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Abstract

Improvement in litter size has become of great interest in the pig industry because fecundity
is directly related to sow reproductive life. Improved reproduction has thus been achieved
by elucidating the molecular functions of genes associated with fecundity. In the present
study, we identified differentially expressed genes (DEGs) via transcriptomic analysis using
RNA-sequencing (RNA-Seq) in Berkshire pig placentas from larger (LLG, mean litter size
>12) and smaller (SLG, mean litter size < 6.5) litter size groups. In total 588 DEGs were
identified (p < 0.05, > 1.5-fold change), of which 98 were upregulated, while 490 were down-
regulated in the LLG compared with the SLG. Gene Ontology (GO) enrichment was also
performed. We concluded that 129 of the 588 DEGs were closely related to litter size
according to reproduction related genes selected based on previous reports, as 110 genes
were downregulated and 19 upregulated in the LLG compared with the SLG. RT-gPCR uti-
lizing specific primers targeting the early growth response 2 (EGR2), pheromaxein ¢ subunit
(PHEROC) and endothelial lipase (L/IPG) genes showed high accordance with RNA-Seq
results. Furthermore, we investigated the upstream regulators of these three genes in the
placenta. We found that WNT9B, a Wnt signaling pathway molecule, and IL-6, known induc-
ers of EGR2 and LIPG, respectively, were significantly increased in LLG compared with
SLG. We believe that the induction of IL-6 and LIPG may play an important role in increasing
nutrition supply through the placenta from the sow to the piglet during gestation. These
results provide novel molecular insights into pig reproduction.

Introduction

Improved litter size is a principal interest in the pig industry and among breeders. Litter size is
a complex trait composed of many subordinated traits, such as ovulation rate, embryonic/fetal
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survival, uterine capacity, and others. Moreover, since selection by litter size has its limitations,
including low heritability and sex-restriction, various efforts have been made to identify factors
influencing litter size. These efforts have included optimizing nutrition and husbandry, man-
agement of sows, and genetic factors [1]. Genetic selection for increased litter size has in turn
increased the prolificacy of sows and has drastically improved over the past 10 years, resulting
in an average increase of 1.8 piglets per litter [2].

The first successful evidence of a candidate gene associated with litter size was estrogen recep-
tor 1 (ESRI), which was identified using restriction fragment length polymorphism (RFLP) anal-
ysis [3]. Retinol-binding protein 4 (RBP4), erythropoietin receptor (EPOR), amphiregulin
(AREG), epidermal growth factor (EGF), and others have also been determined to be associated
with litter size [1, 4-6]. In addition, several expression studies performed in pigs have developed
a profile of differentially expressed genes (DEGs) and even microRNAs (miRNAs) in endome-
tria, ovaries and placentas [7-9]. The mRNA of the oligoadenylate synthetase 1 (OASI) gene
was highly expressed, whereas that of the RBP4, thiosulfate sulfurtransferase (TST) and vitronec-
tin (VTN) genes were lowly expressed in the ovaries of a high prolificacy group compared with a
low prolificacy group [7]. Moreover, the investigation uncovered the location of candidate genes
according to significant quantitative trait loci (QTL) previously reported by Noguera et al. [7,
10]. The porcine endometrial transcriptome was also analyzed during the implantation period
[8]. The androgen receptor (AR) was revealed to have a close interaction with genes associated
with important processes during early pregnancy [8]. Recent reports on differential expression
of miRNAs determined that selected miRNAs affect cell growth, angiogenesis and trophoblast
differentiation, and these impacts may be important for placental growth and function [9].
Moreover, fetal loss in the pig is mostly a result of decreased uterine capacity and placental effi-
ciency [11, 12]. Therefore, to understand the molecular mechanisms by which the structure and
function of the placenta may be regulated is essential to increasing litter size [11]. Historically,
the Chinese Meishan pig breed is known for its prolificacy and large litter size [13]. Some evi-
dence also suggests that the Chinese Meishan may have improved uterine capacity and placental
efficiency [14]. However, the reproductive rate of Berkshire pigs is lower than that of other pig
breeds, although the production of Berkshire pigs has been increasing recently [15]. Improve-
ment in the litter size of Berkshire pigs is essential for Berkshire pig breeders. In this context, we
hypothesized that DEGs in the placenta play a critical role in the determination of litter size.
However, the placental transcriptome of Berkshire pigs has not yet been elucidated. Therefore,
this study analyzed the RNA-Seq of Berkshire placentas, which revealed novel genes that may be
involved in placental development and function, thus playing a role in determining litter size.
These results provide molecular insights into the genes underlying pig fecundity.

