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Abstract
Glucose-6-phosphate dehydrogenase (G6PD) provides the reducing agent NADPH to

meet the cellular needs for reductive biosynthesis and the maintenance of redox homeosta-

sis. G6PD-deficient cells experience a high level of oxidative stress and an increased sus-

ceptibility to viral infections. Cyclooxygenase-2 (COX-2) is a key mediator in the regulation

of viral replication and inflammatory response. In the current study, the role of G6PD on the

inflammatory response was determined in both scramble control and G6PD-knockdown

(G6PD-kd) A549 cells upon tumor necrosis factor-α (TNF-α) stimulation. A decreased

expression pattern of induced COX-2 and reduced production of downstream PGE2

occurred upon TNF-α stimulation in G6PD-kd A549 cells compared with scramble control

A549 cells. TNF-α-induced antiviral activity revealed that decreased COX-2 expression

enhanced the susceptibility to coronavirus 229E infection in G6PD-kd A549 cells and was a

result of the decreased phosphorylation levels of MAPK (p38 and ERK1/2) and NF-κB. The

impaired inflammatory response in G6PD-kd A549 cells was found to be mediated through

NADPH oxidase (NOX) signaling as elucidated by cell pretreatment with a NOX2-siRNA or

NOX inhibitor, diphenyleneiodonium chloride (DPI). In addition, NOX activity with TNF-α

treatment in G6PD-kd A549 cells was not up-regulated and was coupled with a decrease in

NOX subunit expression at the transcriptional level, implying that TNF-α-mediated NOX sig-

naling requires the participation of G6PD. Together, these data suggest that G6PD defi-

ciency affects the cellular inflammatory response and the decreased TNF-α-mediated

antiviral response in G6PD-kd A549 cells is a result of dysregulated NOX/MAPK/NF-κB/

COX-2 signaling.
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Introduction
Glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose mono-
phosphate shunt, is ubiquitously expressed in human tissues [1]. G6PD involves the oxidation
of glucose-6-phosphate to 6-phosphogluconolactone, which then produces a reduced form of
nicotinamide adenine dinucleotide phosphate (NADPH) to fulfill the cellular needs for cellular
reductive biosynthesis and redox balance [2]. G6PD deficiency affects cellular functions in
nucleated cells, including dysregulated cellular signaling, increased cell senescence or apoptosis
and enhanced susceptibility to viral infection [1]. G6PD deficiency increases the risk for degen-
erative diseases [3–6]. Knockdown of G6PD by RNA interference renders HepG2 cells highly
susceptible to H2O2-induced cell death because of impaired dephosphorylation signaling [7].
In macrophages, G6PD increases the activation of the p38 MAPK (Mitogen-activated protein
kinases) and NF-κB (Nuclear factor of kappa light polypeptide gene enhancer in B-cells) path-
ways, which may lead to an increased inflammatory response [8]. These findings indicate that
the G6PD plays an important role in modulating cellular signaling and physiological
responses.

Airway epithelial cells are the first barrier of defense in the lung and are equipped with mul-
tiple lines of innate defense mechanisms to fight against invading pathogens, including viruses
[9, 10]. Virus-infected airway epithelial cells express various cytokines that attract immune
cells to combat infection and tissue damage [10]. Tumor necrosis factor-α (TNF-α) is a pleio-
tropic cytokine that plays an important role in orchestrating the immune response. It is
induced in activated monocyte/macrophages, where its systemic effect promotes a network of
inflammatory gene expression, including cytokines, adhesion molecules, and growth factors
[11, 12].

The redox status influences the micro-environment in cells, which in turn affects physiolog-
ical functions [13]. NADPH oxidases (NOXs) are a ROS (Reactive oxygen species) source in
cells besides mitochondria [14–16]. NOXs are a family of proteins, including NOX1, NOX2,
NOX3, NOX4, NOX5, Duox1 and Duox2, and play a major role in regulating cellular func-
tions, especially membrane-bound NOX in different cell types [17, 18]. NOX uses NADPH as
a substrate to produce ROS that can induce cell signaling or directly interact with pathogens to
protect cells from infection [19–21]. A change in redox status has been implicated in initiating
inflammatory responses through the activation of transcription factors, such as NF-κB, AP-1,
and other signal transduction pathways, including MAPKs, leading to the enhanced expression
of pro-inflammatory genes [22–24]. The inflammatory response is also a powerful weapon for
the host to be able to fight against pathogen infections. Because G6PD plays a pivotal role in
maintaining cellular redox homeostasis, it will be of paramount importance to delineate how
G6PD deficiency can affect immune responses as a result of redox imbalance.

