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Abstract
Influence of magnetohydrodynamic (MHD) flow between two parallel disks is considered.

Heat transfer analysis is disclosed due to thermal radiation and convective boundary condi-

tion. Appropriate transformations are invoked to obtain the ordinary differential system. This

system is solved using homotopic approach. Convergence of the obtained solution is dis-

cussed. Variations of embedded parameters into the governing problems are graphically

discussed. Skin friction coefficient and Nusselt number are numerically computed and ana-

lyzed. It is noticed that temperature profile is increasing function of radiation parameter.

Introduction
Squeezing flow has attracted significant attention of many researchers and scientists due to its
paramount applications in various fields such as in bio-mechanics, food processing, mechani-
cal, industrial and chemical engineering. This phenomenon is also observed in bearings, gears,
rolling elements, machine tools, automotive engines, polymer processing, design of lubrication
systems (including oil and grease systems) and injection and compression shaping etc. These
type of flows are generated in many hydrodynamical machines and tools where vertical veloci-
ties or normal stresses are applying due to moving boundary. Stefan [1] was the first who stud-
ied the squeezing flows. He presented an adhoc asymptotic solution for flow of Newtonian
fluid. Further Mahmood et al. [2] investigated the squeezed flow and heat transfer for viscous
fluid towards a porous surface. Mustafa et al. [3] developed analytical solutions for the squeez-
ing flow of nanofluid between the parallel disks. Qayyum et al. [4] examined the unsteady
squeezed flow of Jeffery fluid between two parallel disks. Magnetohydrodynamic squeezing
flow of second grade fluid between two parallel disks is studied by Hayat et al. [5]. Ganji et al.
[6] investigated the magnetohydrodynamic (MHD) squeezed flow between two porous disks.
Thermal radiation effects in time-dependent axisymmetric squeezing flow of Jeffery fluid
between two parallel disks is analyzed by Hayat et al. [7]. Homotopy perturbation solution of
MHD squeezing flow between two porous disks is studied by Domairry and Aziz [8].

Flow of electrically conducting fluid in presence of magnetic field is related to magnetohy-
drodynamics (MHD). The MHD systems are used in many applications such as power genera-
tors, accelerators, droplet filters, the design of heat exchangers, electrostatic filters, the cooling
of reactors, pumps etc. Magnetic nanofluid is a fluid with unique characteristics of both liquid
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and magnetic field. Numerous applications involving magnetic nanofluids include drug deliv-
ery, contrast enhancement in magnetic resonance imaging and magnetic cell separation. Few
representative studies on magnetohydrodynamics (MHD) nanofluid can be consulted through
the investigations [9–18]. On the other hand the convective heat transfer has also mobilized
substantial interest due to its significance in the industrial and environmental technologies
including energy storage, gas turbines, nuclear plants, rocket propulsion, geothermal reservoirs
and photovoltaic panels. The convective boundary condition has also attracted some interest
and this usually is simulated via a Biot number in the wall thermal boundary condition.
Recently Rashidi et al. [19] applied the one parameter continuous group method to investigate
similarity solutions of magnetohydrodynamic (MHD) heat and mass transfer flow of viscous
fluid over a flat surface with convective boundary condition. Analysis of heat and mass transfer
in mixed convective flow towards a vertical flat surface with hydrodynamic slip and thermal
convective boundary condition is examined by Rashidi et al. [20]. Bachok et al. [21] considered
the stagnation point flow towards a shrinking or stretching surface with the bottom of surface
heated through convection from a hot fluid. Magnetohydrodynamic (MHD) three-dimen-
sional flow of an incompressible fluid induced by an exponentially stretching surface with con-
vective boundary condition is investigated by Hayat et al. [22].

The radiation effects in the boundary layer flow is very important due to its application in
physics, engineering and industrial fields such as glass production, furnace design, polymer
processing, gas cooled nuclear reactors and also in space technology like aerodynamics rockets,
missiles, propulsion system, power plants for inter planetary flights and space crafts operating
at high temperatures. Hence thermal radiation effects cannot be ignored in such processes.
Rosseland approximation is used to describe the radiative heat flux in the energy equation.
Hayat et al. [23] examined the two-dimensional magnetohydrodynamic flow of thixotropic
fluid towards a stretched surface with variable thermal conductivity and thermal radiation
effects. Pal [24] examined the effects of Hall current in magnetohydrodynamic (MHD) flow
and heat transfer characteristics of viscous fluid past an unsteady permeable radiative stretch-
ing surface. Bhattacharyya et al. [25] analyzed the rate of heat transfer in micropolar fluid flow
towards a porous shrinking surface with thermal radiation. Heat transfer analysis in MHD
flow of viscous fluid past an exponentially stretching sheet with suction/injection effects is con-
ducted by Mukhopadhyay [26]. Hayat et al. [27] observed the mixed convection stagnation
point flow of Maxwell fluid over a surface with convective boundary conditions and thermal
radiation. Bhattacharyya [28] considered the MHD radiative flow of Casson fluid over a
stretching sheet in the stagnation region. Sheikholeslami et al. [29] reported the effect of ther-
mal radiation and heat transfer by considering two phase model in magnetohydrodynamic
nanofluid flow.