Materials and Methods
Ethics statement

There is an exception to the application of the Enforcement Rule of the Korean Animal Protec-
tion Act from Article 23 in the case of experiments conducted for scientific purposes concern-
ing the relevant animal, ecology, and habitude of species. We did not need to obtain approval
from the Animal Care and Use Committee of Gyeongnam National University of Science and
Technology (ACUC of GNTECH) because all of the placentas used in this study were a natural
by-product. Moreover, no ethics committee approval for the study was required for livestock
in the Republic of Korea. We have enclosed the ACUC of GNTECH waiver (Supplementary
information). The pigs used in this study were raised according to the guidelines on animal
care and use established by ACUC of GNTECH and with the Korean Animal Protection Act
and related laws.
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Placenta collection

Berkshire placentas were collected by a trained veterinarian from sows reared in the same envi-
ronment (Dasan Pig Breeding Company, South Korea). We divided the placentas into two
groups according to litter size: the larger (LLG) and smaller (SLG) litter size groups. The LLG
was defined by an estimated breeding value (EBV) > 0.8 and litter size > 12, whereas the SLG
was selected by an EBV < -0.7 and litter size < 6.5. Detailed information for sows is described
in Table 1. Farrowing was allowed to start naturally. After delivery, the placental tissues were
collected as part of the routine care of pigs. Samples were excised from the maternal side of the
placenta 2 cm from the umbilical cord insertion site and free of maternal decidua correspond-
ing to the chorioallantoic placenta. After collection, placental tissues were rinsed with PBS and
frozen rapidly in liquid nitrogen.

RNA isolation and RNA-Seq

Total RNA was isolated from three Berkshire pig placentas in each group using TRIzol reagent
according to the manufacturer’s instructions (Molecular Research Center, Cincinnati, OH,
USA). We pooled the isolated RNA from the three different pigs in a ratio of 1:1:1 before
library preparation. The quality of the resulting total RNA was measured using an Agilent 2100
Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA). All extractions exhibited an RNA
integrity number > 7.0 and a 28S:18S ratio > 1.0.

RNA-Seq libraries were prepared using a TruSeq RNA Sample Prep kit (Illumina, San
Diego, CA, USA). The poly A-containing mRNA molecules were purified from 2 pg total RNA
from each sample using poly-T oligo-attached magnetic beads. The mRNA was fragmented
into approximately 200 base pair pieces. Using reverse transcriptase and random hexamer
primers, the first-strand cDNA was synthesized from the mRNA fragments. Second-strand
cDNA was then synthesized using DNA polymerase I and RNaseH. The end of the cDNA frag-
ment was then subjected to an end repair process that included the addition of a single ‘A’ base,
followed by ligation of the adapters. Products were purified and enriched by polymerase chain
reaction (PCR) to amplify the library DNA. Libraries were quantified using a KAPA Library
Quantification kit (KAPA Biosystems, South Africa) and an Agilent 2100 Bioanalyzer. After
quantitative reverse transcription-polymerase chain reaction (RT-qPCR) validation, libraries
were subjected to paired-end sequencing with 100-base pair read lengths using the Illumina
HiSeq 2500 platform (Illumina).

RNA-Seq analysis

High-quality reads were obtained by removing adaptor sequences, reads in which the percent-
age of unknown bases was greater than 10% or low quality reads (more than 20% of <Q20
bases). Selected reads were aligned to the susScr3 reference sequence using STAR (version

Table 1. Characteristics of the Berkshire pigs used in this study.

