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Abstract
A key feature of precision medicine is that it takes individual variability at the genetic or

molecular level into account in determining the best treatment for patients diagnosed with

diseases detected by recently developed novel biotechnologies. The enrichment design is

an efficient design that enrolls only the patients testing positive for specific molecular targets

and randomly assigns them for the targeted treatment or the concurrent control. However

there is no diagnostic device with perfect accuracy and precision for detecting molecular tar-

gets. In particular, the positive predictive value (PPV) can be quite low for rare diseases

with low prevalence. Under the enrichment design, some patients testing positive for spe-

cific molecular targets may not have the molecular targets. The efficacy of the targeted ther-

apy may be underestimated in the patients that actually do have the molecular targets. To

address the loss of efficiency due to misclassification error, we apply the discrete mixture

modeling for time-to-event data proposed by Eng and Hanlon [8] to develop an inferential

procedure, based on the Cox proportional hazard model, for treatment effects of the tar-

geted treatment effect for the true-positive patients with the molecular targets. Our proposed

procedure incorporates both inaccuracy of diagnostic devices and uncertainty of estimated

accuracy measures. We employed the expectation-maximization algorithm in conjunction

with the bootstrap technique for estimation of the hazard ratio and its estimated variance.

We report the results of simulation studies which empirically investigated the performance

of the proposed method. Our proposed method is illustrated by a numerical example.
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Introduction
On February 20, 2015, in his State of the Union Address, US President Obama announced the
launching of a new Precision Medicine Initiative (PMI). As pointed out by Collins and Varmus
[1], the near-term goal of the PMI is focused on cancers each of which has its own genomic sig-
nature driven by molecular lesions. In response to the PMI, starting in 2014, the US National
Cancer Institute (NCI) launched a series of novel, molecularly guided trials which include the
Exceptional Responders Initiative, NCI MATCH, ALCHEMIST trial and Master Protocol for
second-line treatment of squamous lung cancer [2]. Most molecularly guided trials employ the
enrichment design [3]. The enrichment design consists of two phases. The first phase is the
enrichment phase during which each patient is tested for specified molecular targets using a
diagnostic device that is capable of detecting them. Only those patients testing positive for the
specified molecular targets are enrolled into the second phase in which they are randomly
assigned either to the targeted treatment or to the concurrent control treatment. Fig 1 provides
a graphical representation of the randomization schema of an enrichment design [4].

The enrichment design may be an efficient design for evaluation of targeted therapies. How-
ever, very few diagnostic devices have a perfect accuracy with 100% positive predictive value
(PPV). In particular, the PPV can be very low for some rare diseases with low prevalence. Con-
sequently, a sizable proportion of the patients tested positive during the enrichment phase may
not actually have the molecular targets of interest. On the other hand, the targeted therapy is
only designed to be efficacious for the patients actually having the molecular targets. The tar-
geted therapy may not only be ineffective but also cause harmful adverse reactions in those
patients who do not have the molecular targets despite testing positive for them. Liu, et al. [5]
showed that the treatment effect estimated without consideration of misclassification error is
underestimated for the true-positive patients with the molecular targets. Liu, et al. [5] and Liu
and Lin [6] proposed inferential procedures, based on the expectation-maximization (EM)
algorithm in conjunction with the bootstrap technique, to estimate the actual treatment effect
of the targeted therapy for continuous and binary endpoints, respectively, under the

Fig 1. Randomization Schema of enrichment design for targeted clinical trials. Source: FDA [4].

doi:10.1371/journal.pone.0153525.g001
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enrichment design. For the censored endpoints, Chen, et al. [7] under assumption of a one-
parameter exponential distribution, suggested a parametric method for the inference of the
hazard ratio for the targeted therapy under the enrichment design.

Most of clinical trials for the near-term goal in the PMI are for evaluation of targeted thera-
pies in treatment of various cancers with progression-free survival (PFS) or overall survival
(OS) as the primary or secondary efficacy endpoints. The Cox proportional hazard (PH) model
is the most commonly employed statistical method for inference of treatment effects which
takes individual patient characteristics into account. Consequently, we propose an application
of the discrete mixture modeling for time-to-event data proposed by Eng and Hanlon [8] to
develop an inferential procedure based on the Cox PH model [9] for estimating the treatment
effect of the targeted therapy for the true-positive patients with molecular targets. In our
approach, we assume that the number of classes is two: true-positive patients and false-positive
patients. Following Eng and Hanlon [8], we only assume that the hazards are proportional
within each class. Combining the expectation-maximization (EM) algorithm with the boot-
strap technique, we obtain the estimates of hazard ratios with their estimated standard errors.
Because the assumption of a common proportional hazard is relaxed, we are able to obtain the
estimated hazard ratio not only for the patients truly with the molecular targets but also for the
patients truly without the molecular targets. Hence, we can perform the inference for target-
by-treatment interaction.

In the next section, our proposed method for taking into consideration the diagnostic inac-
curacy and uncertainty, based on discrete mixture modeling and the EM algorithm for the Cox
PH model, is introduced with inferential procedures. The results of numerical studies, includ-
ing numerical examples and simulation studies, are provided in the third section. Numerical
examples illustrate the application of our proposed method in practical scenarios. Simulation
results provide empirical performance of our proposed methods in terms of size, power and
coverage probability of confidence intervals. Final remarks and discussion are presented in the
last section.