The purpose of present paper is to analyze the analytic solution of squeezing flow of second
grade fluid between two porous disks. Fluid is electrically conducting in presence of variable
magnetic field. Heat transfer is carried out with thermal radiation and convective boundary
condition. Series solutions are found by homotopy analysis method [30–40]. Velocity, temper-
ature, skin friction coefficient and Nusselt number are analyzed for different emerging parame-
ters. To check the validity of the solutions, we have presented the comparison of our results for
limiting previously published papers [5,8]. An excellent agreement is found.

Formulation
We examine the incompressible axisymmetric squeezing flow of second-grade fluid between
two infinite porous disks (see Fig 1). Heat transfer analysis is carried out by taking thermal

radiation and convective boundary condition. The upper disk at z ¼ Hð1� atÞ12 is moving

Radiative Squeezing Flow of Second Grade Fluid with Convective Boundary Conditions

PLOS ONE | DOI:10.1371/journal.pone.0152555 April 20, 2016 2 / 22



with velocity dz
dt

¼ �1
2
aHð1� atÞ�1

2 while lower porous disk at z = 0 is stationary. Mathemati-

cally w ¼ @h
@t
represents the squeezing of the upper disk towards the lower disk. Variable mag-

netic field of inclined character via an angle ψ is applied. The law of conservation of mass,
momentum and energy for the considered problem are
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subject to the boundary conditions

u ¼ 0; w ¼ @h
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In the above expressions u and w denote the velocity components in the r and z directions
respectively, ρ the fluid density, σ the electrical conductivity, cp the specific heat, μ the dynamic
viscosity, g�0 the heat transfer coefficient at the lower plate, g

�
1 the rate of heat transfer coefficient

of fluid at upper plate, k the thermal conductivity far away from the disk, σ� the Stefan-Boltz-
mann constant and k� the mean absorption coefficient, w0 corresponds to the case for suction
while −w0 leads to the case for blowing. It should be noted that the governing equations are
reduced to viscous fluid when α = 0.

Fig 1. Geometry of problem.

doi:10.1371/journal.pone.0152555.g001
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We consider
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where Tf is the temperature of the hot fluid at the lower permeable disk, T1 the ambient tem-
perature above the upper disk, T the fluid temperature such that Tf > T and T1 < T. The Eq
(1) is identically satisfied and Eqs (2–6) take the forms
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whereM denotes the magnetic parameter, S the squeezing parameter, α1 the dimensionless
second grade fluid parameter, R represents radiation parameter and A represents suction/blow-
ing parameter.

The skin friction coefficient and the local Nusselt number are
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In dimensionless form we obtain
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in which Rer ¼ arHð1�atÞ12
2u is the local Reynold number, Nur0 denotes the heat transfer rate at

lower disk while Nur1 is the heat transfer rate at upper disk. Similarly Cfr1 and Cfr0 represent
the skin friction coefficient at upper and lower disks respectively.

Homotopic Solutions
In order to find the homotopy analysis solutions we choose the base functions:
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iary linear operators (Lf,Lθ) are
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with Ci (i = 1–6) denote the arbitrary constants.
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Zeroth-order problem
The zeroth order deformation problems are given below

ð1� pÞLf ½ f̂ ðZ; pÞ � f0ðZÞ� ¼ pℏfNf

�
f̂ ðZ; pÞ	; ð23Þ

@ f̂ ðZ; pÞ
@Z

���
Z¼0

¼ 0;
@ f̂ ðZ; pÞ

@Z

���
Z¼1

¼ 0; f̂ ðZ; pÞ
���
Z¼0

¼ A; f̂ ðZ; pÞ
���
Z¼1

¼ 1

2
; ð24Þ
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where, p 2 [0,1] represents embedding parameter while ℏf and ℏθ denote non-zero auxiliary
parameters.