Group sample ID months of age body weight total parity numbers mean of litter size EBV

SLG SLGH1 23 175 4 5.5 -0.78
SLG2 23 170 4 6 -0.8

SLG3 25 180 4 6.5 -0.81
LLG LLG1 27 180 4 12.25 0.9
LLG2 28 200 4 12 0.8

LLG3 28 200 3 12 0.85

doi:10.1371/journal.pone.0153311.t001
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2.3.0e) [16], and the gene description in the Ensembl gene database (version 72) [17] was used
to increase the accuracy of quantification. Expression levels were quantified using htseq-count
(ver. 0.5.4p3) [18], while considering intersection-nonempty rules and paired-end alignments.
DEGs were analyzed using TCC [19] with the negative binomial (NB) statistical test available
in two R packages iDEGES/edgeR and cutoff values of p < 0.05 and 1.5-fold change.

Pearson correlation and functional enrichment analysis

A Pearson correlation coefficient was computed for fragments per kilobase of exon per million
fragments mapped (FPKM) and log, (FPKM) values for genes from each group. Gene ontology
(GO) [17] annotation and KEGG pathway analysis were performed on all DEGs using the
Database for Annotation, Visualization and Integrated Discovery tool (DAVID; National Insti-
tute of Health; http://david.abcc.ncifcrf.gov/) Bioinformatics Resources 6.7. Statistics were
applied for the selection of GO categories using a modified Fisher’s exact p-value < 0.01 (EASE
score in DAVID).

RT-qPCR

Total RNA was isolated from three different placentas and was used for RT-qPCR. RNA (1 pug)
was then used for reverse transcription in a 20-pL reaction volume using Superscript II (Invi-
trogen). RT-qPCR was performed using a Rotor Gene Q Thermocycler (QIAGEN) with SYBR
green. Gene-specific exon spanning primers were designed using the Primer3 program as
described previously (S1 Table) [20]. RT-qPCR was performed in a 10-pL reaction volume con-
taining 1 uL cDNA (50 ng) as the template, 5 uL Rotor Gene SYBR Green PCR Master Mix,

1 pL each of the forward and reverse primers (10 pmol), and 3 uL H,O using the following
cycling parameters: 40 cycles at 94°C for 5 s and 60°C for 10 s. A melting curve was performed
at the end of the PCR for 5 s from 60°C to 95°C to identify unique PCR products amplified dur-
ing the reaction. A no template control was used as a negative control. The qPCR reaction was
repeated three times independently. PPIA was used as a reference gene [21]. Amplification effi-
ciencies and correlation coefficients (R* values) were generated using the slopes of standard
curves obtained from serial dilutions. Standard curves with a 10-fold dilution series were used
to calculate the amplification efficiency. The amplification efficiency was calculated according
to the formula: efficiency (%) = (101/51°P9)_1) % 100. The efficiency of all of the RT-qPCR
amplifications was almost 90%. Data were analyzed by the relative quantification method using
2724Ct The control sample used to determine fold induction was the lowest expressed sample
for the target gene. The significance of differences was analyzed using Student’s t-test or the
Mann-Whitney test with p < 0.05 considered significant.

Results
RNA-Seq analysis

In this study, DEGs were identified from Berkshire pig placentae, and the role of candidate
genes influencing litter size was investigated. To identify DEGs, we divided the placentae into
two groups (LLG and SLG) according to litter size. RNA-Seq was performed on total RNA
pooled from three placentae of Berkshire pigs. The total numbers of clean reads were
47,289,182 (90.8%) and 45,580,292 (95.3%) and mapped reads were 40,421,582 (85.5%) and
39,219,270 (86.0%) in LLG and SLG, respectively (data not shown). The number of genes
expressed was quantified using htseq-count and was 14,824 in the LLG and 14,511 in the SLG.
The number of genes commonly expressed between the two groups was 13,970 (Fig 1).
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Fig 1. Identification of DEGs by RNA-Seq analysis. The number of annotated genes using RNA-seq is
shown. A total of 14,511 genes in the LLG and 14,824 genes in the SLG were detected. The number of
commonly expressed genes among both groups was 13,970.

doi:10.1371/journal.pone.0153311.9001

Analysis of annotated genes

Pearson correlation coefficients were calculated for each group. The Pearson correlation coeffi-
cient between the FPKM of genes from each group was 0.962. Similarly, the Pearson correlation
coefficient between the log,(FPKM) of genes was 0.978. These results indicate a strong correla-
tion between the two groups.

