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Abstract

Background

We study the longevity and medical resource usage of a large sample of insureds aged 65
years or older drawn from a large health insurance dataset. Yearly counts of each subject's
emergency room and ambulance service use and hospital admissions are made. Occur-
rence of mortality is also monitored. The study aims to capture the simultaneous depen-
dence between their demand for healthcare and survival.

Methods

We demonstrate the benefits of taking a joint approach to modelling longitudinal and sur-
vival processes by using a large dataset from a Spanish medical mutual company. This con-
tains historical insurance information for 39,137 policyholders aged 65+ (39.5% men and
60.5% women) across the eight-year window of the study. The joint model proposed incor-
porates information on longitudinal demand for care in a weighted cumulative effect that
places greater emphasis on more recent than on past service demand.

Results

A strong significant and positive relationship between the exponentially weighted demand
for emergency, ambulance and hospital services is found with risk of death (alpha = 1.462,
p <0.001). Alternative weighting specifications are tested, but in all cases they show that a
joint approach indicates a close connection between health care demand and time-to-
death. Additionally, the model allows us to predict individual survival curves dynamically as
new information on demand for services becomes known.

Conclusions

The joint model fitted demonstrates the utility of analysing demand for medical services and
survival simultaneously. Likewise, it allows the personalized prediction of survival in
advanced age subjects.
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Introduction

Rising rates of longevity are closely tied to the growth in demand for medical attention and
long-term care services, the increasing usage of which extends longevity even further. Joint
models of longitudinal and survival data enable us to estimate the simultaneous association
between survival and the demand for care, and serve as a tool for predicting risk of death based
on personalized medical records. Thus, as an individual’s risk of death increases, the probabil-
ity of their being hospitalized increases and having been admitted to hospital, their probability
of death is also greater than that of a non-hospitalized individual.

The aim of this paper is to examine the use of joint modelling techniques for predicting sur-
vival. Our motivating dataset includes 39,137 Spanish insureds aged 65 and over, on which we
conducted a longitudinal and time-to-death monitoring study from 1 January 2006 to 1 Febru-
ary 2014. Whereas classical survival prediction is based solely on patients’ past medical records
[1,2], joint modelling has the advantage that intensive care usage and survival are modelled
simultaneously [3-6], by assuming a zero-mean latent Gaussian process that correlate the two
settings [7-9]. Moreover, recent and current records, as opposed to information about medical
usage that occurred many years ago, have a greater incidence on an individual’s current health
status, suggesting that information should be weighted with an appropriate decreasing func-
tion. Here, we investigate the role of the information contained in medical records and identify
a fading effect, whereby more recent records have a greater influence than older medical rec-
ords on the risk of death.

Medical emergency claim counts serve as a measure of annual medical care usage and, as
such, of a patient's health status. Changes in these biomarker counts allow us to make dynamic
subject-specific predictions, that is, personalized survival curves can be systematically updated
as new measurements are collected. Thus, the joint modelling scheme proposed here is a pow-
erful, dynamic tool, especially applicable to subjects afflicted by chronic processes [10-12]. In
summary, joint models allow us to: (i) estimate both longitudinal and survival parameters
without the bias introduced by a separate analysis; (ii) confirm that age and gender affect sur-
vival changes, even when controlling for hospitalization and emergency care unit visits; (iii)
test the significance of the degree of association between care usage and survival; (iv) estimate
subject-specific survival probabilities; and (v) update personalized survival estimations as addi-
tional longitudinal data are collected.

Methods
Health insurance dataset

Our study examines a large dataset provided by a Spanish medical mutual company, from
which we collected a random sample of policyholders aged 65 and above. All patient records/
information was anonymized and de-identified prior to analysis. The UB Riskcenter’s ethics
committee approved this retrospective study.

The data contain historical information on claims reported between 1 January 2006 and 1
February 2014 by 39,137 policyholders (aged 65+), 39.5% of whom were men and 60.5%
women. The time of origin for each policyholder's record is taken as their date of entry into the
study (¢ = 0), and from that point on all subjects continued to be monitored until the end of the
study period. The dataset provides reports on all the claims made by each policyholder in eight
consecutive one-year windows. As our primary interest lies in non-routine care, usage counts
only include hospitalizations, emergency service visits and the use of ambulance services. The
data can be consulted at www.ub.edu/riskcenter/R/jm.