Methods

Enrichment Design and Likelihood Function
We developed the proposed procedure for the following situations. First, a specified molecular
target has been identified in the pathway of pathogenesis of the disease. Secondly, a validated
diagnostic device is available for detection of the specified molecular target with a known esti-
mated positive predicted value from validation studies. Third, this device is only for detection
of the molecular target and is not prognostic for clinical outcomes of patients. A targeted ther-
apy is currently being developed for true-positive patients with the molecular target. Finally,
the enrichment design is employed to evaluate the treatment effect of the targeted therapy for
the patients tested positive for the molecular target by the diagnostic device. Our objective is to
develop statistical inference for the treatment effect of the targeted therapy for the true-positive
patients with the specified molecular target.

Although under the enrichment design, all randomize patients have tested positive for the
molecular target, due to inaccuracy of the diagnostic device, some positive patients still may
not have the specified molecular target. Therefore, there are two latent classes of patients: the
patients with the molecular target (true-positive patients) and the patients without the molecu-
lar target (false-positive patients). (Pepe [10]) By naïvely assuming no misclassification error,
one can apply the Cox proportional hazards model for inference of treatment effect of the tar-
geted therapy without adjustment for diagnostic inaccuracy. This approach is referred to as the
naïve method.
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For simplicity, we only consider one covariate Z for treatment identification in the Cox PH
model. Z is 1 for the targeted therapy and 0 for the concurrent control. For the patients with
the molecular target (+), let (y+i, δ+i, z+i), i = 1,. . .,n+ be an independent right-censored sample
with right-censored survival time, y+i, covariates z+i, and censored indicator δ+i (δ+i = 1 if the
event occurs; = 0 if censored). (y−i, δ−i, z−i) is similarly defined for the patients without the
molecular target (-), i = 1,. . .,n−. Denote the collection of right-censored times, censored indi-
cator and covariate for all patients as

Y ¼ ðyþi; . . . ; yþnþ ; y�i; . . . y�n�Þ ; D ¼ ðdþi; . . . ; dþnþ ; d�i; . . . d�n�Þ ;

Z ¼ ðzþi; . . . ; zþnþ ; z�i; . . . z�n�Þ

We further assume a Cox PH model separately for the patients with and without the molec-
ular target. Hence, under the PH assumption, the hazard function for true target status h is
given as

hhiðtjzhÞ ¼ h0hðtÞexpðlhzhiÞ; ð1Þ

where h0h(t) and λh are the baseline hazard and the treatment effect (regression coefficient: log
hazard ratio) with treatment indicator zhi, respectively, for patient i with true target status h,
for i = 1,. . .,nh;h = +,−.

Table 1 gives the baseline hazards and log hazard ratios between treatment groups for the
true-positive and false-positive patients.

The hypothesis of interest for the true-positive patients with the molecular target is given as

H0 : lþ ¼ 0 vs: Ha : lþ 6¼ 0

The density function of the PH model for right censored survival times for true target status
h is given as

fhðyhi; dhijzhi; lhÞ ¼ ½h0hðyhiÞexpðlhzhiÞ�dhiexpf�H0hðyhiÞexpðlhzhiÞg; ð2Þ

whereH0h(yhi) is the cumulative baseline hazard function for patient i with molecular status h,
i = 1,. . .,nh;h = +,−.

To accommodate the inaccuracy of the diagnostic device and the variability of its estimate,
we introduce a latent binary variable Xi for the true target status of patient i which is indepen-
dently and identically distributed (i.i.d.) as a Bernoulli distribution with probability γ, where γ
is the PPV of the diagnostic device, i = 1,. . .,N; N = n+ + n_. In other words, Xi = 1 if patient i
has the molecular target; = 0 if patient i lacks the molecular target and P(Xi = 1) = γ = 1−P(Xi =

Table 1. Baseline hazards by diagnostic result of the molecular target.

Positive Diagnostic True target condition Accuracy of diagnosis Baseline Hazard Log hazard ratio between treatment

+ + γ h0+(y+i) λ+

- 1-γ h0-(y-i) λ-

γ is the positive predicted value

doi:10.1371/journal.pone.0153525.t001
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0), i = 1,. . .,N. The density function of (y+i, y-i) given latent variable Xi is given as

fþ;�ðyþ; y�; dþ; d�jzþ; z�; xi; g; lþ; l�Þ
¼ ½fþðyþi; dþijzþi; lþÞ�xi ½f�ðy�i; d�ijz�i; l�Þ�1�xi

