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Abstract
Cellular phenotypes underpinned by regulatory networks need to respond to evolutionary

pressures to allow adaptation, but at the same time be robust to perturbations. This creates

a conflict in which mutations affecting regulatory networks must both generate variance but

also be tolerated at the phenotype level. Here, we perform mathematical analyses and sim-

ulations of regulatory networks to better understand the potential trade-off between robust-

ness and evolvability. Examining the phenotypic effects of mutations, we find an inverse

correlation between robustness and evolvability that breaks only with nonlinearity in the net-

work dynamics, through the creation of regions presenting sudden changes in phenotype

with small changes in genotype. For genotypes embedding low levels of nonlinearity,

robustness and evolvability correlate negatively and almost perfectly. By contrast, geno-

types embedding nonlinear dynamics allow expression levels to be robust to small perturba-

tions, while generating high diversity (evolvability) under larger perturbations. Thus,

nonlinearity breaks the robustness-evolvability trade-off in gene expression levels by allow-

ing disparate responses to different mutations. Using analytical derivations of robustness

and system sensitivity, we show that these findings extend to a large class of gene regula-

tory network architectures and also hold for experimentally observed parameter regimes.

Further, the effect of nonlinearity on the robustness-evolvability trade-off is ensured as long

as key parameters of the system display specific relations irrespective of their absolute

values. We find that within this parameter regime genotypes display low and noisy expres-

sion levels. Examining the phenotypic effects of mutations, we find an inverse correlation

between robustness and evolvability that breaks only with nonlinearity in the network

dynamics. Our results provide a possible solution to the robustness-evolvability trade-off,

suggest an explanation for the ubiquity of nonlinear dynamics in gene expression networks,

and generate useful guidelines for the design of synthetic gene circuits.
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Introduction
Biological systems are subject to random mutations as well as noise arising from internal and
external stochastic fluctuations. It is important that the potential perturbing effects of noise
and mutation are buffered at the phenotype level, i.e. biological systems are expected to display
a phenotype that is robust to these perturbations [1–3]. However, changes in fitness pressures
over evolutionary time make it similarly important that biological systems are able to produce
heritable phenotypic variants that are adaptive. This ability has often been termed evolvability
[4–6]. How can biological systems generate phenotypes that are robust to mutations and noise,
yet also able to evolve through the effects of these same perturbations [7]?

A suggested solution to this trade-off is that robustness of a phenotype to mutations could
allow the accumulation of genotypic diversity, which could then translate into phenotypic
diversity under subsequent mutations or changes in selective pressures [8]. In support of this
idea, analysis of computational models of diverse biological systems has shown that there exist
mutationally linked genotypes that display the same phenotype, forming a so-called neutral
network [9–11], and that these genotypes can still have access to high phenotypic diversity [8,
12–14]. It has also been found that the size of accessible neutral neighborhood for genotypes
determines speed of adaptation [15]. Confirming these theoretical findings, experiments on
several biological systems have found these systems to display phenotypes that are robust to
most mutations [1, 16, 17], but at the same time able to display high levels of phenotypic diver-
sity under certain mutations [6, 16, 18]. Furthermore, it is shown experimentally that a period
of neutral evolution of RNA enzymes under one selective pressure increased the speed of evolu-
tion under a different selection pressure [19].

While these findings suggest that robustness can increase evolvability in a population con-
text, they do not provide any mechanistic understanding of how the potential evolvability-
robustness trade-off can be broken at the level of genotypes. A clearer understanding of the
evolvability-robustness relationship at the genotype level requires the formulation of defini-
tions of robustness and evolvability that permit their quantification across a large class of
genotypes and mutations. So far, most computational studies have used a discretized set of
mutations to measure the robustness of genotypes and the phenotypic diversity available to
them [9, 10, 14, 20–23]. When the phenotypic diversity is used as a proximate measure for
evolvability, these studies have found an inverse correlation between robustness and evolvabil-
ity [21–24]. It is not clear, however, how this result depends on the discretisation method used.
In particular, a number of studies indicate that genotypes’ robustness to noise (i.e. intrinsic var-
iation of gene expresssion levels related to infinitesimally small perturbations of system param-
eters) and mutation (i.e. large perturbations of system parameters, affecting gene expression
variability) are interlinked with their evolvability [25–27]. Other studies have used in silico evo-
lution, and measured evolvability as the change in evolutionary fitness with respect to mutation
size [24, 28–30] or as the speed or frequency of the emergence of specific phenotypes [9, 31].
Some of these studies have indicated a positive relation between robustness and evolvability
[31], but such conclusions are likely to be dependent on the choice of fitness function, and
other details of the in silico simulations.

In order to overcome these limitations and provide a comprehensive analysis of the relation-
ship between robustness and evolvability at the genotype level, here we develop several mathe-
matically rigorous measures for robustness and evolvability, and apply these to genotypes
defined for two common gene regulation network architectures involving a single gene under
self-regulation or under the regulation of an upstream transcription factor. Evaluating several
million genotypes for each of these systems and using the developed measures, we show
that increased nonlinearity in the system dynamics breaks the inverse correlation between
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robustness and evolvability. We analyze the genotype-phenotype mapping in these circuits by
varying the degree of nonlinearity in the equations governing gene expression (see Methods).
Thus, we distinguish between genotypes encoding for “linear” and “nonlinear” dynamics and
their resulting phenotypes as steady state levels of gene expression. Our finding holds irrespec-
tive of the mutational distributions considered for measuring these quantities. We find that
robust and evolvable genotypes display low expression levels and occupy a special region, pre-
senting sudden changes in phenotype with small changes in genotype. These findings suggest
that nonlinear system dynamics in gene regulation are crucial for maintaining robustness and
evolvability of expression levels. Furthermore, they predict that the empirically found correla-
tion between gene expression noise and plasticity [25, 32] results from nonlinearity in gene reg-
ulatory systems.

