed to the algorithm to be used
as centers from which to extend intensity sample rays. We measured all gradients using 80
intensity sample rays per circle, centered at each landmark. We selected 9 high-concentration
anti-pimonidazole images (containing 25 landmarks) and 8 low-concentration anti-pimonida-
zole images (containing 29 landmarks).

For each landmark the algorithm explored, it outputted the mean and median intensity lev-
els as a function of the radial distance away from the landmark. Both curves were optimally fit
using segmented least squares, given by a dynamic programming algorithm [30], with a cost
parameter C = 200. These curves were each usually fit by one, two, or three segments, of differ-
ent lengths and slopes. These were superimposed on their respective mean and median curves
as part of the output. (See Fig 3, for example.) In each case, we examined the output and
selected either the mean or median curve fit, depending on which fit gave fewer segments; if
they gave the same number of segments, then we selected the mean curve fit.

Since the length and slope of these fits characterizes the measured gradient, we would like to
use these—actually the average of these, over as wide a sample as possible—as image features.
However, we cannot compare, say, a one-segment fitted curve to a three-segment fitted one,
since these give distinct characterizations of the gradient and we ought to respect that observed
distinction. Because of this, we report our results in six tables. The one-, two-, and three-seg-
ment fits for the high-concentration anti-pimonidazole images, and the one-, two-, and three-
segment fits for the low-concentration anti-pimonidazole images. See Tables 2, 3, 4, 5, 6 and 7.

We should note two considerations we made for selecting results to show here. First, we some-
times omitted spurious short or positive-slope segments that appeared first in the sequence of
segments (i.e., closest to the center of the circle), since these constitute noisy measurements, usu-
ally due to the landmark residing in the center of a high-intensity lumen or some low-intensity
blob of pixels; consequently, in some of the tables, the mean segment lengths do not sum to the
mean radius length, owing to the mean length of the omitted segments. Second, we selected only
gradients that corresponded to radii discovered by our algorithm whose length scales matched
those of the lesions in which they resided, i.e., the contour of the circle defined by the radius coin-
cides with the outermost contour of the hypoxic region in the lesion. (See Fig 2, for example.)

Results. For ease of discussion, let H denote the set of high-concentration anti-pimoni-
dazole images or the segmented gradient curves that derive from them, and L denote the set
of low-concentration anti-pimonidazole images or the segmented gradient curves that derive

Table 2. 1-segment radii in high anti-pimonidazole images. The values of ny and n; report that the statis-
tics are from a sample of 2 gradients found in 1 image.

ni=1,ng=2 1] o cv
radius 618.50 70.00 0.11
segment 1 length 459.00 11.31 0.02
segment 1 slope -0.02 0.00 0.00
segment 1 error 348.38 70.70 0.20

doi:10.1371/journal.pone.0153623.t002
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Table 3. 2-segment radii in high anti-pimonidazole images. The values of ng and n; report that the statis-
tics are from a sample of 7 gradients found in 4 images.

ni=4,ng=7 M o cv
radius 457.86 113.23 0.25
segment 1 length 84.86 35.41 0.42
segment 1 slope -0.13 0.08 0.63
segment 1 error 106.57 126.50 1.19
segment 2 length 351.71 7217 0.21
segment 2 slope -0.03 0.02 0.50
segment 2 error 322.89 169.55 0.53

doi:10.1371/journal.pone.0153623.t003

Table 4. 3-segment radii in high anti-pimonidazole images. The values of ny and n; report that the statis-
tics are from a sample of 16 gradients found in 8 images.

nij=8,ng=16 M o cv
radius 477.25 95.07 0.20
segment 1 length 80.75 38.44 0.48
segment 1 slope -0.22 0.12 0.56
segment 1 error 68.39 57.47 0.84
segment 2 length 219.00 85.48 0.39
segment 2 slope -0.04 0.08 1.85
segment 2 error 158.19 123.14 0.78
segment 3 length 164.38 73.49 0.45
segment 3 slope -0.09 0.06 0.63
segment 3 error 115.89 122.65 1.06

doi:10.1371/journal.pone.0153623.t004

Table 5. 1-segment radii in Jow anti-pimonidazole images. The values of ny and n; report that the statistics
are from a sample of 4 gradients found in 2 images.