mth-order deformation problems
Themth-order deformation problems are
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For p = 0 and p = 1 one has

f̂ ðZ; 0Þ ¼ f0ðZÞ; f̂ ðZ; 1Þ ¼ f ðZÞ; ð36Þ

ŷðZ; 0Þ ¼ y0ðZÞ; ŷðZ; 1Þ ¼ yðZÞ: ð37Þ

When p varies from 0 to 1 then f̂ ðZ; pÞ and ŷðZ; pÞ start from the initial solutions f0(η) and
θ0(η) and reach to the final solutions f(η) and θ(η) respectively. The values of auxiliary parame-
ters is selected in such a manner that the series solutions converge. The general solutions (fm,
θm) via special solutions ðf �m; y�mÞ are

fmðZÞ ¼ f �mðZÞ þ C1 þ C2Z
3 þ C3Z

2 þ C4Z; ð38Þ

ymðZÞ ¼ y�mðZÞ þ C5 þ C6Z; ð39Þ

where the Ci (i = 1–6) are the involved constants.

Analysis of Results

Convergence of solutions
It is quite clear that derived series solutions contain the auxiliary parameters ℏf and ℏθ which
are very important in controlling and adjusting the convergence. To obtain the admissible val-
ues of auxiliary parameters, the ℏ− curves are sketched at 19th-order of approximation in Figs 2
and 3. These curves are sketched for different values of second grade fluid parameter α1 for
both velocity and temperature. These Figs show that meaningful values of ℏf and ℏθ are −1.3�
ℏf< −0.2 (for α1 = 0.1) and −0.9� ℏθ < −0.2 (for α1 = 0.3). Also Table 1 depicts that the series
solutions are convergent up to six decimal places at 8th order of approximation for momentum
and 6th order of approximation for temperature.
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Residual errors are calculated for momentum and energy equations by using expressions

Df
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Z 1
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½Rf
mðZ;ℏf Þ�2dZ; ð40Þ

Dy
m ¼

Z 1

0

½Ry
mðZ;ℏyÞ�2dZ: ð41Þ

Figs 4 and 5 display the ℏ− curves for residual error of ƒ and θ in order to get the admissible
range for ℏ. It is observed that correct result up to 6th decimal places is obtained by choosing
the value of ℏ from this range. Further the series solutions converge in the whole region of
η(0< η<1) when ℏf = −0.9 = ℏθ.

Discussion
In this subsection, we studied the influence of diverse parameters on the velocity, temperature,
skin friction coefficient and local Nusselt number.

Velocity profile
Effect of magnetic parameter (M) on the velocity distribution f0(η) in cases of suction and blow-
ing have been displayed through Figs 6 and 7. It is observed that the magnitude of the radial
velocity f0(η) shows dual behavior with the increase in the magnetic parameterM. For higher

Fig 2. ℏ− curve for f@(0) via various values of α1.

doi:10.1371/journal.pone.0152555.g002
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magnetic parameterM, the velocity profile decreases near the porous walls where the suction
effects are dominant when η� 0.42. However for η> 0.42 the velocity profile increases. In fact
the higher magnetic field slows down the fluid particles (because of the resistive force known as
Lorentz force) and consequently the velocity distribution decreases. Fig 5 indicated the effects
of magnetic parameterM on f0(η) for the blowing case. This Fig depicts the opposite results in
blowing situation. Influence of squeezing parameter S on the velocity distribution for both
cases of suction and blowing are shown in the Figs 8 and 9. It is analyzed that the velocity dis-
tribution f0(η) near the porous walls decreases and suction effects are dominant (see Fig 8). The
flow enhances since upper wall is moving towards the stationary porous wall and pressure is

Fig 3. ℏ− curve for θ0(0) via various values of α1.

doi:10.1371/journal.pone.0152555.g003

Table 1. Convergence of HAM solutions for different order of approximations whenM = 5, S = A = 0.3,
α1 = γ2 = 0.1,R = γ1 = 0.2, Pr = 1.2 andψ = π/4.

Order of approximations f@(0) −θ0(0)

1 1.460023 0.066542

4 1.387792 0.066097

6 1.388400 0.066093

8 1.388285 0.066093

12 1.388285 0.066093

20 1.388285 0.066093

30 1.388285 0.066093

50 1.388285 0.066093

doi:10.1371/journal.pone.0152555.t001
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Fig 4. Residual error for ℏf.

doi:10.1371/journal.pone.0152555.g004

Fig 5. Residual error for ℏθ.