The mean age of policyholders entering the study is 73.2 yr for men and 74.2 yr for women.
It is well documented that women have a longer average life expectancy and worse health status
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[13-14]. Data presented in Table 1 show the frequencies and row percentages for age-at-entry
groups and by gender. Observed deaths are also presented. In the 65-to-74 age-at-entry group
the number of deaths is higher for women than for men (261 vs. 207), but as the number of
insured women (13,121) is much higher than the number of insured men (9,370), the death
rate is lower for the former (2.0% vs. 2.2%).

Opverall, the date of death was recorded for 3,129 individuals during the follow-up period, so
that 92.0% of policyholders survived or were no longer in the sample at the end of the study.
Although policyholders aged over 85 represented just 9.1% of the dataset, they accounted for
36.3% of deaths. As for the actual length of the follow-up, almost half of all policyholders were
included throughout the observation window. As such, some of the right-censored profiles
result from the administrative closure date, with some policyholders having left the insurance
company. The censoring mechanism, other than that attributable to the end of the study, can
therefore be assumed to be unrelated to the death-event, as it refers to insurance cancellations
attributable to reasons of an external nature (primarily dissatisfaction with the service, a change
of company or an unwillingness to pay).

We consider the demand for health claims in the year preceding the observation point as our
longitudinal outcome, that is, the number of times a subject requests hospital, emergency room
or ambulance services. This was introduced in the model using a logarithmic scale to allow for a
log-linear specification [15]. In the survival approach, the baseline covariates are age0 (age at
entry) and sex (man:0; woman:1). The former plays an essential role by providing a suitable sur-
vival characterization for late entries, i.e. policyholders who enter the study after the age 65,
whereas the sex covariate allows us to distinguish different patterns of behaviour by gender.

Longitudinal approach

The observed longitudinal response included in the model summarizes a policyholder’s past
demand for hospital and emergency services and corresponds to an accumulation of past
claims. Such observed data are transformed as the logarithm of one plus the number of services
demanded during the year prior to the observation point. This is denoted by y;; = {y(t;;),
j=1,...,n;}, where i is the individual and n; is the number of measurements made of a particu-
lar person. The specific occasions when the policyholder is measured are denoted by #;. A stan-
dard log-linear mixed model is used to explain the mathematical expectation of service usage,
which we denote by m;,(t). A Gaussian approximation is assumed in the response [16].

Table 1. Description of policyholders, deaths and death rate distributions by age-at-entry and gender.
Number of subjects (frequencies and row percentages), deaths occurring prior to study completion (frequen-
cies and row percentages) and percentage death rates are stratified by age-at-entry and gender.

Gender Age at entry (years)

[65,75) [75,85) >85 Overall
Total (%) 22491 (57.5) 13066 (33.4) 3580 (9.1) 39173 (100.0)
Men (%) 9370 (60.6) 4937 (31.9) 1154 (7.5) 15461 (100.0)
Women (%) 13121 (55.4) 8129 (34.3) 2426 (10.3) 23676 (100.0)
Deaths (%) 468 (15.0) 1524 (48.7) 1137 (36.3) 3129 (100.0)
Men (%) 207 (21.1) 474 (48.4) 299 (30.5) 980 (100.0)
Women (%) 261 (12.1) 1050 (48.9) 838 (39.0) 2149 (100.0)
Percent death rate 2.1 11.7 31.8 8.0
Men (%) 22 9.6 25.9 6.3
Women (%) 2.0 12.9 34.5 9.1

doi:10.1371/journal.pone.0153234.1001
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In order to give greater weight to more recent claims than to older claims, F(-) is defined as
the cumulative weighted area under the claim's historical path. Since we assume that the histor-
ical effects fade over time, we define

F(t) = /w(t—s) m(s)ds, s <t (1)

where w(-) is the weighting function [17,18]. Alternative weightings for capturing the fading
effect of service demand on survival were tested. For the random effects structure, we firstly
considered a random intercept model (a single random effect). Additionally, a random slope
effect via a bivariate random effects structure has been also tested.

Survival approach

Given our particular interest in discerning gender survival differences among elderly policy-
holders, it is highly informative to know the distribution of the true event times for the i-th pol-
icyholder, T/, defined in our study as a non-negative random variable that includes the time
lag from the point a policyholder enters the study until their death-event. This approach
involves the probabilistic distribution of the timing of death, considering the proportion of liv-
ing subjects beyond time point ¢ via the corresponding survival function,S(t) = Pr (T* > ¢). A
corresponding potential right-censored time C; is assumed since some policyholders may still
be alive when their coverage terminates, so that in practice we can only observe event
times, T, = min {T}", C,}.