In the present study, TNF-α was used as a stimulus to elucidate whether G6PD knockdown
affects the inflammatory response against viral infection. We characterized the effects and
mechanisms of G6PD knockdown in the inflammatory response, and compared the antiviral
response in scramble and G6PD-knockdown (G6PD-kd) A549 cells modulated by COX-2. The
effects of G6PD knockdown on the induction level of COX-2 and PGE2 was analyzed. Further-
more, the involvement of signaling pathway known to mediate regulation of COX-2/PGE2 on
coronavirus infection was identified. The results clearly show that the down-regulation of
COX-2 and subsequent decline of PGE2 impair antiviral response in G6PD-kd A549 cells upon
TNF-α treatment. Most importantly, we have provided evidence that G6PD plays an important
role in activating NOX/MAPK/NF-κB/COX-2 cascade and protects cells against viral
infection.
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Materials and Methods

Reagents
We purchased Dulbecco's modified Eagle's medium (DMEM) from Invitrogen (Carlsbad, CA,
USA). Fetal bovine serum (FBS) was obtained from Corning (Now York, USA). Recombinant
human TNF-α was purchased from Peprotech (Hamburg, Germany). Diphenyleneiodonium
chloride (DPI), U0126, SB203580, Celecoxib, Tanshinone ΙΙA, Lucigenin, NADPH and β-
Actin (AC-15) antibodies were obtained from Sigma (St. Louis, MO, USA). Helenalin was
acquired from Biomol (Plymouth Meeting, PA, USA). Anti-G6PD was obtained from Genesis
Biotech (Taipei, Taiwan). Anti-TNFR1 (sc-52739), anti-COX-2 (sc-19999), anti-NOX-1 (sc-
25545), anti-NOX2 (sc-20782), anti-phospho-c-JUN (sc-822), anti-p67phox (sc-15342), anti-
Rac1 (sc-217), donkey-anti-goat IgG-HRP (sc-2056), goat anti-rabbit IgG-HRP (sc-2004) and
goat anti-mouse IgG-HRP (sc-2005) antibodies were obtained from Santa Cruz (Santa Cruz,
CA, USA). We purchased anti-phospho-p38 MAPK (#9211), anti-phospho-ERK1/2 MAPK
(#4377), anti-phospho IκBα (#2859) and anti-phospho p65 (#3031) antibodies from Cell Sig-
naling (Danvers, MA, USA). Luciferase assay kit was purchased from Promega (Madison, WI,
USA).

Cell cultures and TNF-α treatment
Human lung adenocarcinoma A549 cell line was obtained from the American Type Culture
Collection (Rockville, MD, USA) and cultured in DMEMmedium supplemented with 10%
FBS, 100 units/ml penicillin, and 100 μg/ml streptomycin (Gibco, USA) at 37°C and 5% CO2.
G6PD-kd and scramble control A549 cells were established as previously described [25] by
transfecting with either G6PD-RNAi or scrambled vector using LF2000 according to manufac-
turer's instructions (Invitrogen). Finally, the stably transfected cell lines were selected with
300 μg/ml G418, and the knockdown efficiency was verified using G6PD activity and western
blot.

After seeding A549 cells for 24 h, the complete medium was removed and replaced by
serum free DMEMmedium for 24 h; TNF-α was treated and incubated for the indicated time
intervals.

G6PD activity assay
The activity of G6PD in A549 cells was determined by a method modified from previously
described [25]. Briefly, cells were collected by centrifugation at 1,500 rpm for 5 min at 4°C and
resuspended in lysis buffer (1% Triton X-100, 0.05% SDS, 150 mMNaCl, 50 mM Tris-HCl pH
7.4, 1 mM NaF and 1 mM EGTA). The cell suspension was disrupted by a vigorous vortex. The
resulting lysate was cleared by centrifugation at 12, 000 rpm for 15 min at 4°C, and the super-
natant was used in the assay. The mixture consisted of 25 μg of protein in 1 ml of assay buffer
(4 mMNADP+, 50 mMMgCl2, 50 mM Tris–HCl (pH 8.0) and 4 mM glucose 6-phosphate).
The Bradford method was used to determine protein concentration.