Analysis of DEG and GO enrichment analysis

Each gene annotated as a DEG is shown as a dot graph in Fig 2A. The number of downregu-
lated DEGs was higher than the number of upregulated DEGs in the LLG compared with the
SLG. The significantly altered DEGs are indicated as red dots. A total of 490 and 98 genes were
annotated among the downregulated DEGs and upregulated DEGs in the LLG, respectively
(Fig 2B). Next, GO enrichment analysis was performed on the upregulated genes in the LLG.
The annotated genes were associated with chemotaxis, extracellular region, chemical homeo-
stasis, response to protein stimulus and coagulation. Eleven genes were associated with the
extracellular region, including PLAT, INHBA, CCL2 and IL8. Six genes were associated with
chemical homeostasis, including ALAS2, CCL2 and EGR2. Five genes were associated with che-
motaxis, including PLAU and PLAUR (Fig 3A). We next compared GO enrichment analysis
results with the downregulated genes in the LLG. The genes were categorized into extracellular
region, collagen, structural constituent of cytoskeleton, cell adhesion, carbohydrate binding,
symporter activity, lipid transport, oxidoreductase activity and response to hormone stimulus.
Eighty-one genes were associated with the extracellular region, including LTBP2 and FAM3D.
In addition, 39 genes were associated with cell adhesion, while 24 genes were related to carbo-
hydrate binding (Fig 3B).

Analysis of DEGs associated with litter size

Next, we investigated the genes associated with litter size among all DEGs by searching for
terms related to litter size such as reproduction, fecundity, prolificacy and litter size in the
NCBI PubMed. A total of 129 (22%) of the 588 DEGs were selected. The upregulated DEGs
included 19 genes; whereas, the downregulated DEGs included 110 genes (S2 and S3 Tables).
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Fig 2. Distribution of DEGs. (A) The dot graph shows each DEG between the LLG and SLG. logo-fold
change between fragments per kilobase of exon per million reads mapped (FPKM) in the SLG and LLG
according to the Cufflinks package are presented along the x axis. Red dots represent significantly altered
DEGs between the LLG and SLG (p < 0.05, fold change > 1.5, the decimal system). The y axis indicates
significance as -log (p value). (B) The number of downregulated and upregulated DEGs in the LLG compared
with the SLG.

doi:10.1371/journal.pone.0153311.9002

The representative genes are listed in Table 2. Among the upregulated DEGs, PHEROC and
XIRPL levels showed approximately 5.3- to 5.6-fold change in the LLG compared with the
SLG, with the decimal system (Table 2). Interestingly, KRT1 was decreased more than
1,200-fold in the LLG compared with the SLG (53 Table). Of note, some genes described as
downregulated DEGs, such as USHIC, LCN15, DAO, MUCI13A, REG4, EPS8L3, KRT77,
SLC6A19, APO8, HNF4A, LGALS2, IGSF23, RBP2 and TM4SF20, were determined to lack
transcripts in the LLG. Presumably, these genes might play a negative role in reproduction
regulation.

Validation of DEGs associated with litter size by RT-gPCR

Next, RT-qPCR was performed to confirm the RNA-Seq results. The results from RT-qPCR
were highly accordant with those from RNA-Seq. PCR products amplified using primers spe-
cific to early growth response 2 (EGR2), pheromaxein ¢ subunit (PHEROC) and endothelial
lipase (LIPG) are shown in Fig 4. In all cases, the relative fold changes in gene expression were
in the same direction as those observed in the RNA-Seq results, and consistently showed a
higher magnitude with RT-qPCR than RNA-Seq technology (Fig 4).

To examine the molecules upstream from the DEGs annotated in this study, we investigated
the mRNA expression of genes related to the Wnt signaling pathway such as TCFI12, CTNNBI,
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downregulated (B) DEGs. The x axis indicates the significance of DEGs as —log (p value). The number of

genes in each category is shown on the y axis, as indicated in parentheses.

doi:10.1371/journal.pone.0153311.9003

Table 2. List of DEGs between LLG and SLG.