Material and Methods

Gene circuit models
To study robustness and evolvability in the context of gene regulatory networks, we consider
here two network architectures that are commonly observed in nature. This analysis considers
the system dynamics of these networks in isolation from other cellular components. The two
circuits we consider are described in detail in the following sections.

Circuit I—Auto-activation model. In this network architecture, it is assumed that trans-
lated protein positively regulates the transcription of its own gene by binding to its cis-regula-
tory module. Such regulation is common in biology; moreover, synthetic implementations of
auto-activation feedback motifs have demonstrated experimentally that they can give rise to
bistable system dynamics in which two distinct steady state expression levels are possible [33,
34]. The particular model of auto-activation feedback that we considered comprises four reac-
tion processes: transcription, translation, mRNA degradation and protein degradation.

The equations governing the time evolution of the concentrations of mRNA (denotedM)
and protein (denoted P) are shown below:

d M½ �
dt

¼
a k1 þ k2

½P�
kD

� �N� �

1þ ½P�
kD

� �N � k4½M�;

d P½ �
dt

¼ k3½M� � k5½P�:

ð1Þ

Here, transcription is controlled by the maximum transcription rate a, the basal transcription
rate k1, and the rate of feedback-mediated transcription k2. The parameter k3 denotes the trans-
lation rate, while k4 and k5 are the mRNA and protein degradation rates respectively. Finally,
the Hill coefficient N indicates the degree of cooperativity in the feedback loop and kD quanti-
fies the protein concentration at which activation is half maximal. It is straightforward to show

that nondimensionalising the steady state protein level P via

X ¼ P
kD

ð2Þ

leads to the following simple equation for steady state expression:

f Xð Þ ¼ aX: ð3Þ
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In the above, the function f : R ! R is defined by

f xð Þ ¼ 1þ KxN

1þ xN
; ð4Þ

where

a ¼ kDk4k5
ak1k3

; K ¼ k2
k1
: ð5Þ

It follows that steady state expression is determined by the composite parameters α and K,
together with the level of nonlinearity N. A detailed stability analysis of the model can be found
in the supplementary information (S1 File), where it is shown that the circuit can exhibit both
monostability and bistability, depending on the values of α, K and N.

Circuit II—Simple-activation model. In this network, gene expression is driven by an
external transcription factor (TF) which is assumed to be at steady state (a schematic diagram
of this circuit is shown in Fig 1b). This TF could represent, for example, the final component of
a signalling pathway, such as the MAPK cascade ([35]). The model equations are

d M½ �
dt

¼ a
k1 þ k2

T
kD

� �N

1þ T
kD

� �N

0
BBB@

1
CCCA� k4 M½ �;

d P½ �
dt

¼ k3 M½ � � k5 P½ �;

ð6Þ

where mRNA and protein are represented byM and P respectively, T denotes the concentra-
tion of the TF, and all other parameters represent the same processes that they did previously
for the auto-activation circuit in Eq (1). Gene activation is again modeled using a Hill-type
function in which the Hill coefficient N determines the nonlinearity of the signal response.

At steady state, the protein level is determined by

P ¼ ak1k3
k4k5

1þ k2
k1

T
kD

� �N

1þ T
kD

� �N

0
BBB@

1
CCCA; ð7Þ

while the corresponding steady state mRNA level is

M ¼ k5
k3
P: ð8Þ

There is therefore always only one steady state of the system ðM ; PÞ, and it can be shown that
this is always stable (see S1 File). For simplicity, we introduce the following composite parame-
ters (cf. Eq (5)):

b ¼ k4k5
ak1k3

; K ¼ k2
k1
; g ¼ T

kD
: ð9Þ

Note that γ represents the nondimensionalized TF concentration. Also, as in the analysis of the
auto-activation circuit, K is the ratio of the TF-mediated and basal transcription rates. The
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steady state protein level in this case can thus be written in the form

P ¼ 1

b
f gð Þ; ð10Þ

where f(γ) is the function defined previously in Eq (4), and is thus a function of β, K, N and γ.
‘Degrees’ of nonlinearity. Both gene regulation networks analyzed here are characterized

by nonlinear response dynamics. Our analysis provides arguments for the extent to which non-
linearity shapes the robustness-evolvability relationship. Since such statements could easily be
interpreted in different ways, we feel the need to explain in more detail what we mean by ‘non-
linearity’ in the context of this study. In both gene regulation networks at hand, expression of
mRNA (M) is dependent on levels of transcription factor (P or T, respectively, for circuits I
and II), to the power of N. The parameter N is the Hill coefficient in the kinetic equation,
directly relating to the level of cooperativity in transcriptional regulation.

From a mathematical viewpoint, expression ofM is always nonlinear unless N = 0. It is well
known that nonlinear response dynamics can result in ultrasensitive relationships, character-
ized by a sigmoidal function between signal and response [36, 37]. A system exhibiting nonlin-
earity leading to ultrasensitivity is characterized by insensitivity of the system response to a
stimulus of a certain range of concentration, whereas outside this range the system response
might be dramatic. Ultrasensitivity is one specific manifestation of nonlinear response, which
can in more general terms be described as a deviation of system response towards stimuli from
a perfect straight line [38]. It is this notion of nonlinearity that we refer to when we characterize
our system parameter N in its ability to increase the nonlinearity in its regulatory response—it

Fig 1. Genotype-phenotype mapping of gene regulation networks. (a): The auto-activation circuit (circuit
I) consists of a single gene, whose protein product (P) binds the promoter region to activate the expression of
its own mRNA (M). The sink sign indicates mRNA and protein degradation/dilution. (b): A simple-activation
circuit (circuit II) in which a transcription factor (purple) binds to the promoter region of a gene to activate the
expression of mRNA (M). The protein product (P) is produced by translation ofM. (c): A schematic
representation of the G-P mapping. Genotypes are represented as discrete entities in the multi-dimensional
parameter space of kinetic rates (indicated by the axes k1! kn) and are mapped to their corresponding
phenotypes, which are steady state solutions in the two-dimensional space spanned byM and P expression
levels.

doi:10.1371/journal.pone.0153295.g001
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increases the deviation ofM expression as a response to increase in transcription factor levels
from a straight line, as quantified by the nonlinearity measure L in [38].