¼ f½h0þðyþiÞexpðlþzþiÞ�dþiexp½�H0þexpðlþzþiÞ�g
xi

f½h0�ðy�iÞexpðl�z�iÞ�d�iexp½�H0�expðl�z�iÞ�g
1�xi

Hence, the joint density function of (y+i, y−i, xi) is

fg½h0þðyþiÞexpðlþzþiÞ�dþiexp½�H0þexpðlþzþiÞ�g
xi

�fð1� gÞ½h0�ðy�iÞexpðl�z�iÞ�d�iexp½�H0�expðl�z�iÞ�g
1�xi

:
ð3Þ

Let ψ = (γ, h, λ+, λ−) denote the vector of unknown parameters, where h = {h0+(y+i), h0
−(y−i)} indicates the set of baseline hazard functions. It follows that the complete-data log-like-
lihood function for ψ is given as

lnLCðCÞ ¼ lng
XN
i¼1

xi þ lnð1� gÞ
XN
i¼1

ð1� xiÞ

þ
XN
i¼1

½dþixilnðh0þÞ þ dþixizþilþ � xiH0þexpðlþzþiÞ�

þ
XN
i¼1

½d�ið1� xiÞlnðh0�Þ þ d�ið1� xiÞz�il� � ð1� xiÞH0�expðl�z�iÞ�

ð4Þ

Application of Discrete Mixture Modeling and the EM Algorithm
To obtain the maximum likelihood estimates of the treatment effect by the expectation-maxi-
mization (EM) algorithm, in the E-step, we need to find the conditional expectation of Xi given
Y+i, Y−i, δ+i, δ−i, Z+i, Z−i; γ, h, λ+, λ−. Denoting the current estimates of the parameters after k

iterations as ĝðkÞ; ĥðkÞ
0h ; Ĥ

ðkÞ
0h ; l̂

ðkÞ
h and letting

Ai ¼ ĝðkÞ½ĥðkÞ
0þðyþiÞexpðl̂ðkÞ

þ zþiÞ�dþiexp½�Ĥ ðkÞ
0þexpðl̂ðkÞ

þ zþiÞ�

and

Bi ¼ ð1� ĝðkÞÞ½ĥðkÞ
0�ðy�iÞexpðl̂ðkÞ

� z�iÞ�d�iexp½�Ĥ ðkÞ
0�expðl̂ðkÞ

� z�iÞ�

it follows that in the E-step, the conditional expectation is given as

xðkÞi ¼ ECðKÞðXijYþi;Y�i; dþi; d�i; g; h; lþ; l�Þ ¼ Pðxi ¼ 1jyþi; y�i; dþi; d�i; g; h; lþ; l�Þ

¼ Ai

Ai þ Bi

:
ð5Þ

In the M-step, the updated positive predicted value (PPV) γ is given as

ĝðkþ1Þ ¼

XN
i¼1

x̂ ðkÞ
i

N
: ð6Þ

Following Eng and Hanlon [8], the estimates of the baseline and cumulative baseline hazard
functions as a function of hazard ratios are given below respectively:
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ĥðkþ1Þ
0þ ðYiÞ ¼

x̂ ðkÞ
iX

I:Yj�Y

x̂ ðkÞ
j expðl̂ðkÞ

þj zþjÞ

ĥðkþ1Þ
0� ðYiÞ ¼

1� x̂ ðkÞ
iX

I:Yj�Y

ð1� x̂ ðkÞ
j Þexpðl̂ðkÞ

�j z�jÞ

Ĥ ðkþ1Þ
0þ ðYiÞ ¼

X
I:Yj�Yi

x̂ ðkÞ
iX

I:Yj�Y

x̂ ðkÞ
j expðl̂ðkÞ

þj zþjÞ

Ĥ ðkþ1Þ
0� ðYiÞ ¼

X
Yj�Yi

1� x̂ ðkÞ
iX

I:Yj�Y

ð1� x̂ ðkÞ
j Þexpðl̂ðkÞ

�j z�jÞ
:

ð7Þ

The estimation procedure of the EM-based approach is summarized as follows and then
explained more fully step-by-step:

1. Set initial values for γ(0),lð0Þþ ,lð0Þ� ,hð0Þ0þ, h
ð0Þ
0�.

2. Calculate Eψ(K){Xi|Y+i, Y−i, δ+i, δ−i, Z+i, Z−i;γ,h,λ+,λ−} using Eq (5), update h0+, h0−, λ+, λ− by
Eq (7), and update γ by Eq (6).

3. Repeat Step 2 until convergence.

For the initial values, the estimated PPV from the validation studies can be used as the initial

value of γ(0). l0� can be set as 1 and l0þ is the hazard ratio specified in the protocol of the enrich-
ment design. The standard error of the log hazard ratio for the true-positive patients with the
molecular target is estimated by bootstrap procedures [11].

Step 1. Choose a large bootstrap sample size B. We would suggest B� 1000. For 1� b� B,

generate the bootstrap samples ðybobs; dbobs; xbobsÞ, according to the probability model in Eq

(4). The parameters employed to generate bootstrap sample ðybobs; dbobs; xbobsÞ are replaced by
the estimators obtained from the EM algorithm based on the original observations from the
targeted clinical trial.

Step 2. Estimates l̂�þb are obtained by applying the EM algorithm to the bootstrap sample

ðybobs; dbobs; xbobsÞ, b = 1,. . .,B.