Accession

ENSSSCG00000013067
ENSSSCG00000011265
ENSSSCG00000011951
ENSSSCG00000010224
ENSSSCG00000003451
ENSSSCG00000004509
ENSSSCG00000011663
ENSSSCG00000009558
ENSSSCG00000011453
ENSSSCG00000020694
ENSSSCG00000016196
ENSSSCG00000023949
ENSSSCG00000007507

Symbol Description
PHEROC pheromaxein C subunit
XIRP1 xin actin-binding repeat containing 1
NFKBIZ nuclear factor of kappa light polypeptide
EGR2 early growth response 2
PDPN Podoplanin
LIPG endothelial lipase
RBP2 retinol binding protein 2, cellular
F10 coagulation factor X protein
ITIH4 inter-alpha-trypsin inhibitor heavy chain H4
DSG1 desmoglein 1
VIL1 Villin-1
PIM3 pim-3 oncogene
PCK1 phosphoenolpyruvate carboxykinase 1

log,fc

251
242
1.85
1.62
1.55
1.51

Only SLG
-5.16
-4.99
-4.36
-4.18
-3.50
-3.47

p-value

0.01
0.01

AN AN AN AN AN AN AN AN AN AN A

.001
.001
.001
.001
.001
.001
.001
.001
.001
.001
.001

Note: log,fc means the log, value of the fold change in fragments per kilobase of exon per million fragments mapped (FPKM) by comparing of LLG with

SLG.

doi:10.1371/journal.pone.0153311.t002
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Fig 4. RT-gPCR analysis of EGR2, PHEROC and LIPG in placental tissue. Three different placentas from
LLG and SLG were prepared immediately following delivery and subjected to RT-qPCR analysis. The fold
change of validation (upper panel) and RNA-Seq (lower panel) for the (A) EGR2, (B) PHEROC and (C) LIPG
genes are presented. The RT-gPCR data were analyzed by relative quantification using 222", Data are
expressed as means + standard deviation (S.D.). Each experiment was performed in triplicate. *, p < 0.05
versus SLG.

doi:10.1371/journal.pone.0153311.9004

WNT11 and WNT9B, because Wnt signaling plays a crucial role in placenta and trophoblast
development and differentiation [22]. In addition, several Wnt ligands are strongly expressed
in first trimester trophoblasts, suggesting that these ligands could play a crucial role in early
placental function and development [23]. Moreover, some evidence of EGR2 induction via the
Wht signaling pathway has been obtained in investigations in other fields [24-26]. When we
examined gene expression in three different placental RNA samples from LLG and SLG using
RT-qPCR, the mRNA levels of TCF12 and CTNNBI were unchanged between the two groups
(Fig 5A and 5B). In comparison, the expression of WNT11 mRNA was decreased and that of
WNT9B was increased in LLG compared with SLG, respectively (Fig 5C and 5D).
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Fig 5. RT-qPCR analysis to assess TCF12, CTNNB1, WNT11, WNT9B and IL-6 mRNA expression.
RNAs from three different individual placentas each were prepared from LLG and SLG. RT-qPCR was
performed using gene-specific primers. PPIA was used as a universal control. The RT-gPCR data were
analyzed by relative quantification using 2"85Ct Data are expressed as means + standard deviation (S.D.).
Each experiment was performed in triplicate. *, p < 0.05 versus SLG.