Since the regulatory networks featured in this study are specifically showing ultrasensitive
response dynamics at high levels of N, the quantification of response coefficient R in [37]
might be an even more relevant equivalent to our notion of increasing or decreasing levels of
nonlinearity, captured by levels of N.

Genotype-phenotype mappings
For both circuits, the genotype-phenotype mapping was constructed by discretizing the param-
eter space, and then calculating the steady state expression level of the system (phenotype) for
each possible parameter combination (genotype) (Fig 1c). For circuit I, over 10 million geno-
types were simulated. A large subset of these, represented by 7.77 × 106 genotypes were tested
based upon parameters in [29]. Of these genotypes, 6.28 × 106 mapped to monostable pheno-
types and 1.48 × 106 mapped to bistable phenotypes. Another subset of 3.38 × 106 genotypes
were simulated, using parameter ranges based on experimental measurements of the lac operon
in Escherichia coli. These yielded 2.85 × 106 monostable phenotypes and 5.2 × 105 bistable
phenotypes.

For circuit II, 2 million genotypes were considered. Parameter values were obtained by ran-
domly sampling within the specified bounds. For parameters k1, k2, T and kD, samples were
taken from a lognormal distribution; the remaining parameters were sampled from a uniform
distribution.

The parameter ranges used to construct the G-P mappings are presented in Tables A–C in
S1 File.

Quantifying robustness and evolvability
We use several sets of measures to quantify robustness and evolvability, with the overall aim to
capture the effects of mutations of different sizes on expression levels. Before we characterize
each measure in detail, we would like to point out that one reason to use several measures for
both robustness and evolvability is to show that our outcomes are consistent, ie. not just arti-
facts of chosen measures. As some measures might only be valid for a certain size of mutations,
the finding that genotypes which are robust to mutations of a certain size could be evolvable to
mutations of a different size would not provide a conclusive answer to the question whether
these genotypes are effectively both robust and evolvable. Therefore, we here present two mea-
sures each for robustness and evolvability: one which is valid for infinitesimally small changes
in genotype, hence for mutations with a small effect, and another one which is valid for arbi-
trarily large changes in genotypes. We then provide results based upon combinations between
these measures to establish which genotypes are both robust and evolvable irrespective of the
size of a mutational effect.

Quantifying evolvability. Evolvability can be thought of as the ability to produce variation
by mutation. For a gene regulation network, looking at steady state expression levels as pheno-
type, we can relate this to the ability of a genotype to give rise to different phenotypes, given
mutations upon the genotype. Since we model gene expression network by ordinary differential
equations based upon mass-action kinetics, genotypes are directly represented as reaction rates
and hence parameter sets in differential equations. Hence, mutations can in this framework be
represented as parameter changes in the set of equations characterizing a gene regulation net-
work. Within this framework, we can formulate measures for evolvability that capture the vari-
ation of steady state expression levels (phenotypes) with regard to changes in the underlying
system parameters (mutational effects).

Nonlinearity, Evolvability, and Robustness
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Quantifying evolvability for small mutations. Gene expression noise is one way of
accomplishing phenotypic variation, and it is due to very small fluctuations in genotypes (ie.
Reaction rates). Hence, we use gene expression noise as a measure of evolvability, arising from
small fluctuations.

We measured levels of intrinsic noise by applying the Linear Noise Approximation (LNA)
to genotypes that met the necessary condition for the LNA to hold, namely their Lyapunov sta-
bility; this condition is met by genotypes that are monostable in circuit I, and by all genotypes
in circuit II. LNA was performed using the approach of [39]. For our analyses, the noise mea-
sure was taken to be the covariance of the protein levels P, scaled (normalized) by the respective

steady state expression level P .
Quantifying evolvability for arbitrarily large mutations. While infinitesimally small

fluctuations on the genotype level, resulting in expression noise, are able to produce variation
on the phenotype level, the LNA framework for quantification of this variational effect is not
suitable for larger mutations, since LNA is defined only for infinitesimally small changes in
parameters.

For larger mutational effects, one way of quantifying evolvability would be to characterize
how large the ‘spread’ of expression levels from mutated genotypes is, with regard to the overall
size of mutation causing phenotypic changes. The coefficient of variation provides a straight-
forward quantification of the variation in expression levels, regardless of the expression level of
the focal genotype, i.e. the genotype which is mutated. Since this measure is not bounded by
size of mutational effect, we employ it for quantifying the effect of arbitrarily large mutations.

Following these considerations, we consider, for each focal genotype, a set of mutated geno-
types gn such that every member of this set differs by one parameter change from the focal one.
Writing Pn for the corresponding set of phenotypes (i.e. steady state protein expression levels),
evolvability E is defined as the coefficient of variation of this set, scaled by a normalizing factorm:

E ¼
s Pnð Þ
m Pnð Þ
m

:
ð11Þ

whereby σ and μ represent the standard deviation and the mean of the distributions of protein
expression levels, respectively. We used two approaches to apply mutational changes: in the first
approach, the set of mutated genotypes gn consists of the 1-mutant neighbors of each focal geno-
type in the discretized parameter space of the genotype-phenotype mapping. In the second
approach, different mutation sizes were considered, such that the set of mutated genotypes consists
of fixed-percentage perturbations of single parameters. e.g. perturbations of ±5%, ±10% or ±20%.