ni=2,ng=4 u o cv
radius 348.00 49.29 0.14
segment 1 length 348.00 49.29 0.14
segment 1 slope -0.09 0.03 0.30
segment 1 error 288.37 199.55 0.69

doi:10.1371/journal.pone.0153623.t005

Table 6. 2-segment radii in low anti-pimonidazole images. The values of n; and n; report that the statistics
are from a sample of 20 gradients found in 8 images.

n;=8,ng=20 7] o cv
radius 454.55 138.59 0.30
segment 1 length 172.25 82.96 0.48
segment 1 slope -0.21 0.19 0.91
segment 1 error 94.34 82.17 0.87
segment 2 length 267.40 125.64 0.47
segment 2 slope -0.06 0.03 0.55
segment 2 error 112.97 111.27 0.98

doi:10.1371/journal.pone.0153623.t006
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Table 7. 3-segment radii in Jow anti-pimonidazole images. The values of ng and n; report that the statistics
are from a sample of 5 gradients found in 4 images.

nij=4,ny=5 7] o cv
radius 677.80 390.88 0.58
segment 1 length 153.60 74.42 0.48
segment 1 slope -0.17 0.21 1.23
segment 1 error 61.13 37.22 0.61
segment 2 length 187.40 64.40 0.34
segment 2 slope -0.08 0.07 0.94
segment 2 error 64.03 63.07 0.98
segment 3 length 318.20 417.14 1.31
segment 3 slope -0.04 0.01 0.35
segment 3 error 141.12 276.56 1.96

doi:10.1371/journal.pone.0153623.t007

from them. Tables 2, 3 and 4 show the results for H images that have 1-, 2-, and 3-segment
fits, respectively; and Tables 5, 6 and 7 show the results for L images that have 1-, 2-, and
3-segment fits respectively.

We immediately observed that the majority of gradients in H images had 3-segment fits,
whereas the majority of gradients in L images had 3-segment fits. This less complicated struc-
ture of L gradients agreed with our intuition that they are better for characterizing continuous
gradients that are not punctuated by the relatively flat middle segments we see with the H gra-
dients. This was further bolstered by a closer examination of the structure of the segmented
curves. In comparing the H vs L segmented gradient curves: H 1-segment curves were flatter
than those of L; H 2-segment curves were flatter in both segments than those of L; and H 3-seg-
ment curves were defined by a concave-then-convex shape, whereas those of L were decidedly
concave, i.e., they tended to have monotonically decreasing slopes as a function of radial dis-
tance away from the vessel.

Suppose we focus only on L gradient curves, believing they more closely reflect real underly-
ing hypoxia gradients. We observed that as radial distance grows, the gradient became nonlin-
ear, following from its concavity. We have not performed nonlinear fits to the gradient curves
but suspect a quadratic (and certainly an exponential) curve would easily fit with low error.

As a proportion of their sum, the first and second L segments tended to be 0.39 and 0.61 of
their total 2-segment length, respectively; and the first, second, and third L segments tended to
be 0.23, 0.28, and 0.48 of their total 3-segment length, respectively.

Discussion. These segment proportions, their slopes, and the parameterized nonlinear fit
to the gradient curve could serve as image features.