Under the above assumptions, the Cox proportional hazards model [19] can be defined as:

h(t|w,) = h,(t) exp {y"w,;}, conditional on t > 0, (2)

where h(t) is the baseline risk function, w; is the vector of baseline survival covariates and y
the vector that contains the corresponding regression parameters. Complete information of
this nature can only be known at fixed time points. Although k(-) remains traditionally left
unspecified, this condition was relaxed so that subject-specific predictions could be made more
easily. Thus, the logarithm of the baseline function was approached using a cubic B-spline basis
function [20].

Joint model with recency-weighted cumulative effects

The joint model is specified as both a longitudinal and a survival process simultaneously,
where a is the parameter that captures the effect of the policyholder’s background health status
on her survival. Therefore, the joint model can be defined as

yi(t) = m(t) +&(t)
my(t) = x"()B + z,(1)'b,
bi ~ N(OaD)7 8i(t) ~ N(0,0’z) (3)

h(t | M,(t), w;) = hy(t) exp{y™w, + o F(m,(t))} ,

where M,(t) = {m,(s), 0 < s <t} denotes the complete policyholder-specific history of the
expected longitudinal response until time t and F (m,(t)) are the recency-weighted cumulative
effects of the longitudinal process. In practice, this captures the influence of past claims on the
survival model. Moreover, for the intercept and slope random effects, b; = (b;o, b;1)T, a bivariate
normal distribution with zero mean and unknown unstructured variance-covariance matrix D
is assumed, where d,, = Var(b,) = o0},, d,, = Var(b,)) = o}, and dy, = Cov(b, byy) =
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Prob10600p1. The Akaike Information Criterion (AIC) was used as a global goodness-of-fit mea-
sure and its value served as the basis for ranking the fitted models. The lowest AIC value corre-
sponded to exponentially weighted records, which points to the marked impact of medical
services used in the last year of life (accounting for the overall weight) on the death hazard rate.

All analyses were performed with R statistical software (www.rproject.org) version 3.2.2
[21], using the JM package [22]. Moreover, to compare the prediction performance we also
used JMbayes package [23] to implement the Bayesian approach.

Individualized survival predictions

One of the key features of joint modelling techniques is that personalized predictions for the
time-to-event outcome can be obtained from a consideration of all subject-specific longitudinal
measurements. Joint modelling means that longitudinal outcomes preceding present time ¢ are
directly related to current mortality probability as well as to the probability of surviving at a
later time u conditional on being alive at t. As such, an accurate knowledge of a subject's past
health problems is essential for providing personalized survival predictions.

Let us consider a generic policyholder aged over 65 not included in the original dataset
D, ={T, o, y(t),i = 1,...,n}, butwithin the target population. This individual has a
historical set of emergency medical care records Y, (t) = {y(s);0 < s < ¢} as well as a partic-
ular vector of survival baseline covariates wy. Thus, the prognosis task relies on estimating the
survival probability according to the joint generalized linear model and subject-specific infor-
mation. Let us assume that the subject is alive at time ¢, then our primary objective is to esti-
mate the probability of her remaining alive at any future time u > t,

nk(u | t) =Pr (T*k Z u | T*k > t7 yk(t)7 Wi, Dnv 0) (4)

By adopting a Bayesian strategy, the above expression can be estimated from the corre-
sponding posterior as

7 (u] £) = / Pr(T, > u| T, > t, (1), D,)p(6|D,) db (5)

where the first term of the above integral is obtained through conditional independence
between the longitudinal and survival responses, and the posterior distribution p(@ | D, ) is
derived from the asymptotic approximation 8 |D, ~ N(@, V(8)) via Markov chain Monte
Carlo (MCMC) sampling, where 0 is the maximum likelihood estimate for the true parameter
vector 6. Finally, a Monte Carlo estimate of 7 (u|t)is obtained by combining the previous
assumptions.

Results

We first present the estimation obtained when applying the joint model and compare these
results with those obtained under a separate estimation of the longitudinal and survival sub-
models that ignores the dependence between these components for each subject. The maximum
likelihood estimates of the main parameters from both strategies are presented in Table 2.