Step 3. An estimator of the variance of l̂þ is given as

S2þB ¼

XB

b¼1

ðl̂�
þb � �̂l �

þÞ2

B� 1
; ð8Þ

where

�̂l �
þ ¼

XB

b¼1

l̂�
þb

B
:

The null hypothesis is rejected and the efficacy of the targeted therapy is found to be differ-
ent from that of the control group for the true-positive patient population at the α significance
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level if

z ¼ j l̂þffiffiffiffiffiffiffi
S2þB

q j � za=2; ð9Þ

where zα/2 is the α/2 upper percentile of a standard normal distribution, and S2þB denotes

the estimated variance of l̂þ obtained by the bootstrap procedure. The corresponding

100(1−α)% asymptotic confidence interval for λ+ can be constructed as l̂þ � za=2

ffiffiffiffiffiffiffi
S2þB

q
:

Hence the 100(1−α)% asymptotic confidence interval of the hazard ratio for the true-positive

patients with the molecular target is given as exp½l̂þ � za=2

ffiffiffiffiffiffiffi
S2þB

q
�:

Simulation Setup
We conducted extensive simulation studies to empirically investigate and compare perfor-
mance of our proposed method with the current procedure in terms of relative bias, coverage
probability of confidence intervals, size and power. A modified R function by Eng and Hanlon
[8] was employed in the simulation studies. Random samples of patient units with or without
the molecular target were generated from the Bernoulli distribution with probability γ. Then
the units were randomized in a 1:1 ratio to the targeted therapy group or concurrent placebo-
control group. Although we used a semi-parametric model which does not require the actual
distribution, we still need the distributional form for the data used in the simulation studies.
We generated the one-parameter exponential random variable data with the specified parame-
ters λ+, λ− according to the status of the molecular target. It is presumed that the placebo con-
trol is not efficacious in the patients either with or without the molecular target. In addition,
the targeted therapy is presumed ineffective in the false-positive patients without the target.
The pair of survival times and censored indicators (y, δ) was generated according to the meth-
ods described in Chen, et al. [7].

The following specifications of parameters were considered in the simulation studies. The
PPV was set to be 0.5, 0.6, 0.7, 0.8, and 0.9, which reflect a range of low to high positive pre-
dicted value. The censored proportions considered in the simulation studies were 0, 0.1, 0.2,
0.3 and 0.4. To investigate the finite sample properties, the sample sizes were set as 300, 600,
and 900 per group. The size was evaluated at the hazard ratio of 1. The power of the proposed
procedure was investigated at hazard ratios of 0.70, 0.75, 0.80 and 0.85. For each of 300 combi-
nations, 1000 random samples were generated and the number of the bootstrap samples was
also set to be 1000.

For estimation, we investigated the bias of the estimators and the coverage probability of the
95% confidence interval. For hypothesis testing, the performance measures included empirical
size and power. The bias was estimated as the average of the differences between the estimates
and the true value of the hazard ratio over 1000 simulated samples. The coverage probability was
calculated as the proportion of the 1000 95% confidence intervals that contain the true value of
the hazard ratio. The size and power were computed as the proportion of the 1000 samples for
which the null hypothesis (H0: λ+ = 0 vs. Ha: λ+ 6¼ 0) was rejected for the two-sided test at the 5%
significance level. For a 95% confidence level, a simulation study with 1000 simulated random
samples implies that 95% of the empirical coverage probabilities of all combinations would be
within 0.9365 and 0.9635 if the proposed method provides sufficient coverage probability. In
addition, for the 5% nominal significance level, a simulation study with 1000 random samples
implies that 95% of the empirical sizes would be within 0.0365 and 0.0635 if the proposed
method can adequately control the size at the nominal level of 0.05.
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Results

Numerical Examples
We constructed a dataset for a hypothetical scenario based on the information provided by the
US Food and Drug Administration (FDA) in the package insert of Herceptin1[12]. A targeted
therapy is being developed for the treatment of patients with a certain cancer whose specific
molecular target is over-expressed as measured by an immunohistochemical (IHC) assay. Sup-
pose that the IHC assay has a PPV of 0.75. From previous studies, the hazard ratios for the
patients truly with and without the target are 0.7 and 1.26, respectively. Under the enrichment
design, 480 patients with positive test results were randomized in 1:1 ratio to receive the tar-
geted therapy plus the standard chemotherapy or to the standard chemotherapy alone. The
censored rate is assumed to be 30%. Table 2 provides the point estimates of the hazard ratio
between the two groups, their standard error, and 95% confidence intervals. In addition, Bre-
slow’s estimates of baseline hazards were computed for the true-positive and false-positive
patients when the PPV was set at 0.75 [13]. The baseline hazards of the true-positive and false-
positive patients were 0.0027 and 0.008 respectively. Therefore, the baseline hazard of the true-
positive patients was lower than that of the false-positive patients.

When the PPV was 0.75, the naive approach without consideration of inaccuracy of diag-
nostic device and the variability of its estimate yields the estimate of hazard ratio for mortality
of 0.8318 with a 95% CI from 0.6637 to 1.0425. Because the 95% CI does contain 1, the
observed hazard ratio of death is not statistically significantly different from 1 at the 5% signifi-
cance level. The targeted therapy therefore fails to prove its superior efficacy over chemother-
apy alone. On the other hand, our proposed EMmethod resulted in an estimated hazard ratio
of 0.7026. The 95% CI for the hazard ratio is (0.5299, 0.9315), which does not contain 1. As a
result, the efficacy of the targeted therapy plus chemotherapy is concluded superior to chemo-
therapy alone for the true-positive patients with the molecular target at the 5% significance
level. Because 25% of the patients do not have the specified molecular target, failure to take
into consideration inaccuracy of the diagnostic device leads to underestimation of the hazard
ratio based on the naive method by a magnitude of 18.39%.