doi:10.1371/journal.pone.0153311.g005
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Nutrient supply is a crucial factor supporting piglet growth. The primary fetal nutrients that
cross the placenta are glucose, free amino acids, ketone bodies, and free fatty acids [27]. The tri-
glyceride lipase gene (TLG) family comprises secreted lipases that hydrolyze triglycerides and
phospholipids [28]. LIPG is one of the most well studied lipases in the TLG family [28]. Of
note, LIPG is expressed in trophoblasts in the first trimester in humans. The expression of
LIPG mRNA was significantly lower in placentas from intrauterine growth restricted pregnan-
cies compared with normal placentas [28]. In this regard, the upregulation of LIPG may accel-
erate nutrient supply via the placenta, strongly suggesting that LIPG contributes to increased
litter size. A limited number of cytokines and hormones, such as TNF-a, IL-6, leptin, and adi-
ponectin, have been determined to regulate LIPG mRNA expression [28-30]. The mRNA
expression of TNF-a, leptin and adiponectin were unchanged between the LLG and SLG (data
not shown). However, IL-6 was significantly increased in the LLG compared with the SLG (Fig
5E). Moreover, one of the pro-inflammatory cytokines, IL-1B was also upregulated in LLG
compared with SLG (data not shown). IL-6, together with IL-1B might enhance the capacity of
endothelial cells to bind and transport high-density lipoproteins, and could increase the perme-
ability of the endothelial barrier to allow easy transport of nutrients across the placenta [31].

Discussion

Various research groups have investigated DEGs from reproductive tissues such as the endo-
metrium in pigs [32, 33]. DEGs in the placenta have rarely been demonstrated using RNA-Seq.
In this study, we revealed DEGs according to litter size in Berkshire pig placentas. We found
588 annotated DEGs between LLG and SLG. A total of 129 genes (19 upregulated genes and
110 downregulated genes in LLG compared with SLG) from the 588 DEGs were selected
because they are associated with litter size [34-37]. Intriguingly, in an effort to delineate the
molecular pathways responsible for the upregulation of EGR2 and LIPG, we discovered that
the induction of WNT9B and IL-6 might stimulate the upregulation of EGR2 and LIPG, respec-
tively, in LLG compared with SLG. Previously, Wnt signaling is known to increase EGR2
expression [23-25]. Moreover, the activation of Wnt signaling accelerates EGR2 expression
and compromises the inhibitory effect of glucocorticoids on EGR2 expression [25]. Therefore,
we evaluated the mRNA expression of the following Wnt ligands: WNT6, WNT7B WNT9B,
WNTI0A, and WNT11. WNT9B was upregulated in the LLG compared with the SLG, while no
expression of WNT6, WNT7B or WNT10A mRNA was detected, and WNT11 was decreased in
the LLG compared with the SLG. Although we could not exclude a role of WNT11 in SLG,
WNTB9B is a likely mediator of EGR2 induction in LLG. As we mentioned above, Wnt signaling
plays a critical role in development and differentiation of the placenta and trophoblast. Wnt
may also modulate other trophoblast processes such as phospholipid uptake and transport.
However, further investigation is needed to fully understand the role of Wnt signaling in the
placenta.

Since the pig industry is actively incorporating marker-associated selection to improve eco-
nomical traits such as litter size, we searched for SNPs of the DEGs in this study. Four different
missense SNPs were identified in the EGR2 gene. A future study should examine the correla-
tion of polymorphisms in EGR2 and litter size, although we are not convinced whether the
polymorphisms affect the mRNA expression or not.

Together with the RNA-Seq experiment, we originally performed whole genome bisulfite
sequencing (WGBS) to analyze the correlation between DNA methylation and mRNA expres-
sion. DNA methylation is a process that adds methyl groups to DNA, which stably alters the
expression of genes. Some methylation is heritable. Therefore, we believe that DNA markers in
which the nucleotide sequence is not changed, but influences gene expression could be useful
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when breeders select breeding pigs. We also wanted to determine whether the differentially
methylated region (DMR) within specific genes of interest could regulate their mRNA expres-
sion. For example, PCKI was hypomethylated in gene body region (decrease methylated status)
in LLG compared with SLG, and the expression of PCKI mRNA was down-regulated in LLG
compared with SLG, which indicates a correlation between DNA methylation and mRNA
expression (in press).

In conclusion, we identified DEGs associated with litter size from Berkshire pig placentas
that may play crucial roles in pig prolificacy. The results of this study can provide important
molecular insights into regulation of litter size. More detailed investigations will be necessary
in the future, including SNP analysis of candidate genes, for selection of high prolificacy pigs in
order to apply this knowledge to the pig industry.
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