For all evolvability measurements presented in this study, the factorm in Eq (11) was
defined as the number of mutated genotypes that comprise gn. This number can vary between
8 and 16 in circuit I, depending on whether mutated parameters are at the boundaries of the
tested parameter vectors or not. We also considered alternative definitions ofm, such as the
norm of all relative parameter changes

m ¼ �1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX p� pn

�2 þ p

� �2
s

; ð12Þ

where p refers to the parameter values of the focal genotype, pn is the parameter value of its
neighbors, and �1, �2 are small numbers (�1 = �2 = 10−10) which prevent potential divisions by
zero. The results obtained using this measure were qualitatively equivalent.

Quantifying robustness. Robustness can be understood as the ability to withstand muta-
tional effects, i.e. to sustain a phenotype amid changes on a genotype level. Considering our
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framework of kinetic equations describing gene regulation networks, robustness as described
above would then relate to the insensitivity of the output of a dynamical system to changes in
underlying parameters, reflecting mutational changes.

As in the case of evolvability, fluctuations on the genotype level, represented as parameter
changes, can be of diverse magnitude and the quantification of robustness will depend on the
scale of such changes. Considering further our introductory remarks in this section, to compare
robustness and evolvability for a given genotype, we need to ensure that such a comparison is
not thwarted by potential artifacts emanating from the usage of different scales for evolvability
and robustness measures. Thus, following the above definitions of evolvability, we here present
quantifications of robustness on two scales: one on the scale of infinitesimally small genotypic
changes, and one to arbitrarily large mutations.

Quantifying robustness for small mutations. For mutations of small effect, we quantify
the robustness as the inverse of the global sensitivity of the linearized dynamical system that it
encodes. Hence, robustness to small mutations is represented as insensitivity to parameter
changes in the underlying dynamical system. By focussing on insensitivity, we are able to cap-
ture the ability of the system to retain the phenotype of a corresponding focal genotype subject
to mutational effects. For infinitesimally small changes at the genotypic level, a commonly used
measure is the global sensitivity of the linearized system, and given our interest in insensitivity
of this system, we use the inverse of global sensitivity as a quantification of robustness.

Following [3], we defined the robustness of a given genotype to mutations of small effect as

the reciprocal 1/S of the sensitivity S of the steady state protein level P to parameter changes:

S ¼ @ ln P
@ ln k

����
����
2

2

: ð13Þ

The global sensitivity S, given in this expression, is the extent of change in steady state protein
expression level, given a change in model parameters. Here, k�k2 represents the standard
Euclidian 2-norm, and k = (ki) is the vector of model parameters. Given an ensemble

fdkðjÞi =kðjÞi g of zero-mean, independent, identically distributed scaled parameter perturbations,

the variance of the corresponding scaled protein levels dP=P is approximately given by

varðdP=PÞ ¼ S varðdki=kiÞ. The sensitivity S thus quantifies the extent to which protein levels
can be adjusted by small bounded fluctuations that affect biochemical reaction rates [40, 41].

The smaller the value of S, the smaller the relative change in P under parameter variations, and
hence the greater the robustness of the circuit. Throughout all figures of our manuscript, the
robustness measure was normalized to have a maximum value of 1.

Detailed derivations of S for the circuits considered in this study can be found in the SI. In
the case of circuit I, S can be expressed in the form shown below:

S ¼ 1

a� f 0 Xð Þð Þ2 4a2 þ KXNð Þ2 þ 1

X2 1þ XNð Þ2 þ f 0 Xð Þ2 ln ðXÞ2 þ 1
� � !

: ð14Þ

It follows from Eqs (3) and (4) that the robustness of circuit I only depends on α, K and N.
The sensitivity of circuit II is given by:

S ¼ 4þ 1

bP
� �2 KgNð Þ2 þ 1

1þ gNð Þ2 þ gf 0 gð Þð Þ2 ln ðgÞ2 þ 2
� � !

: ð15Þ

Eqs (4) and (10) therefore imply that the robustness of circuit II only depends on β, K, N and γ.
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Quantifying robustness for arbitrarily large mutations. To ensure robustness is not just
capturing small perturbations around the steady state, but also larger perturbations, represent-
ing mutations of larger effect (for instance dramatic reduction of complex stability during
protein degradation, captured by the protein degradation rate), we developed an additional
measure that does not depend on linearization of the system, but takes a more general
approach of how close expression levels of a mutated genotype lies with respect to expression
levels of a focal genotype.

Congruent with our formulations of evolvability measures, as described above, the defini-
tion of global sensitivity in a dynamical system is bounded by the magnitude of parameter
changes. And, similarly to our rationale for developing an evolvability measure for arbitrarily
large mutations, we developed a similar statistical expression for robustness towards large
mutations.

In short, this measure captures how similar the expression level of mutated genotypes
remain to a focal phenotype. This is quantified by imposing a weighting function around the
steady state value of the focal genotype, with perturbations around the genotype assigned prob-
ability values specified by this function. Robustness is defined as the mean value of the set
of parameter perturbations around the focal genotype mapped onto a normal distribution
Nrðmr; s

2
r Þ, with μr set equal to the steady state value, and a σr value that reflects the standard

deviation of the parameter fluctuations used to calculate evolvability (see Figure A in S1 File).
Thus, this alternative robustness measure scores phenotype neighbors by their distance to a
focal phenotype under fluctuations in the genotype, such that neighbors with the same or
nearly unchanged steady state expression level get a high score, and those further from a focal
phenotype get a lower score, based on the mapped Gaussian. The robustness of a focal geno-
type with respect to a certain perturbation size is then the mean of all phenotypic neighbor
scores.