That said, we should note the statistical significance, and the degrees of error, we observed
in the L gradient measurements. First, with 1-, 2-, and 3-segment sample sizes of 4, 20, and 5,
respectively, we acknowledge that at least the 1- and 3-segment data were less than statistically
significant, and even the extreme variance—particularly with the slopes of the first and second
segments (CV = 1.23 and CV = 0.94, respectively), and the length of the third segment
(CV =1.31) in the 3-segment fit—these might have diminished with a larger sample. Looking
at the more significant sample of 2-segment gradient measurements, we also observed high var-
iance in the slopes, with CV = 0.91 and CV = 0.98 for segments 1 and 2, respectively. With this
in mind, we are unclear how ultimately useful these measure would be as generalized, canonical
features. Perhaps the parameterized nonlinear fit would be a more stable and therefore a more
suitable feature.
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Fig 6. Synthetic histology. Inferred hypoxia gradients (gray) superimposed onto the canonical raw H&E
(top) and anti-pimonidazole (bottom) images at half-opacity. Note that the positions of the gradient centers
have been corrected as per our earlier observation regarding adjacent image registration (see S7 Fig).

doi:10.1371/journal.pone.0153623.g006

Even with these limitations, one can create synthetic images by superimposing measured
gradients on the original raw images. We illustrate this as follows. Using the segmented least-
squares fits to the gradient functions measured in S1 Fig (bottom) and presented in Fig 3, we
superimpose the corresponding gradients upon the raw anti-pimonidazole and H&E images
(see Fig 6). Here, concentrically-plotted gray levels mirror the respective measured gradient
values. The latter half-opacity (o = 0.5) synthesized image nondestructively combines the
inferred information from the anti-pimonidazole image and the high-contrast structural infor-
mation from the H&E image into a single view. These synthetic images could serve as a diag-
nostic tool in a clinical setting.
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Measuring quad-tree statistics

Setup. We used our Ply-Stats-Quad-Tree algorithm to compute statistics for 7 € [0.01,
0.10] by increments of 0.01, therefore generating 10 sets of statistics for a given image. We
selected 7 € {0.1, 0.5, 0.9} to report here.

Results. We computed this for a set of n = 66 images across stratification criteria, magnifi-
cation, and high and low concentrations of anti-pimonidazole. Anticipating a likely distinction
between results for the high- and low-concentration images, we produce, along with the figure
reporting the results for the total set of images (S8 Fig, left 3 panels), those results for n = 36
high-concentration images (S8 Fig, middle three panels), and n = 30 low-concentration images
(S8 Fig, right three panels), computed separately. In each set of three panels, the first, second,
and third panels show mean histograms for 7 € {0.1, 0.5, 0.9}, respectively.

Discussion. There is an overwhelming degree of error in these measures, regardless of
stratification. We had hoped the mean histogram of ply counts (image frame sizes) might serve
as an image feature, but while decreasing 7 consistently produces a more stable mean profile,
even the minimum value of 7 = 0.01 we tested is too disperse, so frame size profiles are unus-
able as an image feature.

Deriving canonical EPC signatures

Setup. We produced EPC signature curves for each image in a set of n = 66 images across
stratification criteria, magnification, and high and low concentrations of anti-pimonidazole.
We distinguished between results for the high-concentration (ny = 36) and low-concentration
(n;, = 30) images, stratified the resulting curves, and for each stratum, we computed a mean
EPC curve separately. We plotted these canonical stratum curves with their respective standard
deviations in S9 Fig (top).

Then we approximated each canonical stratum curve with an optimized segmented least-
squares fit, and thereby compressed the data into a smaller number of real-valued coefficients—
slope and y-intercept for each segment—that could potentially serve as image features. The seg-
mented least square fits were given by a dynamic programming algorithm [30], using a cost
parameter C = 50000. We also reported the sum of least-squares errors over all of the segments
in the fit in S9 Fig (bottom). The segment fit coefficients and the error could potentially serve as
image features.

Results. In S9 Fig (top) we show the mean EPC curve over the total set of images (left,

n = 66), the high concentration anti-pimonidazole images (middle, # = 36), and the low con-
centration anti-pimonidazole images (right, n = 30).

We show the segmented least-squares fits to the mean EPC curves are given in S9 Fig (bot-
tom). The fit on the left is composed of 18 segments (specified by 36 coefficients), giving a com-
pression factor of 7.08 and a normalized least-squares error of 1082.84. The fit in the middle is
composed of 18 segments (specified by 36 coefficients), giving a compression factor of 7.08 and
a normalized least-squares error of 933.19. The fit on the right is composed of 21 segments
(specified by 42 coefficients), giving a compression factor of 6.07 and a normalized least-
squares error of 1063.19.