Results of the Simulation Studies
The simulation studies provide empirical results of performance of our proposed method com-
pared with the current approach with respect to relative bias, coverage probability, size, and
power. Due to the large volume of results generated in the simulation studies, we only present
the results concerning relative bias, coverage probability and empirical power for the combina-
tions with sample size of 300. They are provided in Table 3, Fig 2 and Table 4, Figs 3 and 4,
respectively. All other results are provided in the Supporting Information.

Table 2. Point and interval estimators of hazard ratios.

Results Naive EM (PPV = 0.75)

Hazard ratio 0.8318 0.7026

S.E. of log hazard ratio 0.1152 0.1439

95% L.C.I. 0.6637 0.5299

95% U.C.I. 1.0425 0.9315

L.C.I.: Lower confidence interval

U.C.I.: Upper confidence interval

doi:10.1371/journal.pone.0153525.t002
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Table 3. Relative bias (%) and coverage probability for n = 300 per group.

PPV

0.5 (0.495c) 0.6 (0.601c) 0.7 (0.697c) 0.8 (0.796c) 0.9 (0.897c)

N HR CR Naive EM Naive EM Naive EM Naive EM Naive EM

300 0.85 0 9.06a 1.06 6.59 -0.24 5.41 0.47 4.35 1.53 1.29 0.12

0.889b 0.963 0.927 0.964 0.928 0.960 0.927 0.958 0.943 0.968

0.1 8.71 0.78 6.92 0.72 5.71 0.62 4.24 0.36 1.79 0.32

0.908 0.950 0.926 0.947 0.946 0.968 0.941 0.953 0.942 0.958

0.2 9.29 0.82 7.29 0.59 5.76 0.82 4.12 1.41 2.24 0.47

0.913 0.935 0.921 0.955 0.939 0.951 0.925 0.948 0.935 0.955

0.3 10.35 0.59 7.18 0.24 5.76 0.24 4.47 1.06 1.41 0.12

0.910 0.935 0.919 0.941 0.927 0.944 0.933 0.956 0.933 0.956

0.4 8.47 -0.12 6.71 -0.12 5.65 0.59 4.24 1.41 3.29 1.88

0.905 0.932 0.914 0.938 0.935 0.954 0.937 0.963 0.949 0.971

0.8 0 11.50 0.75 9.12 0.63 7.25 1.13 4.50 0.88 3.00 1.13

0.847 0.959 0.891 0.951 0.919 0.961 0.934 0.963 0.941 0.963

0.1 11.50 0.13 9.12 0.13 7.12 0.01 4.62 0.50 2.25 0.25

0.856 0.946 0.875 0.967 0.921 0.956 0.932 0.958 0.938 0.959

0.2 12.25 1.00 10.50 0.63 7.37 0.25 4.87 0.50 3.00 0.63

0.865 0.938 0.879 0.941 0.901 0.936 0.928 0.945 0.938 0.954

0.3 11.88 -0.50 9.87 -0.13 7.12 -0.25 5.25 1.13 2.75 0.88

0.878 0.937 0.901 0.944 0.921 0.943 0.924 0.942 0.933 0.948

0.4 12.25 0.25 10.88 1.50 7.25 -0.38 5.50 1.62 3.37 1.62

0.881 0.938 0.911 0.931 0.919 0.942 0.913 0.948 0.941 0.955

300 0.75 0 14.93 0.80 11.87 0.93 9.47 1.07 5.87 0.80 3.07 0.53

0.778 0.962 0.856 0.954 0.892 0.965 0.922 0.964 0.932 0.956

0.1 15.07 -0.53 12.13 0.27 9.60 0.53 6.13 0.53 2.53 -0.27

0.799 0.946 0.869 0.951 0.907 0.958 0.931 0.959 0.941 0.963

0.2 15.07 -1.47 12.13 -0.13 9.47 -0.27 5.47 -0.67 2.80 -0.40

0.821 0.941 0.871 0.935 0.898 0.948 0.932 0.958 0.931 0.951

0.3 15.20 -1.60 12.13 -0.67 9.20 -0.40 6.80 0.93 2.93 -1.20

0.837 0.936 0.886 0.933 0.909 0.946 0.934 0.952 0.926 0.951

0.4 15.33 -0.13 12.53 0.13 9.47 -0.13 5.20 0.13 2.80 0.27

0.859 0.931 0.886 0.939 0.906 0.936 0.949 0.966 0.919 0.952

0.7 0 19.00 1.57 15.00 0.71 10.57 0.57 7.00 0.57 4.14 1.00

0.703 0.947 0.782 0.951 0.877 0.961 0.913 0.949 0.933 0.951

0.1 19.86 -0.29 15.00 -0.43 10.86 -0.14 7.29 0.43 4.43 0.86

0.726 0.951 0.799 0.942 0.881 0.948 0.919 0.952 0.941 0.963

0.2 19.14 -1.00 15.14 -1.00 10.71 -1.00 7.71 0.43 4.14 0.71

0.752 0.942 0.824 0.941 0.889 0.947 0.919 0.943 0.931 0.946

0.3 19.29 -1.14 15.14 -0.86 10.71 -1.57 7.43 0.14 3.29 -0.14