Quantitative PCR analysis
Total RNA was extracted from A549 cells by using Trizol reagent (Invitrogen). cDNA was syn-
thesized by using oligo-dT as the primer in the presence of reverse transcriptase (Superscript
III, Invitrogen). The mRNA level of targeted gene was assayed by using SYBR Green reagents
(Yeastern Biotech, Taipei, Taiwan) in a real time thermocycler (Bio-Rad, Taipei, Taiwan). The
Results were based on at least three independent experiments, and the mean fold changes were
calculated. β-Actin was used as an endogenous control for normalization. The target mRNA
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levels were examined using the following primer sets: NOX2, 5'-GCTATGAGGTGGTGAT
GTTAGT-3' (Forward) and 5'-CTTCAGATTGGTGGCGTTATTG-3' (Reverse); NOX1, 5'-
GCAAATGCTGTCACCGATATTC-3' (Forward) and 5'- TGCAGATTACCGTCCTTATT
CC-3' (Reverse); Rac1, 5'- CCTGATGCAGGCCATCAAG-3' (Forward) and 5'-AGTAGGGAT
ATATTCTCCAGGAAATGC-3' (Reverse); p67phox, 5'-CGGACAAGAAGGACTGGAAG-3'
(Forward) and 5'-ACATGCAGCCAATGTTGAAG-3' (Reverse); β-actin, 5'- TCCACCTT
CCAGCAGATG-3' (Forward) and 5'- GTGTAACGCAACTAAGTCATAG-3' (Reverse).

Human coronavirus 229E infection
The human coronavirus strain 229E was obtained from Dr. Lai MM (Academia Sinica, Tai-
wan) and reproduced as previously described [26]. Virus pools were stored at -70°C until used.
Approximately 3 × 105 cells were seeded in a 6–well culture plates. Until the time point after
TNF-α treatment, the culture was subjected to a human coronavirus 229E infection. A549 cells
were infected with human coronavirus 229E at the MOI of 0.1 PFU.

Plaque Assay
A549 cells were infected with HCoV-229E (0.1 MOI) for 24 h. After infection, the viral titer
was calculated according to the plaque formation on the A549 cells, as described previously
[26].

Measurement of PGE2 secretion
A549 cells were seeded in 6–well culture plates. After reaching confluence, the cells were
treated with TNF-α (15 ng/ml) at 37°C. After treatment for the indicated time intervals, the
culture medium was obtained and stored at − 80°C until examined. PGE2 enzyme immunoas-
say kit (Cayman, MI, USA) was used to analyze the secretion of PGE2 according to the manu-
facturer's instructions.

Measurement of NOX activity
After treatment with TNF-α, cells were collected and centrifuged at 1,500 rpm for 12 min at
4°C. The cell pellet was resuspended in 1 × PBS, and kept on ice. NOX activity was measured
by a method modified from a previously described method [27]. Briefly, the assay mixtures
containing either lucigenin (20 μM) or NADPH (1 μM), and cell suspension (5 × 103 cells) was
added to initiate the reaction in a multi-mode microplate reader (Hidex, Turku, Finland).
Chemiluminescence was continuously measured for 15 min, and the measurement of the pro-
tein concentration was used as a normalization strategy.

Measurement of COX-2 promoter activity
The human COX-2 promoter activity was measured as described previously [28] by using Dual
Luciferase Assay (Promega, Madison, WI, USA) with a GLOMAX luminometer. The cellular
extract was assayed for luciferase activity normalized to Renilla luciferase levels. Data were pre-
sented relative to pGL3-basic levels (RLU).

Transfection assay
Human siRNA of universal negative control (NC) and NOX2 were purchased from Sigma
(St. Louis, USA). Transfection of target siRNAs (100 nM) was performed by using Lipofecta-
mine 2000 reagent based on the manufacturer's instructions.
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Western blot analysis
After incubation, cells were washed with 1× PBS and lysed in sample buffer (5% SDS, 12.5%
β-mercaptoethanol, 0.5 M Tris-HCl (pH 6.8) and 25% Glycerol). The prepared samples
were resolved on a 12% SDS-PAGE, electro-transferred onto a PVDF membrane (Millipore,
Billerica, MA, USA), and reacted with various antibodies for 24 h. The target proteins were
detected with horseradish peroxidase-conjugated secondary antibodies for 1 h and visual-
ized using the enhanced chemiluminescence substrate (PerkinElmer, Waltham, MA, USA)
on Fuji SuperFilms.