Discussion. Here too there is an overwhelming degree of error in these measures, regard-
less of stratification. While one can roughly discern a characteristic shape similarity in the
curves, this is not a rigorously established feature, so EPC curves are unusable.

Spatiotemporal logical characterization of hypoxia in tumor histology

Using our extended BLTL, we derive a preliminary spatiotemporal proposition of hypoxia in
terms of the hypoxia image features discussed here.
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Suppose we are in a 2D universe. From axiom Al above, we can immediately write our first
proposition term. If we hold x; fixed at any arbitrary value and test along x; from an arbitrary
min; to an arbitrary max; value, x;(min;)—x;(max,), then we expect to encounter tissue types
in the following pattern: {V, N}J—H — {V, N}—=H — . . ., that is, any contiguous V or N region
is separated by a contiguous H region (see trajectory (A) in Fig 7). This is equivalent to axiom
A1, which states that V and N are invalid neighbors, their regions cannot abut. Suppose we
have a primitive state variable function T: (x;, x,)—{H, V, N} that given a coordinate (xy, x,)
returns the tissue type at that coordinate, namely H, V, or N. In terms of our spatiotemporal
logic, we can implement a verification of axiom A1 with the following proposition term:

2[(T(xy, x,) = N)Usmea=m (T (xy, x,) = V)]
A (1)
(T (xy, x,) = V)T (T (x, x,) = N).

Because the valid spatiotemporal grammatical transformation rules apply symmetrically, we
can write the analogous propositional term for holding x; fixed at some arbitrary value and
testing along x, from an arbitrary min, to an arbitrary max, value, x,(min,)—x,(max,) (see
trajectory (B) in Fig 7):

[(T(xy,x,) = N)Umee (T (x), x,) = V)]
A (2)
“UT(x,x,) = V)U=mee (T (x,, x,) = N)J.

Fig 7. Verifying axiom A1. One way to verify that viable (V, tan) and necrotic (N, gray) regions are nowhere contiguous (i.e., they are everywhere separated
by a hypoxic region (H, brown) is to follow arbitrary trajectories in the 2D or 3D space, each of which represents a spatiotemporal logical proposition, any
number of whose results can be conjoined to obtain a system-wide propositional truth value. (A) The trajectory obtained by holding x, fixed at some arbitrary
value and allowing x4 to vary across an arbitrary extent, from some min, to some max,. (B) The trajectory obtained by holding x; fixed at some arbitrary value
and allowing x, to vary across an arbitrary extent, from some min, to some max.. (C) A curvilinear trajectory, parameterized here by some arbitrary t,
extending from some t,,,;, to some ¢,

doi:10.1371/journal.pone.0153623.9g007
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In fact, we can define any curvilinear path through our space, (x1(¢,in), X2(timin)) — (X1(fax)>
X(tmax)) in this case parametric in some ¢ (see trajectory (C) in Fig 7), and write an analogous
propositional term. Another systematic approach to verifying axiom A1 (or any testable pattern)
would be to use some combination of the above to implement a space-filling curve in 2D or 3D,
for example a Peano or Hilbert curve.

Next we turn to our image feature for a two-segment gradient. Suppose we have a primitive
state variable function V.: (x1, x5, p)—(Jx,, Ox,, Ip,) that given a coordinate (x1, x,) and a parti-
cle type p returns two items: the coordinate (6, d.,) adjacent to (xy, x,) that has the greatest
concentration of p, and 5p,,) the measure of that greatest concentration of p. So V, is a function
that performs gradient ascent. For completeness, suppose too that we have the analogous func-
tion V_ to perform gradient descent. Thus by starting at some vessel centroid
(x,(min'™), x,(min}”)) in viable region V, and extending along a contour iteratively specified
by V,, we will eventually encounter the boundary of the hypoxic region H, followed by the

boundary of the necrotic region N, eventually ending at (x, (max\”), x, (max}")), all the while
ascending the gradient of p (in this case, anti-pimonidazole) concentration (see trajectory (B)
in the left panel of Fig 8). This gives our next propositional term:

(T(xn xz) =V)
(B) (B) (3))
1

,max; ’ —min
2 2

U 1m2) =V (x1.%5.p).(max(”

—min

(T(x),x,) = H)

(B)

U610 =V (x1.53.p) (max] ) max®) —minl®)

—min,"’ ;max; ' —min,
1 2 2

(T(xlaxz) =N

~—

—~
(S8}

~—~

>

(Fo) Vsl IP485((x, x,, p) = —0.21 % 0.19)

U(x1 o) =V (x1,%9,p),(172483+267+126

~—

(F(xl ,xz)eVJr(xlsz,p).267+12()‘(vJr (X] , x27p) — _006 + 003))’

which in English means “Along the total arc length of trajectory (B), we are in viable tissue
until we are in hypoxic tissue until we are in necrotic tissue. And for the arc length of trajectory
(B), we verify the gradient trajectory characterized by our experimental results in the following
manner: for segment one, we follow a mean gradient slope of -0.21 (bounded from above and
below by standard deviation 0.19) for an arc length bounded from above by the mean length of
segment one, 172, plus its standard deviation, 83, until we reach segment two; then for segment
two, we follow a mean gradient slope of -0.06 (bounded from above and below by standard
deviation 0.03) for an arc length bounded from above by the mean length of segment two, 267,
plus its standard deviation, 126.” The gradient segment lengths, length bounds, slopes, and
slope bounds are given in Table 6, and all measurements are in pixels. This is merely one provi-
sional gradient term, and not intended to represent a comprehensive gradient characterization
in spatiotemporal logical terms. Note too that we could write an analogous propositional term
by reordering the clauses to reflect the opposite order of encounter, and by using negated slopes
and the gradient descent function V_ (see trajectory (A) in the left panel of Fig 8).

Now we look at our segmentation image feature, and the derived ratio of cell types that can
be represented by its values. Suppose we have a primitive state function C : ) — Q that gives
the current ratio of hypoxic to viable cells in some spatially bounded area (see the right panel
of Fig 8). Then given the results from our segmentation experiment below (Table 1), namely
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for the mean H:V ratio, we have the following temporal term, with respect to #,:

G(C =0.36 +0.24), (4)

where 7 is an upper bound on the time (e.g., the run time of a simulation that seeks to detect
hypoxia).

If we assume the four propositional terms above are true for time bounded by 7, then our
final (but partial) spatiotemporal logical proposition characterizing hypoxia is given by:

G
(
=[(T(x,,x,) = N)Unmea—mim (T (x x,) = V)]
A
—[(T(xy, x,) = V)U e (T(x,, x,) = N

A
—[(T(x),x,) = N)U=rmee(T(x,, x,) = V)]
A
~[(T(x,,x,) = V)Ureme (T (x,, x,) = N)
A

(T(xlax2) - V)

®) in®) (5)

U1 2) =V (e 52 ) () i

—mm]

,mang) -

(T(xy,x,) = H)

(B)

U0 52) =V (e 5y ) (may” i ma) -

—min, " ,max,

. (B)
&)

(T(x,%,) = N)

~—

(Fr) =Vl 83 (Y (x, x,, p) = —0.21 4 0.19)

U()q x9) =V (x1,%9,p),(1724834267+126

(Fla)=Velaap) 26700557 (3 x, p) = —0.06 £ 0.03))

(C=10.36 4+ 0.24)

),
. . . (B B . (B B
where fixed xy, fixed x,, min,, max,, min,, max,, min\”, max\®  min}”, and max

to vary arbitrarily (or programmatically, for example in a simulator that seeks to detect hypoxia
in some systematic search pattern).