doi:10.1371/journal.pone.0152555.g005
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produced. Therefore velocity distribution near the upper wall enhances in order to satisfy the
mass conservation. Fig 9 indicated the effect of squeezing parameter S on the velocity distribu-
tion for case of blowing (A< 0). Fluid velocity is reduced due to the fact that lower wall acts as
a retarding force in case of blowing (A< 0). On the other hand fluid velocity enhances in the
upper half region of the channel. In fact in upper half channel the squeezing effects are domi-
nant. Figs 10 and 11 display the influence of fluid parameter α1 and angle of inclination ψ on
velocity distribution f0(η). It is noted that velocity distribution f0(η) increases near the porous
wall when η� 0.43 whereas it decreases when η> 0.43 for higher values of fluid parameter α1.
In fact α1 is inversely proportional to the viscosity. For larger fluid parameter α1 the viscosity of
fluid decreases and consequently the velocity distribution enhances. The behavior of angle of
inclination ψ on the velocity profile f0(η) is illustrated in Fig 11. Here, f0(η) increases gradually
when ψ enhances but there is a decrease in f0(η) when 0.4� η� 1. It is due to the fact that by
increasing angle of inclination ψ the influence of magnetic effects on fluid particle rises which
enhances the Lorentz force. Therefore velocity distribution decreases. Also one can observed
that ψ = 0 is the case when magnetic effect has no influence on the velocity distribution. For
ψ = π/2 the fluid particles offered the maximum resistance.

Temperature distribution
Variation of magnetic parameter (M) on the temperature distribution θ(η) is shown in Fig 12.
It is noted that temperature distribution increases for higher magnetic parameterM. This is
due to the fact that an increase inM give rise to the resistive force (Lorentz force), and

Fig 6. Influence ofM on\f0(η) for suction.

doi:10.1371/journal.pone.0152555.g006
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consequently the temperature distribution increases. Fig 13 illustrates the effect of squeezing
parameter S on the temperature θ(η). This figure indicates that for larger values of squeezing
parameter S the temperature distribution decreases. Higher values of squeezing parameter S
indicate that kinematic viscosity decreases and depends upon the velocity and distance between
disks. The effect of radiation parameter R on the temperature distribution θ(η) is visualized in
Fig 14 by keeping other parameters fixed. Temperature distribution is an increasing function
of radiation parameter R. The mean absorption coefficient decreases for higher thermal radia-
tion parameter R. Therefore temperature distribution increases. Fig 15 is sketched to examine
the influence of Prandtl number Pr on temperature profile. It is contemplated that an increase
in Pr reduce the thermal boundary layer due to which the heat transfer rate enhances and as a
result the temperature of fluid decreases. Fig 16 demonstrates the influence of angle of inclina-
tion (ψ) on temperature distribution θ(η). It is revealed that temperature profile θ(η) increases
for higher values of inclination angle ψ. It is due to the fact that higher values of angle of incli-
nation ψ corresponds to larger magnetic field which opposes the fluid motion. As a result the
temperature profile θ(η) increases. Figs 17 and 18 display the impact of Biot number (γ1,γ2) on
the temperature distribution θ(η). Fig 17 indicates the influence of Biot number (γ1) at the
lower disk on temperature distribution. It is observed that larger γ1 leads to an increase in the
temperature profile θ(η) and thermal boundary layer thickness. The Biot number is the ratio of
the internal resistance of a solid to the thermal resistance of the disk surface. With the increase
of the Biot number, the thermal resistance of the surface of disk decreases. Higher surface tem-
perature is achieved due to increase in convection which makes the thermal effect to go deep in

Fig 7. Influence ofM on f0(η) for blowing.

doi:10.1371/journal.pone.0152555.g007
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Fig 8. Influence of S on f0(η) for suction.

doi:10.1371/journal.pone.0152555.g008

Fig 9. Influence of S on f0(η) for blowing.

doi:10.1371/journal.pone.0152555.g009
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Fig 10. Influence of α1 on f0(η).

doi:10.1371/journal.pone.0152555.g010

Fig 11. Influence ofψ on f0(η).

doi:10.1371/journal.pone.0152555.g011
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Fig 12. Influence ofM on θ(η).

doi:10.1371/journal.pone.0152555.g012

Fig 13. Influence of S on θ(η).

doi:10.1371/journal.pone.0152555.g013
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Fig 14. Influence ofR on θ(η).

doi:10.1371/journal.pone.0152555.g014

Fig 15. Influence of Pr on θ(η).

doi:10.1371/journal.pone.0152555.g015

Radiative Squeezing Flow of Second Grade Fluid with Convective Boundary Conditions

PLOS ONE | DOI:10.1371/journal.pone.0152555 April 20, 2016 17 / 22



Fig 16. Influence ofψ on θ(η).

doi:10.1371/journal.pone.0152555.g016

Fig 17. Influence of γ1 on θ(η).

doi:10.1371/journal.pone.0152555.g017
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to the quiescent fluid. Fig 18 is plotted for various values of Biot number γ2 on temperature at
the upper wall. It is noted that the fluid temperature decreases due to increasing convective
heat loss at the upper disk.