The random effects in the longitudinal mixed model provide robust estimations for both
separate and joint approach, with very little difference in the parameter estimates or in their

corresponding standard errors. The estimates of the population-averaged parameters B ,and

j3, are both positive and describe an overall upward trend. In the case of the survival sub-
model, in contrast, a difference in the estimation is detected in the case of the joint model speci-
fication. A marked improvement is also recorded in the significance of the baseline survival
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Table 2. Comparison of the estimates obtained from the separate analyses and from the joint model. Parameter estimates for the models applied to
the health insurance dataset (n° of cases = 39,173). The longitudinal process captures the log-transformed demand for hospitalization, emergency room care

and ambulance services in the year preceding observation and the event process (defined by an exponential weighting function) models survival.

Approach

Separate analyses

Joint Model (Frequentist)

doi:10.1371/journal.pone.0153234.t002

Parameter Estimate Std. Err. 95% Contf. Int. p value
Longitudinal Process

Bo 0.320 0.003 (0.315, 0.325) < 0.001
B 0.013 0.001 (0.012, 0.014) < 0.001
Opo 0.325 0.003 (0.320, 0.330)

Ob1 0.050 0.001 (0.048, 0.051)

o 0.472 0.001 (0.470, 0.473)

Event Process

Ysex(woman) -0.722 0.426 (—1.556, 0.112) 0.090
Vageo 0.144 0.004 (0.136, 0.152) < 0.001
Ysex(woman)xage0 0.010 0.005 (0.000, 0.021) 0.048
Longitudinal Process

Bo 0.319 0.003 (0.314, 0.324) < 0.001
B 0.014 0.001 (0.013, 0.015) < 0.001
Opo 0.329 0.003 (0.323, 0.334)

Ob1 0.050 0.001 (0.048, 0.051)

o 0.471 0.001 (0.469, 0.473)

Event Process

Vessdimammezm) —4.648 0.427 (—5.484, - 3.811) < 0.001
Yageo 0.095 0.004 (0.086, 0.103) < 0.001
Vesdimememyasss 0.059 0.005 (0.049, 0.070) < 0.001
Association

a 1.462 0.057 (1.345, 1.574) < 0.001

parameters, as indicated by the smaller p-values, and the readjustment of the estimated coeffi-
cients. However, the main result is the presence of a significant association between longitudi-
nal demand and the event outcome, since parameter ¢ is strongly significant and positive, a =
1.462 (p-value < 0.001). Thus, we infer an increasing relationship between the frequency of use
of non-routine medical services and the risk of death. For the random effects structure, we
firstly considered a random-intercept model (a single random effect). However, the posterior
inclusion of a random slope effect indicated that the rate of change in the claiming evolution

was significantly different form policyholder to policyholder, as reflected by the likelihood ratio
test (p-value < 0.001).

As for the structure of the joint model, we assume that an integrated measure of the claims
history data is the most appropriate way to incorporate the claims data "biomarker" in the joint
modelling framework. Although this appears reasonable, we would also expect the rate of rise in
the actual claims history, e.g. the number of new claims made in a given period of time, to also
provide information. Policyholders presenting a more rapid rise in their claims process are likely
to be in poorer health, otherwise they would not be seeking medical attention. Thus, this mea-
sure appears to account for the "fading" behaviour captured by recency-weighted information
on claims. We have explored the sensitivity of these inferences to the derivative (slope) of the
claims history process, further improvement is obtained from extending the standard joint
model parametrization (that is, by considering the current biomarker value) to the rate parame-
trization (p-value = 0.094). In the case of policyholders with the same age at study entry, the esti-
mated hazard ratio of death for females relative to males is exp(- 0.722) = 0.486, i.e. (1-0.486)-
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Fig 1. Subject-specific longitudinal evolution of weighted cumulative exposure and dynamic survival probability for a woman aged 80 at study
entry. The plot is distributed in four panels showing the first four successive measuring points, at ages 80.5, 81.5, 82.5 and 83.5 years, respectively. The left-
hand side of each panel depicts the cumulative area under the true biomarker path until the time of measurement, while the right-hand side shows the median

predicted survival probabilities over 200 Monte Carlo samples. The shaded region in the survival estimate is limited by the 95% pointwise confidence

intervals.