0.777 0.941 0.827 0.944 0.891 0.943 0.917 0.933 0.955 0.974

0.4 19.43 -0.71 16.00 0.57 10.71 -0.71 8.00 1.14 4.14 1.14

0.791 0.946 0.825 0.946 0.901 0.942 0.941 0.955 0.929 0.952

a: Relative bias (%)
b: Coverage probability
c: Estimate of PPV

CR: censored rate; HR: hazard ratio

doi:10.1371/journal.pone.0153525.t003
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The simulation results show that the empirical estimates of the positive predicted values are
close to the specified values for all the different combinations, with a maximal absolute differ-
ence of only 0.008. The simulation results on relative bias and coverage probabilities are given
in Table 3 and S1 and S2 Tables. Graphical presentations of a summarization of Table 3, S1
and S2 Tables are given in Fig 2, S1 and S2 Figs, respectively. The absolute relative bias of the
estimator of the hazard ratio for the true-positive patients obtained by the naive approach
ranges from 1.27% to 19.84%. In comparison, the absolute relative bias of the estimator of the
hazard ratio for the true-positive patients with the molecular target obtained by the EM algo-
rithm is smaller than 2%. As PPV increases, the relative bias decreases. Overall, the relative bias

Fig 2. Relative bias curves between the proposed EM and naive approach for different censored rates (CR) at sample size n = 300 per group. Black
line: naive; red line: proposed EM.

doi:10.1371/journal.pone.0153525.g002
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is a decreasing function of the hazard ratio. There is no apparent relationship between relative
bias and sample size and between relative bias and censoring proportion.

The results concerning the empirical coverage probabilities of the 95% confidence intervals
for the hazard ratios by the current method and the EMmethod are described below. Only 20
of the 300 coverage probabilities (6.67%) of the 95% confidence intervals by the naive method
exceed 0.9365. The coverage probability by the naive method are as low as 0.546. On the other
hand, there are 245 of 300 coverage probabilities (81.7%) of the 95% confidence intervals by
the EMmethod exceeding 0.9365. However, 280 of the 300 coverage probabilities (93.3%) of
95% confidence intervals constructed by the EM algorithm are above 0.93. No coverage proba-
bility of the EM method is below 0.91. The coverage probability is an increasing function of the
PPV and a decreasing function of the hazard ratio and sample size. In summary, the proposed
EM procedure not only gives nearly unbiased estimated treatment effect for the true-positive
patients with the molecular target but also provides sufficient coverage probability.

The simulation results on the sizes are given in Table 5. From Table 5, the empirical sizes
for the naive method and EMmethod for all combinations are within 0.0365 to 0.0635. The
results demonstrate that both the naive and EMmethod can adequately control the size at the
nominal level of 5%. The results concerning the empirical power for the naive method and EM
method are given in Table 4, S3 and S4 Tables, respectively. Graphical presentations of a sum-
marization of Table 4, S3 and S4 Tables are given in Fig 4, S3 and S4 Figs, respectively. In addi-
tion, Fig 3 presents the power curves when n = 300 per group, censored rate is 10%, and the

Table 4. Comparison of empirical powers for n = 300 per group.

