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Abstract

Vertebrate MOXD2 encodes a monooxygenase DBH-like 2 protein that could be involved in
neurotransmitter metabolism, potentially during olfactory transduction. Loss of MOXD2 in
apes and whales has been proposed to be associated with evolution of olfaction in these
clades. We analyzed 57 bird genomes to identify MOXD2 sequences and found frequent
loss of MOXD2 in 38 birds. Among the 57 birds, 19 species appeared to have an intact
MOXD2 that encoded a full-length protein; 32 birds had a gene with open reading frame-dis-
rupting point mutations and/or exon deletions; and the remaining 6 species did not show
any MOXD2 sequence, suggesting a whole-gene deletion. Notably, among 10 passerine
birds examined, 9 species shared a common genomic deletion that spanned several exons,
implying the gene loss occurred in a common ancestor of these birds. However, 2 closely
related penguin species, each of which had an inactive MOXD2, did not share any mutation,
suggesting an independent loss after their divergence. Distribution of the 38 birds without
an intact MOXD2 in the bird phylogenetic tree clearly indicates that MOXD2 loss is wide-
spread and independent in bird lineages. We propose that widespread MOXD2 loss in
some bird lineages may be implicated in the evolution of olfactory perception in these birds.

Introduction

MOXD2 encodes a monooxygenase dopamine B-hydroxylase (DBH)-like 2 protein, and highly
orthologous proteins are found in vertebrates [1, 2]. MOXD?2 and its paralogs, MOXD1 and
DBH, are members of a copper type II, ascorbate-dependent monooxygenase family, which
was formed by sequential duplication during bilaterian evolution [1]. DBH is involved in the
conversion of dopamine to norepinephrine (noradrenaline) in postganglionic sympathetic
neurons, and its malfunction is implicated in a wide range of neuropsychiatric disorders [3-5].
It is likely that vertebrate MOXD?2 is also involved in neurotransmitter metabolism, potentially
during olfactory transduction, because mouse ortholog Moxd2 is highly expressed in the
medial olfactory epithelium [6].

Human MOXD2 has a genomic deletion that spans 2 exons, which occurred after humans and
chimpanzees diverged [1]. Orangutan MOXD2 has multiple nonsense mutations, and the gene
has been completely deleted in gibbons [2]. Primates, especially Old World monkeys and apes,
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have enhanced visual perception, and they are less dependent on olfactory perception, which
might have resulted in diminished olfaction and inactivation of olfaction-related genes [7, 8].

Interestingly, MOXD2 inactivation has also occurred in whales, as evidenced by many dis-
ruptive mutations such as small frameshift insertions/deletions, nonsense mutations, and
whole-gene deletions [2]. The aquatic lifestyle of whales with vocal communication and sophis-
ticate echolocation may have reduced the dependence on olfaction and led to the reduction in
olfactory apparatus and inactivation of olfaction-related genes [9-12]. Therefore, convergent
inactivation of MOXD?2 in apes and whales could be an outstanding molecular signature of
adaptive evolution for ecological and/or behavioral adaptation.

In this study, we examined 57 bird genomes and found widespread and independent loss of
MOXD?2 in 38 birds. Loss of functional MOXD2 may be associated with the evolution of olfac-
tion in birds.

Materials and Methods
Identification of bird MOXD2 sequences

Bird MOXD2 sequences were identified by BLASTN searches (http://blast.ncbi.nlm.nih.gov/
Blast.cgi) of the database for whole genome shotgun (WGS) contigs in the National Center for
Biotechnology Information (NCBI). Initially, the chimpanzee MOXD2 cDNA sequence was
used as a query to identify bird MOXD2 genomic sequences. Rifleman MOXD2 was chosen as
the reference sequence for subsequent bird gene analyses simply because it was the first gene
identified to have an intact coding sequence in this study. Pairwise sequence comparison was
performed using FASTA (version 36.3.6f) (http://fasta.bioch.virginia.edu/fasta_www?2/fasta_
down.shtml) [13]. Exonic sequences that matched the corresponding rifleman MOXD2 exons
from each bird genome were extracted and concatenated to generate virtual cDNA sequences.
When a genomic contig contained only a partial region of an exon, raw WGS data, if available,
were detected and retrieved from the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.
gov/sra). CAP3 (version date 12/21/07) was used to align and assemble WGS data (http://seq.
cs.astate.edu) [14]. The resulting cDNA sequences were virtually translated into protein
sequences. In October 2014, 57 bird genomes were available for analysis.