Statistical analysis
Results were represented as the mean ±SD from at least three independent experiments. The
two-tailed Student’s t test was applied to investigate the difference between groups. A p value
of� 0.05 and� 0.01 was considered statistically significant.

Results

G6PD knockdown diminishes the replication level of coronavirus
through regulation of COX-2/PGE2 upon TNF-α stimulation
To investigate the role of G6PD on the inflammatory response mediated by TNF-α stimula-
tion, G6PD-kd A549 cells were established. As shown in S1A and S1B Fig, G6PD activities
and protein expression were decreased by approximately 90% in G6PD-kd A549 cells com-
pared with scramble control cells. The effect of G6PD deficiency on the COX-2 expression
transcriptional level upon TNF-α treatment was determined. G6PD-kd A549 cells displayed
decreased COX-2 mRNA expression in a time-dependent manner, and COX-2 promoter
activity was attenuated by G6PD silencing (Fig 1A and 1B). At the translational level, TNF-
α enhanced the accumulation of COX-2 protein in a time-dependent manner with a maxi-
mal response within 3–6 h in A549 scramble control cells (Fig 1C), similar to previous
reports [29]. A decreased pattern of COX-2 protein was observed in G6PD-kd cells (Fig 1C).
In parallel with the increased expression of COX-2, TNF-α also induced a time-dependent
increase of PGE2 synthesis, the downstream arachidonic acid metabolite product of COX-2.
G6PD-kd A549 cells exhibited less PGE2 synthesis than that of scramble control cells (Fig
1D). Our results demonstrated that G6PD acts as a positive regulator in the TNF-α-trig-
gered inflammatory response and is not a result of the levels of TNFR1 expression in these
two types of cells (S1B Fig).

Decreased COX-2 expression makes airway epithelial cells susceptible to viral infection [30,
31]. Using plaque assay, we found that the progeny viral particle derived from infected G6PD-

Fig 1. G6PD deficiency increases the replication level of coronavirus via down-regulation of TNF-α-induced COX-2 expression and its
downstreammetabolite PGE2 production in A549 cells. (A) Scramble control and G6PD-kd A549 were treated with 15 ng/ml TNF-α for the indicated time,
and the expression of COX-2 mRNA was investigated by quantitative PCR. Data are reported as the means ±SD, n = 3. *p<0.05. (B) Scramble control and
G6PD-kd A549 were treated with 15 ng/ml TNF-α for 24 h. COX-2 promoter activity was determined by the luciferase assay. Data are reported as the means
±SD, n = 3. *p<0.05. (C) The expression level of COX-2 protein upon 15 ng/ml TNF-α treatment at different time courses was shown, and β-actin was present
as the loading control. Numbers represent relative fold differences of protein levels on the basis of densitometer quantitation. Data are means ±SD of three
separate experiments, *p<0.05 and **p<0.01 represent levels of significant difference when comparing scramble control with TNF-α treatment at the
corresponding time points. (D) PGE2 secretion by 15 ng/ml TNF-α stimulation was detected by ELISA. Data are reported as the means ±SD, n = 3. *p<0.05.
(E) Upper panel: Scramble control and G6PD-kd A549 cells were infected with coronavirus (0.1 MOI) for 8 h, and the infected cells were harvested for
analyzing viral mRNA expression. Data are reported as the fold change normalized to infected scramble control cells. Data are reported as the means ±SD,
n = 3. *p<0.05. Lower panel: Scramble control and G6PD-kd A549 cells were infected with HCoV-229E (0.1 MOI) for 24 h then viral particle was harvested
and virus titer was determined using plaque assay. (F) Scramble control and G6PD-kd A549 cells were infected with coronavirus (0.1 MOI) for 8 h upon 15
ng/ml TNF-α with or without 10 μM celecoxib co-pretreatment, and the infected cells were harvested for analyzing viral mRNA expression. Data are reported
as the fold normalized to infected control cells. Data are reported as the means ±SD, n = 3. *p<0.05.

doi:10.1371/journal.pone.0153462.g001
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kd cells was significantly higher compared with infected scramble control cells and the amount
of viral particles was comparable with viral N gene expression (Fig 1E). These findings are con-
sistent with our previous findings [26, 32]. We further analyzed whether impaired COX-2/
PGE2 expression via TNF-α stimulation plays a role in increasing viral replication in G6PD-kd
cells and used viral gene expression to represent viral replication. In doing so, we found that