PPV

0.5 0.6 0.7 0.8 0.9

n HR CR Naive EM Naive EM Naive EM Naive EM Naive EM

300 0.85 0 0.211 0.298 0.234 0.318 0.269 0.328 0.292 0.338 0.353 0.366

0.1 0.211 0.287 0.223 0.308 0.261 0.316 0.284 0.314 0.329 0.342

0.2 0.207 0.263 0.224 0.298 0.242 0.306 0.282 0.309 0.320 0.351

0.3 0.203 0.261 0.215 0.284 0.241 0.303 0.272 0.302 0.286 0.327

0.4 0.198 0.256 0.205 0.279 0.207 0.274 0.233 0.284 0.263 0.272

0.8 0 0.337 0.448 0.379 0.475 0.432 0.503 0.493 0.541 0.538 0.573

0.1 0.307 0.445 0.352 0.462 0.395 0.494 0.477 0.511 0.531 0.565

0.2 0.291 0.416 0.337 0.445 0.389 0.486 0.436 0.484 0.473 0.521

0.3 0.287 0.415 0.308 0.429 0.384 0.461 0.413 0.462 0.459 0.483

0.4 0.278 0.377 0.293 0.395 0.358 0.432 0.376 0.429 0.409 0.448

0.75 0 0.472 0.626 0.553 0.674 0.630 0.727 0.718 0.786 0.808 0.841

0.1 0.458 0.619 0.512 0.652 0.575 0.711 0.669 0.752 0.781 0.832

0.2 0.426 0.616 0.498 0.633 0.544 0.683 0.656 0.747 0.735 0.773

0.3 0.392 0.571 0.429 0.605 0.503 0.646 0.576 0.664 0.698 0.731

0.4 0.382 0.524 0.403 0.569 0.473 0.589 0.572 0.636 0.646 0.671

0.7 0 0.551 0.778 0.751 0.851 0.819 0.921 0.916 0.981 0.989 0.991

0.1 0.502 0.769 0.675 0.842 0.757 0.896 0.852 0.953 0.939 0.976

0.2 0.481 0.727 0.605 0.804 0.713 0.851 0.789 0.889 0.883 0.931

0.3 0.469 0.711 0.566 0.736 0.671 0.823 0.754 0.848 0.859 0.882

0.4 0.449 0.642 0.508 0.665 0.621 0.744 0.661 0.742 0.777 0.798

CR: censored rate; HR: hazard ratio

doi:10.1371/journal.pone.0153525.t004
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PPV is 0.6. In is clear from Table 2, S3 and S4 Tables, that the empirical power is an increasing
function of the PPV and a decreasing function of the censoring rate and the hazard ratio. For
both methods, the power increases as the sample size increases. The simulation results of the
empirical power demonstrate that the proposed EM procedure is uniformly more powerful
than the naive method. In summary, under the PH model the proposed EM procedure not
only can better control the size at its nominal level but also is more powerful than the naive
method.

Discussion
Although all patients enrolled into the enrichment design are tested positive for the specified
molecular target, some of them may not actually have the target due to inaccuracy of the diag-
nostic device. The proportion of false-positive patients may be sizable for rare diseases with
low prevalence rates. Consequently, the treatment effect of the targeted therapy may be severely
underestimated for the true-positive patients with the molecular target. In addition, the magni-
tude of underestimation is a decreasing function of the PPV. The Cox PH model is the most
frequently employed method for evaluation of targeted therapies for cancer trials with progres-
sion-free survival (PFS) or overall survival (OS) as the primary efficacy endpoint. We applied
the method of discrete mixture modeling proposed by Eng and Hanlon [8], based on the Cox
PH model, to develop an inferential procedure of estimating the treatment effect for the true-
positive patients with the molecular target. Our proposed procedure employs the EM algorithm

Fig 3. Empirical power curves when the PPV is 0.6, n = 300 per group and censored rate = 10%.

doi:10.1371/journal.pone.0153525.g003
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in conjunction with the bootstrap method not only to accommodate inaccuracy of the diagnos-
tic device but also to take into consideration the variability of the estimated accuracy measure.
Empirical evidence from extensive simulation studies demonstrates that our proposed method
is nearly unbiased and provides sufficient coverage probability for the unknown hazard ratio
for the true-positive patients with the molecular target. In addition, our suggested method can
adequately control type I error at the pre-specified nominal level and is also uniformly more
powerful than the naive method.

Because of the discrete mixture modeling, the PH assumption is relaxed such that the haz-
ards are only assumed to be proportional within each group of patients either with or without

Fig 4. Empirical power curves between the proposed EM and naive approach for different censored rates (CR) at sample size n = 300 per group.
Black line: naive; red line: proposed EM.

doi:10.1371/journal.pone.0153525.g004
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the molecular target. Since the PPV is not 100%, the log hazard ratio for the patients without
the molecular target can be similarly estimated by the EM algorithm. Its estimated standard
error can be also obtained by the bootstrap method. Inference regarding the efficacy of the tar-
get therapy can similarly be made to the patients without the molecular target. In addition, the
patients with the molecular target are independent of the patients without the target. We can
also make inferences about the target-by-treatment interaction, i.e., the difference in the treat-
ment effect between the groups of patients with and without the molecular target. Denote

l̂� and S2�B as the estimated log hazard ratio and its estimated variance for the patients without
the molecular target. A (1-α)100% asymptotic confidence interval for λ+−λ− is given by

ðl̂þ � l̂�Þ � za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2þB þ S2�B

q
: ð10Þ

A confidence interval for λ+−λ− not only can be used to make inferences about the existence
of target-by-treatment interaction but also can test whether the efficacy of the targeted therapy
of the patients without the target is either equivalent or non-inferior to that of the patients with
the molecular target.

Using the same dataset used in the Numerical Example, the estimated log hazard ratio for
the patients without the molecular target is 0.259 with an estimated standard error of 0.3049.
The corresponding estimated hazard ratio is 1.2956 with a 95% asymptotic confidence interval
of (0.7179, 2.3551). It follows that a 95% asymptotic confidence for λ+ − λ− is (-1.2728, 0.0049)
which includes 0. The target-by-treatment interaction is, therefore, not statistically significant
at the 0.05 significance level. However, the target-by-treatment interaction is significant at the
0.10 level because the 90% asymptotic confidence interval is (-1.1667, -0.0574), which does not
include 0. Therefore, this analysis of the target-by-treatment interaction further demonstrates
that even under the enrichment design our proposed procedure can evaluate whether the new
targeted therapy is efficacious for false-positive patients if the PPV is not too high.

Table 5. Comparison of empirical sizes.