One assumption that needs to be made for this alternative robustness measure to be consis-
tent concerns the width of the score function, i.e. the value of σr. If σr is small, then the robust-
ness measure is strict and only genotypic fluctuations that lead to phenotypes that are
extremely close to the focal phenotype result in high robustness. On the other hand, if σr is
large, nearly all genotypes are relatively robust, since even large deviations from a focal pheno-
type would earn a nonzero score. Assuming that the magnitude of fluctuationsmf applied to a
genotype correlates with the magnitude of deviation from a corresponding phenotype, we set
σr = σ(mf). Thus, if the measure is based upon 10% perturbations to a genotype, we would use
σr = 0.1 in the scoring normal distribution; with 20% perturbations we would use σr = 0.2.

Evolutionary simulations
Evolutionary simulations of the auto-activation model followed the implementation described
in [29]. A population of 1000 cells was considered. At the start of each simulation, the popula-
tion was taken to be homogeneous with initial parameters set to the following values: a = 1; k1
= 0.02; k2 = 0.2; k3 = 0.1; k4 = 0.1; k5 = 0.002; kD = 50 and N = 0. The population was modeled
in a fluctuating environment that switched between selection for high and low protein levels at
a constant rate v = 0.05 (corresponding to an environmental switch every 20 generations) for a
total of 5000 generations. Fitness under the two environments (whigh and wlow) was defined as

whigh ¼ ðPend=50Þ5
1þ ðPend=50Þ5

;

wlow ¼ 1� whigh;

ð16Þ
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where Pend is the amount of P in a cell at the end of a generation, evaluated using Gillespie’s sto-
chastic simulation algorithm run for 2000 time units. Initial conditions for the simulations
wereM = P = 0. New populations were produced by randomly drawing a cell from the popula-
tion, and then cloning it into the new population if it had a fitness value above a random num-
ber drawn from Uð0; 1Þ. This procedure was repeated until the new population consisted of
1000 cells, thereby maintaining a constant population size. Mutations were assumed to occur
at a rate μ, which for all simulations was set to the value 0.01. Mutations were performed by
adding a normally distributed random variable to the current parameter value, with the excep-
tion of mutations to the Hill coefficient N which were implemented by adding or subtracting
0.5 with equal probability. All parameter values were restricted to be positive. Robustness and
evolvability for genotypes arising in the evolutionary simulations were computed using the
same genotypic fluctuation sizes as in the G-P mapping they were compared to: robustness
against small fluctuations versus evolvability based on 20% perturbations around focal geno-
types. Figure G in S1 File shows the relationship between evolvability and robustness for a set
of typical evolutionary simulations generated using this method.

Simulations and software
Genotype-phenotype mappings were constructed using custom software developed in Scien-
tific Python. Steady state values were computed using iterative approximation algorithms, as
implemented in the Scientific Python module scipy.optimize. Evolutionary simulations were
coded in the C language, and simulation code was taken from [29]. All computations were car-
ried out on desktop computers and a Sun Grid Engine high-performance computing cluster.

Results
To study the relationship between robustness and evolvability at the genotype level, we focus
on commonly observed gene regulatory network architectures. These allow a tractable defini-
tion of both genotype and phenotype. In particular, we define the kinetic reaction rates control-
ling gene transcription and translation and gene/protein degradation to be the genotype, and
the corresponding steady state expression level to be the phenotype. These definitions allow
genotypes to be varied, while ensuring each genotype is mapped onto a specific phenotype.
Furthermore, they allow us to develop mathematically rigorous measures for robustness and
evolvability that are independent of organismal fitness. These are described in detail in Materi-
als and Methods.

Based upon these measures, we evaluated the robustness and evolvability of several million
genotypes sampled from two canonical gene regulatory network architectures (see Materials
and Methods). Each network involves a single focal gene, whose expression is regulated either
by its own gene product (circuit I) or by an upstream transcription factor (circuit II) (Fig 1).
Both of these network architectures are commonly observed in nature, and are also exploited
in synthetic biology as functional motifs [33, 34]. Besides their biological relevance, these net-
work architectures also allow us to directly test the role of nonlinearity in determining the
robustness-evolvability relationship. The level of nonlinearity in system dynamics resulting
from these networks is dependent on kinetic rates, and as such is a property of the genotype.
While circuit I permits bistability, circuit II is strictly monostable—i.e. there are no possible bis-
table genotypes in circuit II.

Nonlinearity decouples robustness from evolvability
For each of the two network architectures considered, we evaluated the robustness and evolva-
bility of genotypes using combinations of the different measures defined above. For both
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network architectures, and for all combinations of measures used, we found that most geno-
types exhibit a negative correlation between robustness and phenotypic variability (Fig 2). In
all cases studied, however, there were also a substantial number of genotypes that displayed
high robustness and high evolvability (Fig 2). We found that these robust and evolvable geno-
types display high values of the model parameter N, which dictates the cooperativity of tran-
scriptional regulation, and hence the level of nonlinearity in the system dynamics (Fig 3).
Cooperativity maps the concentration of transcription regulators to the concentration of tran-
scriptional product concentration, and for positive cooperativity (N> 1), this relationship
between regulator and product concentration gets increasingly less gradual and more ultrasen-
sitive with increasing N. When we considered genotypes that have a specific value of N, the
effect of nonlinearity became even more apparent. For low N, the correlation between robust-
ness and evolvability is moderately to strongly negative. With increasing values of N, however,
this negative correlation reduces and eventually breaks, thereby decoupling robustness from
evolvability and noise (Fig 4). This observation holds for all measurement combinations used.
High N can lead to bistability in circuit I (Fig 1a), but not in circuit II (Fig 1b). Thus, bistability
alone cannot explain the observed decoupling of robustness and phenotypic variability as we
have only considered monostable genotypes in circuit I.