Fig 2. G6PD knockdown impairs the phosphorylation of MAPKs signaling. (A, B) The expression level of COX-2 was assessed by western blot in
scramble control and G6PD-kd A549 cells treated with 15 ng/ml TNF-α or combined with MAPK inhibitor (SB203580, p38 inhibitor; U0126, MEK1/2 inhibitor)
pre-treatment for 3 h. β-Actin expression was shown as the loading control. Numbers represent relative fold differences of protein levels on the basis of
densitometer quantitation. Data are means ±SD of three separate experiments, *,#p<0.05 indicate significant difference between cells with or without inhibitor
pretreatment upon TNF-α stimulation. (C, D) The phosphorylation level of p38 (C), ERK1/2 (D) were determined by western blot in scramble control and
G6PD-kd A549 cells stimulated with 1.5 or 15 ng/ml TNF-α in different time courses. β-Actin expression was shown as the loading control. Numbers
represent relative fold differences of protein levels on the basis of densitometer quantitation. Data are means ±SD of three separate experiments, *p<0.05
indicates significant difference comparing scramble control with TNF-α treatment at the corresponding time points.

doi:10.1371/journal.pone.0153462.g002
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Fig 3. G6PD knockdown dysregulates the activation of c-JUN and NF-κB signaling. (A) Scramble control and G6PD-kd A549 cells were pretreated with
Tanshinone IIA (TSIIA), AP-1 inhibitor for 2 h and then treated with 15 ng/ml TNF-α for 3 h. The expression level of COX-2 was assessed by western blotting
assay. β-Actin expression was shown as the loading control. Numbers represent relative fold differences of protein levels on the basis of densitometer
quantitation. Data are means ±SD of three separate experiments, *,#p<0.05 indicate significant difference between cells with or without inhibitor pretreatment
upon TNF-α stimulation. (B) The expression level of COX-2 was determined by western blot under 15 ng/ml TNF-α stimulation or combined with pre-
treatment of NF-κB inhibitor, Helenalin, for 3 h in scramble control and G6PD-kd A549 cells. β-Actin expression was shown as the loading control. Numbers
represent relative fold differences of protein levels on the basis of densitometer quantitation. Data are means ±SD of three separate experiments, *,#p<0.05
indicate significant difference between cells with or without inhibitor pretreatment upon TNF-α stimulation. (C) The phosphorylation level of c-JUN was
determined by western blot in scramble control and G6PD-kd A549 cells stimulated with 1.5 or 15 ng/ml TNF-α in different time courses. β-Actin expression
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TNF-α inhibited viral replication in both scramble control and G6PD-kd cells (Fig 1F). Inhibi-
tion of TNF-α-induced COX-2 expression by celecoxib (COX-2 inhibitor) enhanced viral rep-
lication in scramble control cells but not in G6PD-kd A549 cells. These results indicate that
TNF-α-induced COX-2 expression inhibits viral replication; increased susceptibility to viral
infection in G6PD-kd A549 cells may occur by an impaired inflammatory response upon cyto-
kine stimulation.

Phosphorylation levels of MAPKs signaling are decreased in G6PD-kd
cells upon TNF-α treatment
TNF-α induces MAPKs activation in human airway epithelial cells, and MAPKs phosphoryla-
tion results in COX-2 induction [33]. Scramble control and G6PD-kd A549 cells were pre-
treated with SB203580 (an inhibitor of p38 MAPK) or U0126 (an inhibitor of MEK1/2)
followed by TNF-α treatment, showing that the inhibition of the MAPKs pathway can impair
TNF-α-induced COX-2 expression (Fig 2A and 2B). G6PD-kd cells displayed lower phosphor-
ylation level of p38 and ERK1/2 than that of scramble control cells at various time points upon
TNF-α treatment (Fig 2C and 2D). The JNK phosphorylation level was not altered (data not
shown). These data indicate that decreased expression levels of COX-2 are tightly correlated
with impaired phosphorylation levels of MAPKs signaling upon TNF-α treatment in G6PD-kd
A549 cells when compared to scramble control cells.

A decreased phosphorylation levels of c-JUN and NF-κB are observed
in G6PD-kd A549 cells upon TNF-α treatment
Pretreatment with Tanshinone ΙΙA, an inhibitor of AP-1, downstream of the MAPKs pathway
blocked TNF-α-induced COX-2 expression in scramble control and G6PD-kd A549 cells (Fig
3A). G6PD-kd A549 cells have a decreased phosphorylation level of c-JUN (Fig 3C). Inhibition
of NF-κB activation by Helenalin attenuated TNF-α-induced COX-2 protein expression (Fig
3B). Decreased phosphorylation levels of p65 and IκBα were observed in G6PD-kd A549 cells
upon TNF-α treatment (Fig 3D) compared with scramble control cells. These results indicate
that impaired COX-2 expression induced by TNF-α treatment is not only correlated with
decreased phosphorylation of MAPKs but also correlated with the reduced activation of NF-
κB in G6PD-kd A549 cells.