) are allowed

Conclusion

We propose an approach to characterizing chronic tumor hypoxia by utilizing the rich content
of tumor histology images of different kinds. We discovered that two features in particular give
low-variance measures of chronic tumor hypoxia: intensity sampling that extends radially
away from approximated blood vessel centroids, and multithresholding to segment tumor tis-
sue into normal, hypoxic, and necrotic regions. From these features we derived a spatiotempo-
ral logical expression whose truth value depends on its predicate clauses that are grounded in
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positive
p gradient

V.(X4X2,P) V,(X1,X2,P)

O 0]
Oxq(min®), xp(min®) (xq(max®), xp(max®)y)

Fig 8. Hypoxia gradients and segmented tissue areas. Left panel: verifying the hypoxia gradientimage feature against empirically measured and

statistically bounded values. (A) The trajectory obtained by starting at (x, (min'"), x,(min{")) in a necrotic (N region, locating a hypoxic (H) region, and then

descending the hypoxia (p = anti-pimonidazole) gradient into a viable (V) region to reach the vessel centroid at (x, (max\"), x,(max{")), using the V_(x1, X2, p)

gradient following function. (B) The trajectory obtained by starting at the vessel centroid at (x, (min'®), x,(min'®)) in the viable (V) region, then ascending the

hypoxia (p = anti-pimonidazole) gradient into a hypoxic (H) region until reaching a necrotic (N) region at (x, (max\®), x,(max?')), using the V., (x1, X2, p)
gradient following function. Right panel: verifying the viable-to-hypoxic area ratio (C = %) image feature against empirically measured and statistically
bounded values.

doi:10.1371/journal.pone.0153623.g008

this histological evidence. As an alternative to the spatiotemporal logical formulation, we also
proposed a way to formulate a linear regression function that uses all of the image features to
learn what chronic hypoxia looks like, and then gives a quantitative similarity score once it is
trained on a set of histology images. One can extend these logical and functional characteriza-
tions of chronic tumor hypoxia to incorporate any number of quantitative features. The func-
tional characterization also provides a means to parse systematic error and model error,
quantify them, and control for them, leading to progressively less bias in solving the detection
problem. Our techniques could be used to help detect chronic tumor hypoxia in a clinical set-
ting, or in a research setting, as part of a simulation exploring causes of chronic tumor hypoxia.

Our simplified system is represented by histology image data from tumor sites selected to be
near blood vessels, and at length scales small enough to observe chronic hypoxia. We acknowl-
edge our simplified system does not represent the full complexity of tumor vascularity and hyp-
oxia. Whole-tumor measurement and diagnosis, while of great value, is beyond the scope of
this study. Two benefits of our computational method of characterization and detection are
that it is automatable and scalable, and thus we envision our method could become the founda-
tion for investigating more complex situations that represent a more holistic view of tumor
hypoxia. For example, a proper sampling of chronic hypoxia sites could be used to assemble a
whole-tumor estimation of global chronic hypoxia distribution. This type of bottom-up model-
ing out of many partial measurements could be used to produce a mathematical model that has
some generality over many tumors and tumor types; given a novel tumor, such a model might
be able to predict the tumor’s global chronic hypoxia distribution. We leave this investigation
for a future study.

In light of these research goals, we pose two caveats. First, the basis of our characterization
method is image processing of tumor slice histology images. While these data give ample struc-
tural features to quantify, they do not contain the dynamic complexity of living tumor tissue.
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Thus, the resulting characterizations we develop from histology alone cannot properly capture
tumor heterogeneity, which makes it difficult to generalize a given characterization of chromic
tumor hypoxia to novel tumor sites. Second, though we did investigate a variety of images for
our study, we stratified them, selecting the subset which best fit our purpose of quantifying the
gradient near vessels in the tumor. These images largely show “tumor cords” widely separated
by necrosis. While this is an ideal setting for our analysis of the hypoxia gradient feature, it
may exist in a minority of tumors, which researchers have suspected since the first landmark
study of “tumor cords” [4]. If one wishes to use tumor histology images as evidence of chronic
tumor hypoxia, then a robust quantitative characterization will require a larger study, covering
a large variety of tumors and a broader selection of sites within each tumor.