Skin Friction and local Nusselt number
Table 2 shows the comparison of numerical values of f@(1) with Domairry and Aziz [17] and
Hayat et al. [5] for different values of squeezing parameter S and Hartman numberM. It is
observed that the present results are in excellent agreement with previous published data.

Fig 18. Influence of γ2 on θ(η).

doi:10.1371/journal.pone.0152555.g018

Table 2. Comparison between HAM and HPM in limiting situations for different values of squeezing
parameter S and Hartman numberMwhen other parameters are fixed.

S M f@(1)

Hayat et al. [5] Domairry and Aziz [8] present work

0.1 1 3.02725 3.02725 3.02725

0.2 3.00560 3.00560 3.00560

0.3 2.98468 2.98468 2.98468

0.4 2.96449 2.96449 2.96449

0.1 0 2.97682 2.97682 2.97682

1 3.02725 3.02725 3.02725

2 3.17424 3.17424 3.17424

3 3.40620 3.40620 3.40620

doi:10.1371/journal.pone.0152555.t002
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Table 3 is prepared for the numerical values of skin friction coefficient for both upper and
lower disks for various values of physical parameters. Magnitude of skin friction coefficient is
increased for larger values of S,M, α1, and ψ at both upper and lower disks while it decreases
for suction parameter A at both the upper and lower disks. The rate of heat transfer enhances
for Pr, R, S, γ1, and γ2 at the lower disk. On the upper disk the rate of heat transfer decreases by
increasing the values of Pr and S while it increases for larger values of R, γ1, and γ2. Table 4 is
drawn for the numerical values of local Nusselt number for the different physical parameters.

Conclusions
Impact of thermal radiation in the squeezing flow of second grade fluid with convective bound-
ary condition is explored. The following points of presented analysis are worthmentioning.

Table 3. Numerical data of skin friction coefficient at upper and lower disks for different values of parameters.

A S M α1 ψ H2

r2
RerCfr0 �H2

r2
RerCfr1

0.1 0.3 5 0.1 π / 3 3.5198 3.4281

0.2 2.7138 2.5778

0.3 1.8575 1.7229

0.1 0 5 0.1 π / 3 3.4803 3.4087

0.2 3.5066 3.4217

0.4 3.5329 3.4346

0.1 0.3 2 0.1 π / 3 2.9686 2.8953

3 3.1070 3.0302

4 3.2928 3.2101

0.1 0.3 5 0.05 π / 3 3.3130 3.2565

0.15 3.7260 3.6008

0.16 3.7672 3.6355

0.1 0.3 5 0.1 π / 6 3.0888 3.0125

π / 4 3.3101 3.2268

π / 2 3.7193 3.6184

doi:10.1371/journal.pone.0152555.t003

Table 4. Numerical values of Nusselt number at both upper and lower disks for different values of parameters.

Pr R S γ1 γ2 ð1� atÞ1
2Nur0 ð1� atÞ12Nur1

1 0.2 0.3 0.2 0.1 0.080403 0.078528

1.2 0.080652 0.078399

1.3 0.080776 0.078335

1 0.3 0.3 0.2 0.1 0.088736 0.086861

0.4 0.097069 0.095195

0.5 0.105400 0.103530

1 0.2 0.4 0.2 0.1 0.080818 0.078313

0.5 0.081235 0.078098

0.6 0.081654 0.077882

1 0.2 0.3 0.7 0.1 0.103974 0.101549

0.8 0.105521 0.103059

0.9 0.106756 0.104266

1 0.2 0.3 0.2 0.3 0.137044 0.133847

0.4 0.150277 0.146771

0.6 0.166338 0.162458

doi:10.1371/journal.pone.0152555.t004
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• Velocity profile decreases while the temperature distribution increases for larger magnetic
parameter.

• Effects of angle of inclination, Prandtl number and magnetic parameter are qualitatively
similar.

• Effect of Prandtl number on temperature field is opposite to that of thermal radiation param-
eter R.

• Temperature distribution enhances for larger radiation parameter R.

• Effects of magnetic and squeezing parameters on velocity distribution having similar behav-
ior for both suction and blowing cases.

• Skin friction coefficient increases for higher values of S,M, α1, and ψ.

• For the larger values of R, γ1, and γ2 the magnitude of local Nusselt number increases at both
upper and lower disks.
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