NOX is involved in the activation of TNF-α-mediated p38 MAPK
phosphorylation and COX-2 expression
The production of ROS by NOX is critical for cellular signaling and antimicrobial host defense
[34–36]. In this study, we showed that transfection with NOX2 targeting siRNA reduced the
NOX2 mRNA level (Fig 4A), and then attenuated TNF-α-induced p38 MAPK phosphoryla-
tion and COX-2 expression (Fig 4B and 4C) in both scramble control and G6PD-kd A549
cells; NF-κB was also inhibited (data not shown). To further confirm these results, a pharmaco-
logical inhibitor of NOX, DPI was used. As shown in S2A and S2B Fig, pretreated with DPI

was shown as the loading control. Numbers represent relative fold differences of protein levels on the basis of densitometer quantitation. Data are means
±SD of three separate experiments, *p<0.05 indicates significant difference between scramble control and G6PD-kd cells upon TNF-α treatment at the
corresponding time points. (D) The phosphorylation levels of p65 and IκBα were investigated in scramble control and G6PD-kd A549 cells upon TNF-α
treatment (15 ng/ml) in different time courses. β-Actin expression was shown as the loading control. Numbers represent relative fold differences of protein
levels on the basis of densitometer quantitation. Data are means ±SD of three separate experiments, *p<0.05 and **p<0.01 represent levels of significant
difference between scramble control and G6PD-kd cells upon TNF-α treatment at the corresponding time points.

doi:10.1371/journal.pone.0153462.g003
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decreased the expression level of phospho-p38 and COX-2. These results revealed that TNF-α-
triggered MAPK/NF-κB/COX-2 signaling is through NOX activation.

G6PD is required for the up-regulation of NOX upon TNF-α treatment to
combat against viral replication
G6PD provides NADPH for the activation of NOX [25]. A lucigenin chemiluminescence assay
was used to ascertain the link between the G6PD knockdown and NOX activation. NOX acti-
vation was not significant in G6PD-kd A549 cells, while an increase in NOX activation was
observed within 120 min in scramble control A549 cells upon TNF-α treatment (Fig 5A). In
addition, G6PD knockdown decreased the expressions of NOX subunits, as indicated by the
transcriptional and translational levels of the NOX subunits compared to those of the scramble
control (Fig 5B and 5C). Moreover, NOX2 inhibition was accompanied by an increase in viral
replication in scramble control and G6PD-kd A549 cells (Fig 5D and S2C Fig). These results
suggest that G6PD modulated NOX activity by providing a substrate for NOX and affecting
the expression of NOX subunits. In summary, these findings indicate that G6PD knockdown
impairs TNF-α/MAPK/NF-κB/COX-2 signaling as a result of insufficient NOX activation,
leading to the eventual increase in susceptibility to viral infection.

Discussion
G6PD deficiency is linked to certain chronic and infectious diseases [1, 37–39]. The signifi-
cance of the G6PD expression in the inflammatory response, especially in airway epithelial
cells, is largely unknown. The present study is the first to show that G6PD knockdown inhibits
MAPKs and NF-κB signaling upon TNF-α treatment, resulting in a significant decrease in
COX-2 expression and PGE2 production. The underlying mechanism is a result of the
decreased NOX activation as well as NOX subunits expression in G6PD-kd cells. These results
suggest that G6PD deficiency impairs the cellular inflammatory response and has implications
in the pathogenesis of infectious diseases in G6PD-deficient individuals.