Comparative sequence analyses

Multiple sequence alignments of exon, cDNA, or protein sequences were performed using
MUSCLE (v3.8.31) (http://www.drive5.com/muscle) [15]. Presence of a signal peptide at the
N-terminal end of proteins was predicted using the SignalP 4.1 web server (http://www.cbs.
dtu.dk/services/SignalP) [16]. Presence of a glycosylphosphatidylinositol (GPI) anchor at the
C-terminal end of proteins was predicted using the PredGPI web server (http://gpcr.biocomp.
unibo.it/predgpi) [17].

Dotplots were created to identify and visually inspect exon deletions. MOXD2 genomic
sequences of the rifleman and other birds were aligned using blastz (version 2003-05-14)
(http://www.bx.psu.edu/miller_lab) with default options [18]. The blastz outputs were parsed
using an ad hoc perl script to extract matched coordinates that were plotted using gnuplot (ver-
sion 4.6 patchlevel 4) (http://www.gnuplot.info).

Results
Identification of MOXD2 from 57 bird genomes

We analyzed 57 bird genomes to identify MOXD2. The list and phylogenetic tree for the 57
birds examined in this study are shown in Fig 1. The phylogenetic tree is based on recently
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Common name
Rifleman
Golden-collared manakin
American crow

Hooded crow

Ground tit

Collared flycatcher
Zebra finch

Atlantic canary

Medium ground finch
White-throated sparrow
Kea

Budgerigar

Puerto Rican Amazon
Scarlet macaw

Saker falcon

Peregrine falcon
Red-legged seriema
Downy woodpecker*
Northern carmine bee-eater
Rhinoceros hornbill
Bar-tailed trogon
Cuckoo roller

Speckled mousebird
Barn owl!

Turkey vulture
White-tailed eagle
Golden eagle
White-tailed tropicbird
Sunbittern

Red-throated loon
Emperor penguin

Adelie Penguin
Northern fulmar

Great cormorant
Crested ibis

Little egret

Killdeer

East African crowned crane
Hoatzin

Red-crested turaco
MacQueen's bustard
Common cuckoo
Chuck-will's-widow
Anna's hummingbird
Flamingo

Great crested grebe
Rock pigeon
Yellow-throated sandgrouse
Brown mesite

Mallard

Northern bobwhite*
Japanese quail*
Chicken*

Wild turkey*

Black grouse*
White-throated tinamou
African ostrich

Scientific Name
Acanthisitta chloris
Manacus vitellinus

Corvus brachyrhynchos
Corvus cornix cornix
Pseudopodoces humilis
Ficedula albicollis
Taeniopygia guttata
Serinus canaria

Geospiza fortis

Zonotrichia albicollis
Nestor notabilis
Melopsittacus undulatus
Amazona vittata

Ara macao

Falco cherrug

Falco peregrinus

Cariama cristata

Picoides pubescens

Merops nubicus

Buceros rhinoceros silvestris
Apaloderma vittatum
Leptosomus discolor

Colius striatus

Tyto alba

Cathartes aura

Haliaeetus albicilla

Aquila chrysaetos canadensis
Phaethon lepturus
Eurypyga helias

Gavia stellata

Aptenodytes forsteri
Pygoscelis adeliae
Fulmarus glacialis
Phalacrocorax carbo
Nipponia nippon

Egretta garzetta
Charadrius vociferus
Balearica pavonina gibbericeps
Opisthocomus hoazin
Tauraco erythrolophus
Chlamydotis undulata macqueenii
Cuculus canorus
Caprimulgus carolinensis
Calypte anna
Phoenicopterus ruber ruber
Podiceps cristatus

Columba livia

Pterocles gutturalis
Mesitornis unicolor

Anas platyrhynchos

Colinus virginianus
Coturnix japonica

Gallus gallus

Meleagris gallopavo

Tetrao (Lyrurus) tetrix tetrix
Tinamus guttatus

Struthio camelus australis

Family
Acanthisittidae
Pipridae
Corvidae
Corvidae
Paridae
Muscicapidae
Estrildidae
Fringillidae
Emberizidae
Emberizidae
Psittacidae
Psittacidae
Psittacidae
Psittacidae
Falconidae
Falconidae
Cariamidae
Picidae
Meropidae
Bucerotidae
Trogonidae
Leptosomidae
Coliidae
Tytonidae
Cathartidae
Accipitridae
Accipitridae
Phaethontidae
Eurypygidae
Gaviidae
Spheniscidae
Spheniscidae
Procellariidae
Phalacrocoracidae
Threskiornithidae
Ardeidae
Charadriidae
Gruidae
Opisthocomidae
Musophagidae
Otididae
Cuculidae
Caprimulgidae
Trochilidae
Phoenicopteridae
Podicipedidae
Columbidae
Pteroclididae
Mesitornithidae
Anatidae
Odontophoridae
Phasianidae
Phasianidae
Phasianidae
Phasianidae
Tinamidae
Struthionidae