The decoupling effects of nonlinearity arise from the generation of regions
presenting sudden changes in phenotype with small changes in genotype
To achieve a more complete mechanistic understanding of the effect of different parameters
on the robustness and evolvability relationship, for both circuits we derived composite

Fig 2. Robustness and evolvability in G-Pmappings.G-Pmappings of circuit I (a-c) and circuit II (d-f), showing the density of genotypes on the map.
Three different combinations of robustness/evolvability measures are shown in each case. The first column (a and d) shows the relationship between
sensitivity-based robustness and scaled intrinsic noise (small mutational effects); the second column (b and e) shows sensitivity-based robustness against
evolvability computed using 1-mutant neighbors, represented by 40% parameter perturbations on average (small mutational effects versus large mutational
effects); the third column (c and f) shows robustness against evolvability when both are computed using 10% parameter perturbations (large mutational
effects). Red colors indicate areas on the G-P mapping that are highly populated by genotypes.

doi:10.1371/journal.pone.0153295.g002
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parameters that simplified the analysis of robustness (see Eqs (5) and (9). For circuit I, the
composite parameter α combines production and decay rates of all components, and is
inversely related to the steady state expression level, such that high α values correspond to
low steady state expression levels. For circuit II, an analogous composite parameter β can be
derived. For both networks, a second composite parameter K captures the ratio of regulation-
mediated transcription to basal transcription, k2/k1. As with the nonlinearity parameter N,
we find that these composite parameters show specific distributions for genotypes that break
the negative correlation between robustness and evolvability (Figures C, D in S1 File). In par-
ticular, robust and evolvable genotypes tend to display high K and α (β) values. When we
plotted steady state expression levels (i.e. phenotypes) for genotypes with different values of
N against α and K for circuit I, we found that the parameter combinations yielding robust
and evolvable genotypes map onto the edges of regions presenting sudden changes in pheno-
type with small changes in genotype (Fig 5). These regions correspond to regions of drastic
change in expression levels and could be described as ‘phenotypic cliffs’. The composite
parameters, as well as N, contribute to the generation of these regions. The genotypes with
parameter sets characterized by high K and α (β) values are located at the base of these
regions, and it is these genotypes that can achieve high robustness and evolvability. They can
maintain high robustness with regard to some mutations (i.e. those pushing them away from
these regions), but achieve high phenotypic diversity with regard to others (i.e. those pushing
them beyond these regions’ boundaries), even when these mutations are of the same magni-
tude (Figures C–E in S1 File). The color coding in Fig 5 shows the product of robustness
and evolvability (E × R). This product gets larger as both robustness and evolvability are
increased, hence genotypes with high values of (E × R) are shown to be at the base of these
regions.

Fig 3. Nonlinearity in G-P mappings. Values of the nonlinearity parameter N on the G-P mappings of circuit I (a-c) and circuit II (d-f). The combinations of
robustness/evolvability measure shown are identical to those used in Fig 2. In each plot, brighter colors signify higher mean values of N.

doi:10.1371/journal.pone.0153295.g003
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Robust and evolvable genotypes occur in regions of parameter space
where system parameters can be freely tuned without affecting
robustness
As described above, genotypes found near phenotypic cliffs are thus characterized by high K
and α (β) values. The high values of α (β) result in low expression levels, explaining the obser-
vation that genotypes with high levels of both robustness and evolvability on Fig 2 (cf. also Fig
4) are also those with low expression (Figure E in S1 File). This is an unexpected result, espe-
cially when we consider mutations with infinitesimally small effects. For such mutations, the
relationship between robustness and phenotypic variance (i.e. noise) corresponds to a charac-
teristic of stochastic gene expression: mutations that decrease the mean expression level are
expected to increase noise and vice versa. We find that this intuition holds for genotypes
with low N values, with robustness and noise exhibiting a clear negative correlation in this case

Fig 4. Nonlinearity shapes robustness-evolvability correlations. The G-P mapping of circuit I for different values of N. The first column (a,d,g) shows the
relationship between scaled intrinsic noise and sensitivity-based robustness; the second column (b,e,h) shows sensitivity-based robustness versus
evolvability, when evolvability is computed using large-scale parameter perturbations (1-mutant neighbors); the third column (c,f,i) shows robustness against
evolvability when both are computed using 10% parameter perturbations. The Pearson correlation coefficient r is displayed in the panel titles. Colors indicate
genotype density in each plot (cf. Figure I in S1 File for the equivalent analysis for circuit II).

doi:10.1371/journal.pone.0153295.g004
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(Fig 4a). The trend is, however, clearly broken by genotypes displaying nonlinear system
dynamics and ultrasensitivity, given by high N and K values (Fig 4d and 4g). To better under-
stand the effects of these parameters, we derived an analytical expression for the sensitivity-
based robustness measure (see the Supplementary Information (S1 File)). This shows that the
robustness measure becomes largely independent of K and α (β) as N is increased. Hence in the
parameter regimes yielding ultrasensitivity in gene expression levels as response to levels of
transcription factors, the system parameters can be freely tuned without affecting the robust-
ness levels (see S1 File). This mechanism could allow for the observed robust, yet noisy geno-
types seen in Fig 4. This same mechanism could also explain the results from mutations with
arbitrarily large effects, as the measures for quantifying evolvability under small and large
mutational effects (i.e. expression noise and expression variability) display a significant correla-
tion (Fig 6).