G6PD derived NADPH is essential for NOX activation in vitro and in vivo [40–42]. G6PD
not only provides a key substrate source for NOX, but may regulate the expression of NOX
subunits because the mRNA levels of NOX2 components (p40phox, p47phox, and p67phox) are
increased by G6PD overexpression in macrophages [8]. Consistent with this report, we have
observed that G6PD knockdown markedly decreased the expression level of NOX subunits in
parallel with an absence of NOX induction by TNF-α. G6PD can control nuclear NADPH-
dependent superoxide production by NOX4 [43], and G6PD is colocalized with NOX in high

Fig 4. TNF-α-triggered p38 MAPK activation and COX-2 expression are mediated by NOX signaling.
(A) The mRNA level of NOX2 was determined in universal negative control (NC) or NOX2-targeting siRNA
transfected scramble control and G6PD-kd A549 cells. After transient transfection, cells were harvested for
analyzing NOX2mRNA expression. Data are the means ±SD, n = 3. *p<0.05 indicates significant difference
between cells with or without NOX2 siRNA pretreatment. (B) The phosphorylation level of p38 was
determined in scramble control and G6PD-kd A549 cells upon 15 ng/ml TNF-α stimulation combined with
pre-treatment of universal negative control (NC) or NOX2-targeting siRNA. β-Actin expression was shown as
the loading control. Numbers represent relative fold differences of protein levels on the basis of densitometer
quantitation. Data are means ±SD of three separate experiments, *,#p<0.05 indicate significant difference
between cells with or without NOX2 siRNA pretreatment upon TNF-α stimulation. (C) The expression level of
COX-2 was determined under 15 ng/ml TNF-α stimulation for 3 h in universal negative control (NC) or
NOX2-targeting siRNA transfected scramble control and G6PD-kd A549 cells. β-Actin expression was shown
as the loading control. Numbers represent the relative fold differences of protein levels on the basis of
densitometer quantitation. Data are means ±SD of three separate experiments, *,#p<0.05 indicate significant
difference between cells with or without NOX2 siRNA pretreatment upon TNF-α stimulation.

doi:10.1371/journal.pone.0153462.g004
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glucose conditions, while providing NADPH for NOX activation [44] is an additional evidence
to support the hypothesis that G6PD can modulate NOX activity.

Fig 5. G6PD is required for the TNF-α-induced activation of NOX signaling and antiviral response. (A) The activity of NOX was measured by a
lucigenin chemiluminescence assay. Data are the means ±SD, n = 3. *p<0.05. (B) The mRNA level of NOX subunits were determined by quantitative PCR in
scramble control and G6PD-kd A549 cells. Data are the means ±SD, n = 3. *p<0.05. (C) The expression level of NOX subunits were determined by western
blot in scramble control and G6PD-kd A549 cells. β-Actin expression was shown as the loading control. Numbers represent relative fold differences of protein
levels on the basis of densitometer quantitation. Data are means ±SD of three separate experiments, *p<0.05 vs. scramble control. (D) Scramble control and
G6PD-kd A549 cells were infected with coronavirus (0.1 MOI) for 8 h upon universal negative control (NC) or NOX2-targeting siRNA pretreatment, and the
infected cells were harvested for analyzing viral mRNA expression. Data are the means ±SD, n = 3. *p<0.05.

doi:10.1371/journal.pone.0153462.g005
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Physiologically, the activation of NOX can trigger the production of chemokines and
inflammation-associated proteins upon viral infection [19, 45, 46]. NOX2 and Duox play a role
in the clearance of viral infection [35, 47, 48]. In the present study, we have found that the rep-
lication level of coronavirus is decreased by NOX inhibition and COX-2 activation as well as

Fig 6. Proposed schematic representation of the signaling pathway involved in the TNF-α-induced NOX/MAPK/c-JUN/NF-κB/COX-2 signaling
impaired by G6PD knockdown in A549 cells. Physiologically, stimulus by a low dosage of TNF-α causes cellular ROS production through the activation of
NOX and downstream signaling (MAPK/NF-κB). The activated NOX/MAPK/c-JUN/NF-κB signaling is concomitant with the increased expression of COX-2
and production of PGE2. G6PD knockdown results in the reduced generation of cellular NADPH and an impairment of TNF-α-induced NOX activation.
Consequently, COX-2 expression and PGE2 production are also less in G6PD-knockdown cells, suggesting the participation of G6PD in the TNF-α-induced
inflammatory response against viral infection.