doi:10.1371/journal.pone.0153234.g001

100 = 51.4% lower, although it is not a significant reduction parametrization (p-value = 0.090).
On the other hand, in the joint model when considering policyholders with the same level of
claims and same age at study entry, the estimated hazard ratio of death for females relative to
males is exp(- 4.648) = 0.010, which is now significantly lower (p-value < 0.001). The four pan-
els in Fig 1 depict an example of the annual updating at each measurement point in both the

subject's biomarker evolution and her estimated survival curve. Taking the age of 88 as our
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Table 3. Subject-specific dynamic survival probabilities for a woman aged 80 at study entry, with the
claims observed in Fig 1. The mean and median estimated survival probabilities at the age of 88 for the four
successive measuring points, corresponding to different ages over 200 Monte Carlo samples and the 95%
pointwise confidence intervals for the mean.

Age Mean Median Lower Upper
80.5 years 0.790 0.814 0.572 0.901

81.5 years 0.799 0.818 0.606 0.897
82.5 years 0.771 0.787 0.589 0.866
83.5 years 0.682 0.704 0.400 0.829

doi:10.1371/journal.pone.0153234.t003

threshold reference, the plots show a declining survival probability due to an increasing cumula-
tive area under the logarithm of hospital/emergency health service demand. Thus, a more
marked expansion of the shaded area reduces the probability of staying alive until the age of 88.
The data structure assumes the absence of observed deaths after the given closing date, which
impedes making predictions beyond that date. In spite of the short exposure considered here,
the monitored period is long enough for us to infer once again a significant association between
care usage and time-to-death. Note that the inclusion of new data will not only reduce the stan-
dard error of the estimates, but also extend the time horizon of the survival curves.

To illustrate the difference between the joint and separate survival models, it can be seen in
Table 3 that the woman’s survival probability at age 88 is 0.790 by joint modelling techniques,
but that the estimated value is 0.755 in the separate survival model and would remain the same
regardless of information on current and past emergency claims. The performance of the joint
model also differs from that of the separate survival model; thus, if we compare the prediction
error of a joint model (at time 7, the estimated prediction error with absolute loss function is
0.064 when using information available up to time 5) with that of a separate survival model (at
time 7, the corresponding estimated prediction error with absolute loss function is 0.070), we can
confirm that the joint model performs better in terms of prediction because the error is smaller.

The size of our sample is large, although small in comparison to the health claims data typi-
cal of other contexts (e.g. the US, Canada or the NHS in the UK); therefore, computational
time may be an issue when implementing joint models. Here, for instance, the model estima-
tion takes about 21 minutes on a standard PC. The Bayesian approach requires considerably
more time, which is why we address Bayesian illustrations with a smaller random sample (spe-
cifically, a 10% random fraction). For this smaller sample, the estimation time for the frequen-
tist approach is 79.1 seconds, while it is 10.2 hours for the Bayesian approach. Thus, the
Bayesian approach requires much more computational time on a standard PC than is required
by the frequentist approach.

We report the model estimates from the Bayesian and the frequentist approaches in Table 4,
for this smaller sample of 3,915 policyholders. In particular, we performed three MCMC chains
with 35,000 iterations, of which 5,000 were used for the burn-in period. The results provided
by the two approaches do not vary substantially. By switching to a Bayesian approach, besides
estimating the model, we also calculate numerical measures evaluated by MCMC methods (see
the documentation of the JMbayes package [23]). The prediction error for the smaller sample
under the Bayesian approach is 0.065 by considering an absolute loss function, which is exactly
the same as that obtained under the frequentist approach for the same sample size.

Discussion

An increasing number of statistical studies report the individualized monitoring of time-
dependent covariates prior to the occurrence of a particular event. Here, we have shown that
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Table 4. Comparison of the estimates obtained from the separate analyses and from the joint model with the frequentist and the Bayesian
approaches. Parameter estimates are based on the small health insurance dataset (n° of cases = 3,915). The longitudinal process captures the demand for
hospitalization, emergency room care and ambulance services in the year preceding observation and the event process (defined by an exponential weighting
function) models survival.