Robust and evolvable genotypes also emerge from in silico evolution
under fluctuating selection
Given that we adopted fitness-independent measures of evolvability, and evaluated these for
individual genotypes, it is not clear if the robust and evolvable genotypes identified here would
display increased evolutionary performance under population dynamics and different fitness
functions. In order to understand this, we performed two analyses. Firstly, we ran in silico evo-
lutionary simulations using a specific function relating expression level to fitness and under
fluctuating selection (see Methods): one environment selecting for high expression levels, and
one selecting for low expression. The two environments switched every 20 generations. It was
previously shown that environmental fluctuations at this rate, combined with an appropriate
mutation rate, promote the speed of adaptation [29]. Using the same settings as in that study,
we ran here evolutionary simulations for 5000 generations using a population size of 1000 (see
Methods). For the resulting evolved genotypes, we evaluated their evolvability and robustness

Fig 5. Nonlinearity creates regions presenting sudden changes in phenotype with small changes in genotype. Expression level as a function of the
composite parameters α and K for the G-P mappings of circuit I obtained with N = 1 (panel a) andN = 2 (panel b). The product, (E × R), of evolvability
computed for large scale perturbations (1-mutant neighbors) and sensitivity-based robustness is color-coded, with blue indicating a negative E/R correlation
and red indicating the region of high robustness and evolvability (cf. Figure B in S1 File).

doi:10.1371/journal.pone.0153295.g005
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using our fitness-independent measures (Fig 7a and Figure G in S1 File). We found that the
resulting evolved genotypes all have high values of N, α and K, indicating that they occupy a
similar region of the genotype space as the robust and evolvable genotypes identified from
this analysis (Fig 5). This shows that evolutionary simulations, run under conditions selecting
for evolvability [29], result in genotypes that would be identified as evolvable and robust
based on the fitness-independent measures presented here. Secondly, we evaluated the speed of

Fig 6. Robustness, evolvability, noise and expression levels for genotypes that are robust and evolvable. The relationships between sensitivity-
based robustness, evolvability computed using 1-mutant neighbors, noise and gene expression levels in circuit I, when only monostable genotypes are
considered. Genotypes from the set of genotypes characterized by high robustness and evolvability ((E × R) > 0.1, cf. Figure B in S1 File) are drawn in red to
compare their positions with respect to different measure combinations. (a): The robustness-evolvability relationship of the G-P mapping. (b): Scaled intrinsic
noise versus robustness. (c): The relationship between scaled intrinsic noise and evolvability. (d): Gene expression levels at steady state (P) plotted against
scaled intrinsic noise.

doi:10.1371/journal.pone.0153295.g006
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Fig 7. In silico simulation under fluctuating environments and adaptation time for genotypes that are
robust and evolvable. (a): Monostable genotypes corresponding to the population mean of parameter
values arising from different generations of a single in silico simulation under fluctuating environments,
superimposed onto the G-P mapping of circuit I (grey backdrop). Genotypes derived from each generation
are color-coded according to generation number, with red indicating the oldest generations. For both the G-P
mapping and the in silico simulations, evolvability was computed using parameter perturbations of ±20% (cf.
Figure F in S1 File)), and robustness was calculated using the sensitivity-based measure. See also Figure G
in S1 File, which shows the results obtained for other runs of the evolutionary simulation algorithm. (b):
Box plots showing adaptation time for genotypes exhibiting high evolvability (H) and low evolvability (L) under
two selection scenarios: selection for a 10% reduction (blue) and for a 10% increase (red) in steady state
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evolution of new phenotypes from a given genotype by measuring the number of mutations
required to achieve a 10% increase/decrease in expression level. To do this, we assumed a low
mutation rate—large population size limit, where the evolutionary dynamics can be approxi-
mated by a random walk dominated by the fixation of a fitter mutant [42]. We implemented
such random walks by starting from a given genotype, evaluating single mutations created by
randomly perturbing a chosen parameter, and then accepting mutants with a certain improve-
ment in expression level as the new wild type (see Materials and Methods). Performing several
such random walks, starting from genotypes chosen from regions of high or low levels of fit-
ness-independent evolvability, we counted the number of mutations needed to achieve a 10%
increase/decrease in expression level. The genotypes chosen were mutated with the same per-
turbation size that was used to compute robustness and evolvability as shown in Fig 2c and 2f,
making all measures consistent with each other. We found that robust and evolvable genotypes
displayed shorter adaptation times for both selection scenarios in both circuits (Fig 7b).

Discussion
We have performed an extensive analysis of genotype robustness and evolvability using mathe-
matical models of two common gene regulatory networks involving a single gene under auto-
(or transcription factor) mediated regulation. We have used the expression levels of this gene
as a phenotype and the system parameters controlling expression level as the genotype. Defin-
ing several complementary measures for genotype robustness and evolvability under mutations
of different size, we have evaluated these properties for several million genotypes for each net-
work architecture. This analysis revealed that for most genotypes, robustness and evolvability
display a negative correlation, but there exist a significant number of genotypes for which this
trade-off can be broken. This observation holds for all the combinations of the different mea-
sures utilized. Furthermore, the identified robust and evolvable genotypes using these fitness-
independent measures are also found to emerge under in silico evolution when selection
schemes that are shown to facilitate adaptation time are used. This suggests that our fitness-
independent measures applied to a genotype-phenotype map are then able to identify geno-
types that are evolvable in a population dynamics context and using fitness functions based on
that same phenotype (such as adaptation time, or performing well in fluctuating environments,
section 4 of the Results). Thus we conclude that the fitness-dependent and the fitness-indepen-
dent view on evolvability need not be mutually exclusive.