Supporting Information

S1 Fig. Image preprocessing. Our canonical image as an 8-bit grayscale image (top) and after
iterative smoothing (bottom).
(TTF)

S2 Fig. Preliminary qualitative analysis of image intensity. Our smoothed canonical image
plotted as a mesh (top) and a contour (bottom). Both show a qualitative tri-level partitioning
of image intensity.

(TTF)

S3 Fig. Preliminary histogram analysis of image intensity. When we examine all of the pixels
of our smoothed canonical image (upper left), we see a clear bimodal distribution in the inten-
sity histogram (upper right). Yet, when we select a sub-image where we see roughly equal pro-
portions of the three distinct tissue types (lower left), a trimodal distribution appears in the
intensity histogram (lower right).

(TTF)

S4 Fig. Tissue types by manual segmentation of our smoothed canonical image. Hypoxic
tissue, as defined by the intensity interval [0, 156] (top). Viable tissue, as defined by the inten-
sity interval [157, 175] (middle). Note the false-positive outer contours around the hypoxic tis-
sue, and the false-negative inner backbone areas where there are collagen deposits. Necrotic
tissue, as defined by the intensity interval [176, 255] (bottom). Note the false positive areas
where collagen forms an inner backbone that partitions the viable tissue.

(TTF)

S5 Fig. Quad-Tree decomposition. A quad-tree decomposition of our canonical image, where
the criterion for decomposition of a given frame is a sufficiently high variation among the
frame’s pixels’ intensity values.

(TTF)

S6 Fig. Loci of eight-bundle hypoxia gradients. Circle sectors (red) defined by the r,, found
by our Intensity-Sample-Ray-Bundles algorithm for each bundle of each of the three centers
we specified, corresponding to vessel locations in the registered H&E image. Here we show

m = 8 sectors (] radians per sector) for each center. Sectors are labeled with red numbers, coun-
terclockwise, just outside of the red sector contour.

(TIF)

S7 Fig. Histology image registration. Registering an H&E image (not shown) to a Z-stack-
adjacent anti-pimonidazole image (10 ym away). The three blue vectors denote the displace-
ments of the three gradient centers. Each blue vector is labeled with P; at the head (center
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position 7 in the anti-pimonidazole image) and H; at the tail (the corresponding center position
i in the H&E image). The vector lengths (in pixels) are labeled, as are the vector angles (in radi-
ans), measured relative to their respective dotted blue horizontal lines.

(TIF)

S8 Fig. Quad-Tree-Ply-Stats results. How the Ply-Stats-Quad-Tree algorithm dissects images
according to the property of CV in intensity level of a given frame’s pixels: the mean window
size profile across the total (left three panels, n = 66), high (middle three panels, #n = 36), and
low (right three panels, n = 30) sets of images. In each set of three panels, the first, second, and
third panels show mean histograms for 7 € {0.1, 0.5, 0.9}, respectively. The horizontal axis indi-

cates ply depth, or frame size as computed by =4 x yﬁ"m, where i € [0, 12] is the ply depth,
and x_dim and y_dim are the x and y dimensions of the whole image, respectively. The vertical
axis indicates the mean count of search tree leaves at ply depth i. Error bars show standard
deviation.

(TIF)

S9 Fig. Canonical EPC surve results. (Top) The mean EPC curve over the fotal set of images
(left, n = 66), the high concentration anti-pimonidazole images (middle, n = 36), and the low
concentration anti-pimonidazole images (right, n = 30). Segmented least-squares fits to these
curves are given below. The horizontal axis indicates the intensity level threshold 7 € [1, 255]
applied to the image prior to computing y. The vertical axis indicates the value of y computed
for each 7. (Bottom) The segmented least-squares fits to the mean EPC curves given above. The
horizontal axis indicates the intensity level threshold 7 € [1, 255] applied to the image prior to
computing y. The vertical axis indicates the value of y computed for each 7.

(TIF)
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