Approach Parameter Estimate Std. Err. 95% Conf. Int. p value
Separate analyses Longitudinal Process
Bo 0.342 0.008 (0.326, 0.359) < 0.001
B4 0.010 0.002 (0.007, 0.010) < 0.001
Opo 0.339 0.008 (0.323, 0.359)
Op1 0.045 0.002 (0.040, 0.050)
o 0.477 0.003 (0.472, 0.483)
Event Process
Vsex(woman) —0.347 1.430 (—3.151, 2.456) 0.808
Vageo 0.151 0.015 (0.122, 0.180) < 0.001
Ysex(woman)xageo 0.005 0.018 (- 0.029, 0.039) 0.772
Joint Model (Frequentist) Longitudinal Process
Bo 0.341 0.008 (0.325, 0.358) < 0.001
B 0.011 0.002 (0.008, 0.014) < 0.001
Opo 0.342 0.010 (0.324, 0.360)
Op1 0.045 0.002 (0.041, 0.050)
o 0.477 0.012 (0.454, 0.499)
Event Process
Vsex(woman) - 4.516 1.376 (—7.212, - 1.820) 0.001
Yageo 0.094 0.014 (0.067, 0.122) < 0.001
Ysex(woman)xageo 0.058 0.017 (0.024, 0.092) 0.001
Association
a 1.454 0.177 (1.107, 1.801) < 0.001
Joint Model (Bayesian) Longitudinal Process
Bo 0.304 < 0.001 (0.292, 0.316) < 0.001
B 0.038 < 0.001 (0.018, 0.058) < 0.001
Opo 0.282 0.001 (0.261, 0.301)
Op1 0.598 < 0.001 (0.584, 0.612)
o 0.473 < 0.001 (0.467, 0.478)
Event Process
Ysex(woman) —2.473 0.141 (—4.496, — 0.289) 0.024
Yageo 0.121 0.003 (0.107, 0.143) < 0.001
Yeex(woman) <age0 0.035 0.002 (0.008, 0.060) 0.015
Association
a 1.615 0.006 (1.445, 1.850) < 0.001

doi:10.1371/journal.pone.0153234.t004

the joint analysis of the individualized and of the true longitudinal evolution over the lifetime
is not only indispensable for detecting the strength of association between two responses, but
additionally helps improve parameter estimates considerably by circumventing the potential
risk of bias caused by the incomplete follow-up of certain subjects. The key feature of the joint
approach lies in the inclusion of longitudinal information within the standard survival model
by means of a latent Gaussian process, which is specifically materialized in their shared random
effects purpose.

The number of events in our claims dataset is in fact low and most of the patients are actu-
ally still alive by the end of the observation period. This is the most likely explanation for the
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numerical identity of the coefficients of the longitudinal process, when modelled both sepa-
rately and jointly. The association between gender and the survival model is shown in the joint
model and not in the separate model, and this is probably due to the variable use of heath care
resources, as men usually report fewer claims than women.

The mutual health insurance sector, which stores large portfolios of individual policyholders
monitored over long periods of time, provides a benchmark example of the potential applica-
tions of joint modelling techniques that should broaden our understanding of the mechanisms
underpinning health progression trends. Indeed, insights into the underlying trends at this
individualized level should enable professionals to provide more accurate service demand pre-
dictions and to adjust the risk of mortality to better capture the baseline factors of age and gen-
der. To date, joint modelling techniques have usually been used with quite small datasets (in
the order of a few hundred individuals) and it is not easy to find applications to larger sets or
discussions of the computational obstacles that need to be overcome.

This study has reported the challenging task of implementing a single joint model with a
large data sample (policy holders aged 65 and over) and it has demonstrated a statistically sig-
nificant dependence between a subject's past medical care usage (their use of ambulance and
emergency services and admissions to hospital) and their current hazard of death. While we
have no information about the number of days the subjects spent in hospital or in the emer-
gency room, nor about the condition that required their seeking healthcare, we are able to pro-
vide a personalized survival prediction. Information on routine medical visits is specifically not
used here.

Conclusion

The results reported here, as illustrated by a real case, demonstrate that likelihood inferences
based on a joint procedure are efficient and less biased than those obtained from the classic
separate approach. Thus, they present obvious benefits over standard survival techniques. The
positive sign of the association parameter shows that relatively high cumulative demand for
emergency room, hospitalization and ambulance services is simultaneously related to a deterio-
ration in the subject's health status and, consequently, to lower probabilities of survival. Specifi-
cally, an increase in accumulated claims can be quantified as an increase in mortality risk, for
an initial age and gender thus leading to personalized survival curve prediction.
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