We show that the robust and evolvable genotypes found in this analysis are characterized by
parameter combinations that confer nonlinearity and ultrasensitivity in system dynamics.
Among the system parameters that can determine whether a given genotype confers these
characteristics, we find the strongest effect to come from the parameter controlling nonlinear-
ity. This effect extends to the point that the breaking of the robustness and evolvability trade-
off is only observed when a certain threshold level of nonlinearity is exceeded. We find that
this strong effect comes from the fact that nonlinear system dynamics allow for the emergence
of phenotypic cliffs in the genotype-phenotype map, and thereby enable the presence of geno-
types that can be robust and evolvable. This result is corroborated by experimental studies on
transcriptional circuits controlled by LexA in E. coli, which show that nonlinearity stemming

expression levels. For circuit I, high evolvability (H) was E > 0.7 and low evolvability (L) was E < 0.1 on G-P
mappings using robustness and evolvability measures computed from 10% parameter perturbations (cf. Fig
2c). For circuit II, genotypes from H had E > 1.2 and genotypes from L had E < 0.6 based upon the same
measures (cf. Fig 2f). For both circuits, 11000 genotypes were picked from each respective region in the G-P
mapping. For both circuits, adaptation times for the two regions differed significantly (p < 0.01, two-sample
Kolmogorov-Smirnov test, n = 11000).

doi:10.1371/journal.pone.0153295.g007
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from negative feedback brings about the ability to withstand mutational effects (i.e. robust-
ness), while at the same time enabling capacitance of the system (i.e. evolvability)[43]. This
finding is dependent on nonlinear dynamics: upon removal of negative feedback, both muta-
tional robustness and evolvability are reduced. Here, we show the mechanistic basis of the rela-
tionship between these two features by directly tuning the degree of nonlinearity in a given
architecture.

It is evident that the results presented here need to be considered in the context of the
robustness and evolvability measures we applied. These measures were chosen to capture the
properties of individual genotypes (rather than populations) under different mutational effects,
and without invoking reference to organismal fitness. The relationships we found between the
different measures of robustness and evolvability are in line with experimental findings. In par-
ticular, the correlation we observe between the evolvability measure defined for mutations of
large effect and intrinsic noise fits with the empirical finding of a high correlation between
environmental plasticity and gene expression noise in yeast [25, 32].

Gene regulation circuits can and frequently do exhibit more complex architectures than the
two architectures covered in our study. The latter have, however, gained much attention previ-
ously, for instance as model systems for implementation in synthetic biology [44, 45]. Restrict-
ing our analysis to these well-researched architectures has the valuable benefit of tractability
concerning their mechanistic underpinnings. By focusing on such minimal architectures, we
are able to restrict the search space for potential mechanisms which can affect the relationship
between robustness and evolvability. Thus, we find that even the simplest cases of nonlinear
gene expression circuits are capable of solving the robustness-evolvability trade-off.

Our findings provide a genotype-based resolution of the robustness-evolvability trade-off,
and do not contradict previous suggestions based on population dynamics [6, 8, 12–16, 18].

In particular, our results relate to a recent population genetics study suggesting that there
can be an optimal level of robustness that promotes evolvability, depending on the properties
of the fitness landscape [15]. Using fitness landscapes with specified statistical properties,
that study found that while robustness is negatively correlated with evolvability when muta-
tions allow access to any of the possible phenotypes, there can be a positive correlation
between robustness and evolvability when mutations can allow access to only a small fraction
of all phenotypes. In light of those findings, it is interesting to see that our biologically well-
defined genotype-phenotype mapping contains robust and evolvable genotypes only at
increasing levels of nonlinearity in the equations governing gene expression levels. It is possi-
ble that increasing nonlinearity re-shapes this genotype-phenotype mapping in a way that is
in line with the statical assumptions made in [15]. Furthermore, we find that robust and
evolvable genotypes identified in our analysis occupy specific regions of the genotype-pheno-
type map, characterized by sudden changes in phenotype with small changes in genotype.
These genotypes also present a specific level of nonlinearity and other kinetic parameters.
This could relate to them being “tuned” to have a specific level of robustness as suggested in
[15]. This proposition is also reminiscent of the idea of biological systems being in a critical
state that enhances their evolvability [21–23, 46], but does not rely on the presence of chaos
in system dynamics.

It is also possible to draw an analogy between the findings presented here and changes
observed when considering a system passing through distinct dynamical regimes due to
parameter alterations [47]. It must be noted, however, that in our study the analysis is restricted
to a single dynamical regime. In particular, the finding that the ability of nonlinearity to break
the robustness-evolvability trade-off extends to systems that do not allow for bistability shows
that proximity to a bifurcation surface is not a necessary condition for genotypes to be robust
and evolvable at the same time.
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The mechanistic insights gained from this study could provide an improved explanation for
the emergence of evolvability in laboratory evolution experiments [48]. In particular, our find-
ings would suggest that genetic mutations identified in these studies could relate to their effects
on noise and nonlinearity in gene regulation. Future experimental studies towards confirming
this suggestion will significantly improve our understanding of how natural gene regulatory
systems achieve robustness and evolvability, and allow us to better design robust synthetic gene
regulatory circuits [49].

Conclusion
The question of how biological systems are able to withstand mutational changes (robustness),
yet still remain able to produce phenotypic variation (evolvability) has gained considerable
interest in recent years. Despite important insights towards the understanding of scenarios that
allow biological networks to be both robust and evolvable, the mechanistic underpinnings of
such phenomena are still elusive. By performing mathematical analyses of common gene regu-
latory network motifs, we provide a mechanistic explanation of the robustness-evolvability
trade-off. Using several measures across scales of perturbation, we find that nonlinearity con-
sistently breaks the predominant negative correlation found between robustness and pheno-
typic variability. This holds for both small and large perturbations in genotypes with low
expression levels. Our results provide a potential link between the abundance of nonlinearity in
biological regulatory networks and their apparent ability to be both robust and evolvable at the
same time.

Supporting Information
S1 File. Supplementary information containing detailed mathematical analyses of gene reg-
ulation networks, as well as supplemental figures and tables.
(PDF)
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