doi:10.1371/journal.pone.0153462.g006
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PGE2 secretion upon TNF-α treatment are diminished in G6PD-kd A549 cells. More interest-
ingly, increased viral replication is observed by using COX-2 inhibitor in A549 cells. Together,
these findings indicate that COX-2/PGE2 production actually improves anti-coronaviral infec-
tion in airway epithelial cells. Such notion is also supported by the finding that viral N gene is
decreased by pretreatment with exogenous PGE2 (data not shown). These data are also in
agreement with other group's findings, showing that COX-2/PGE2 production inhibits viral
replication via the upregulation of antiviral cytokines (i.e. IL-32, IL-27, IFN-λ1) [30–31, 49] in
A549 cells. In contrast to our observation, it has been reported that inhibition of COX-2 and
PGE2 enhanced antiviral activity against virus infection in various kinds of cells [50–52]. Possi-
ble explanations for these contradicting results include different virus species, conditions for
the pretreatment of TNF-α in cells, and different regulatory signalings between coronavirus
and other upper respiratory tract virus for triggering innate immune response. Nevertheless,
our new findings provide additional argument for the notion that NOX-mediated COX-2 sig-
naling can be modulated by G6PD for triggering antiviral response.

Our new findings provide a link between G6PD and downstream NF-κB signaling that has
been documented to be involved in several cellular responses to stimuli [53], particularly in the
regulation of the immune response to pathogen stimulation. Dysregulation of NF-κB has been
implicated in inflammation, viral infection, autoimmune diseases and improper immune
development [54–56]. It has been found that G6PD-overexpressing macrophages increase the
expression of proinflammatory genes via the activation of NF-κB [8]. Interestingly, we have
also demonstrated that G6PD knockdown impairs NF-κB signaling triggered by NOX activity
in the present report. When cells are infected by pathogens, cytokines are released, followed by
the induction of inflammatory mediators. The increased levels of inflammatory mediators play
a protective role or initiate an irreversible immune response leading to cell death. Thus, the
current study provides novel evidence to suggest that TNF-α-mediated NF-κB signaling is, in
part, modulated by a close interaction between G6PD and NOX. Additional studies are needed
to elucidate the detailed interaction between these two well-known enzymes.

In conclusion, a mechanism is presented to explain how G6PD knockdown A549 cells can
inhibit the TNF-α-mediated inflammatory response. TNF-α-mediated COX-2 expression is
decreased by G6PD knockdown via the down-regulation of NOX-dependent pathways. G6PD
knockdown can affect viral infection by decreasing the epithelial inflammatory response. A
schematic representation depicts the signaling mechanism concerning G6PD deficiency on
COX-2 expression (Fig 6). These findings enhance the understanding of how TNF-α signaling
is affected by G6PD knockdown via a close interaction with NOX, and these novel findings
should have potential clinical implications.

Supporting Information
S1 Fig. Establishment of G6PD-knockdown A549 cells. A549 cells were transfected with
either G6PD-RNAi vector (G6PD-knockdown) or scrambled vector (Scramble control) by use
of LF2000 as mentioned in Materials and Methods. The stably transfected cell lines were
selected with 300 μg/ml G418. (A) Protein extracts of G6PD-knockdown A549 (G6PD-kd) and
scramble control clones were used to measure G6PD activities. The results were presented as
the mean values ± SD from three independent experiments. �p<0.05. (B) Equal amounts of
proteins individually from the G6PD-kd and scramble control cells were applied to western
blot analysis using G6PD and TNFR1 antibodies. β-Actin was present as the loading control.
Numbers represent the relative fold differences of protein levels on the basis of densitometer
quantitation. Data are means ±SD of three separate experiments, �p<0.05 vs. scramble control.
(TIF)
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S2 Fig. NOX is implicated in the regulation of TNF-α-mediated signaling and antiviral
response. (A) The phosphorylation level of p38 was determined in scramble control (Upper)
and G6PD-kd A549 cells (Lower) upon different dosages of TNF-α stimulation combined with
or without pre-treatment of DPI for 10 min. Quantitations of p-p38 MAPK protein expression
was obtained by densitometric analysis. Data are means ±SD of three separate experiments, �,
#p<0.05 vs. cells upon TNF-α stimulation without DPI pretreatment. (B) The expression level
of COX-2 was determined under TNF-α stimulation or combined with pre-treatment of DPI
for 3 h in scramble control and G6PD-kd A549 cells. β-Actin expression was shown as the
loading control. Numbers represent the relative fold differences of protein levels on the basis of
densitometer quantitation. Data are means ±SD of three separate experiments, �,#p<0.05 vs.
cells upon TNF-α stimulation without DPI pretreatment. (C) Scramble control A549 cells were
infected with coronavirus (0.1 MOI) for 8 h upon 10 μMDPI pretreatment, and the infected
cells were harvested for analyzing viral mRNA expression. Data are the means ±SD, n = 3.
�p<0.05.
(TIF)
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