PPV
0.5 0.6 0.7 0.8 0.9

n CR Naive EM Naive EM Naive EM Naive EM Naive EM

300 0 0.048 0.048 0.048 0.047 0.042 0.041 0.045 0.044 0.042 0.046

0.1 0.053 0.049 0.051 0.048 0.053 0.045 0.049 0.046 0.041 0.041

0.2 0.062 0.054 0.061 0.055 0.055 0.048 0.050 0.048 0.054 0.051

0.3 0.062 0.057 0.061 0.058 0.062 0.051 0.053 0.047 0.058 0.049

0.4 0.063 0.059 0.064 0.063 0.061 0.052 0.048 0.051 0.051 0.043

600 0 0.054 0.054 0.050 0.049 0.049 0.054 0.048 0.050 0.051 0.049

0.1 0.051 0.048 0.053 0.047 0.052 0.056 0.055 0.054 0.052 0.053

0.2 0.056 0.052 0.048 0.045 0.050 0.055 0.054 0.051 0.051 0.052

0.3 0.053 0.048 0.051 0.050 0.056 0.051 0.051 0.050 0.052 0.052

0.4 0.058 0.049 0.050 0.050 0.055 0.053 0.050 0.050 0.050 0.048

900 0 0.051 0.057 0.048 0.054 0.051 0.049 0.050 0.048 0.053 0.053

0.1 0.054 0.055 0.049 0.047 0.050 0.051 0.052 0.049 0.048 0.048

0.2 0.051 0.056 0.055 0.054 0.053 0.053 0.055 0.055 0.057 0.057

0.3 0.052 0.055 0.048 0.056 0.052 0.052 0.049 0.049 0.051 0.050

0.4 0.061 0.060 0.048 0.055 0.049 0.050 0.052 0.053 0.056 0.056

CR: censored rate

doi:10.1371/journal.pone.0153525.t005
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Our proposed method only considers one covariate in the PH model, which is the treatment
indicator. However, we can also incorporate other covariates such as gender, age, or disease sta-
tus in the model. The full likelihood with more than one covariate is given as

LCðcÞ ¼
Yn
i¼1

fg½h0þðyþiÞexpðlþzþi þ
Xk

j¼2

bþjzþjÞ�dþiexp½�H0þexpðlþzþi þ
Xk

j¼2

bþjzþjÞ�g
xi

�fð1� gÞ½h0�ðy�iÞexpðl�z�i þ
Xk

j¼2

b�jz�jÞ�d�iexp½�H0�expðl�z�i þ
Xk

j¼2

b�jz�jÞ�g
1�xi

where zj and βj are the other covariates and their corresponding regression coefficients.
Similarly, the regression coefficients can be estimated by the EM algorithm and their esti-

mated standard errors can be obtained via the bootstrap technique.
Since no diagnostic tool is perfect with 100% PPV, our proposed EM procedure is based on

the Cox PH model given two latent class memberships. However, we would be interested in the
impact of violation of the two latent classes’ assumption. An additional simulation study was
conducted to assess the performance for the special case of PPV = 1.00. The simulation results
on the relative bias of the estimator for hazard ratio by both EM and naïve methods are pro-
vided in Table 6. As expected, the naïve method performs slightly better than the EM proce-
dure when a prefect diagnostic tool is available. In such a situation if the PPV is 100%, we
suggest the use of the naïve method. We also note that relative biases by both methods do not
exceed 5%. The case of PPV = 1.00 has little impact on the bias of the EM procedure. On the
other hand, the simulation results reveal that differences between the naïve method and the
EM procedure decrease when the PPV increases.

We conducted another simulation study to investigate the robustness of our proposed EM
procedure when the true-positive data is generated from the Weibull distribution with a shape
parameter of 2 and the false-positive data is from an exponential distribution. Table 7 shows
the relative bias in estimating the hazard ratio when n = 300, the censoring rate = 30%, and the
hazard ratio is 0.75 with the PPV ranging from 0.5 to 0.9 in increments of 0.1. It appears that
under these conditions the naïve method performs slightly better than the EM procedure based

Table 7. Relative bias (%) for theWeibull simulationmodel at n = 300 per group, HR = 0.75, and 0.3 of censored rate.

Method PPV

0.5 0.6 0.7 0.8 0.9

Naive 11.63 11.12 13.45 18.12 25.69

EM 17.45 16.35 18.49 20.89 26.98

doi:10.1371/journal.pone.0153525.t007

Table 6. Relative bias (%) for the case of PPV = 1.00 at n = 300 per group.

HR

0.65 0.70 0.75 0.80 0.85

CR Naive EM Naive EM Naive EM Naive EM Naive EM

0.3 3.13 4.38 3.21 4.65 2.90 3.93 3.07 4.08 2.88 3.95

0.4 3.61 4.92 3.55 4.88 3.26 4.53 3.40 4.87 3.48 4.79

CR: censored rate; HR: hazard ratio

doi:10.1371/journal.pone.0153525.t006
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on the Cox PH model. This indicates that violation of the distribution assumption can lead to a
biased estimate of the hazard ratios. To remedy such a situation, future work will extend our
proposed EM procedure to proportional hazards models using the parametric Weibull model,
which has hazard function

hðtjzÞ ¼ ptp�1expðlzÞ;
for parameter p>0.
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