Order
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Passeriformes
Psittaciformes
Psittaciformes
Psittaciformes
Psittaciformes
Falconiformes
Falconiformes
Cariamiformes
Piciformes
Coraciiformes
Bucerotiformes
Trogoniformes
Leptosomiformes
Coliiformes
Strigiformes
Accipitriformes
Accipitriformes
Accipitriformes
Phaethontiformes
Eurypygiformes
Gaviiformes
Sphenisciformes
Sphenisciformes
Procellariiformes
Suliformes
Pelecaniformes
Pelecaniformes
Charadriiformes
Gruiformes
Opisthocomiformes
Musophagiformes
Otidiformes
Cuculiformes
Caprimulgiformes
Apodiformes

Phoenicopteriformes

Podicipediformes
Columbiformes
Pteroclidiformes
Mesitornithiformes
Anseriformes
Galliformes
Galliformes
Galliformes
Galliformes
Galliformes
Tinamiformes
Struthioniformes

Fig 1. Phylogenetic tree for the birds. A phylogenetic tree for the 57 birds analyzed in this study is presented. Species with intact MOXD2 are highlighted
using a green background. Other species with MOXD2 with disruptive mutations are highlighted using a reddish background, and their branches are in red.
Asterisks (*) indicate species that probably underwent complete-gene deletion. The orders of the birds are alternately colored (the last column). Major bird
clades are mentioned above the corresponding branches. See S1 Fig for detailed sequence information on bird MOXD2 genes.

doi:10.1371/journal.pone.0152431.g001

published genome data [19]. Among the 57 bird species, 19 appeared to have intact MOXD2
that encoded a full-length protein; 32 had a gene with deleterious mutations and/or exon dele-

tions (21, both point mutations and exon deletions; 10, only point mutations; and 1, only an

exon deletion); and 6 species did not yield any MOXD2 sequence, suggesting a complete gene
deletion. Mutations identified in bird MOXD2 genes are listed in Table 1. Detailed information
on bird MOXD2 genes, including accession numbers of genomic sequences, coordinates of

exons, and cDNA and protein sequences (if available), is provided in S1 Fig.

MOXD?2 genes that encoded a full-length protein were identified in 19 bird genomes: rifle-
man, barn owl, turkey vulture, white-tailed eagle, golden eagle, white-tailed tropicbird, red-
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Table 1. Summary of mutations in MOXD2 in birds.

No® Species et® e2 e3 e4 e5 e6 e7 e8 e9 el0 ell el12 el3
2 Golden-collared d17, sd ed ed ed ed ed ed ed ed ed ed ed
manakin
3 American crow di, ns tl,d1,d2  5d69 ed ed ed ed ed ed ed ed tl, 5d27, 5d54, d1
d10, sd
4 Hooded crow di, ns tl,d1,d2  5d69 ed ed ed ed ed ed ed ed tl, 5d27, 5d54, d1
d10, sd
5 Ground tit di, d2 tl, 5d25, 5d69 ed ed ed ed ed ed ed ed ed 5d55
ns, d2
6 Collared flycatcher ns, d1 thns,ns 5d64,ns ed ed ed ed ed ed ed ed ed 5d117
7 Zebra finch di,il,ns tl, ns,dl 5d64 ed ed ed ed ed ed ed ed ed 5d32,
3d20
8 Atlantic canary di, ns tl, d1, d1 5d64,ns ed ed ed ed ed ed ed ed ed 5d105,
3d35
9 Medium ground di, ns tl, ns, d1 5d64,ns ed ed ed ed ed ed ed ed ed 5d105
finch
10  White-throated di1, di, tl, ns, d1 5d64,d2 ed ed ed ed ed ed ed ed ed 5d105
sparrow ns
11 Kea d5, db, ed 5d37,d8 sa,i4, ed ed ed ed ed ed ed ed
di i1
12 Budgerigar d5 ed sa, il sa, d7, ed ed ed sd ed ed ed ed ed
i1
13 Puerto Rican d5, ns, ed 5d19 sa,d7, ed ed ed ed ed ed ed ed
Amazon ns, d14 i1
14  Scarlet macaw d5 ed sa, il sa, d7, ed ed ed ns ed ed ed ed ed
i1
15 Saker falcon d5,ns,sd sa sd di ns, di ns sa
16  Peregrine falcon d5,ns,sd sa sd di ns, d1 ns sa
17  Red-legged ns ed ed sa,
seriema sd
18  Downy gd gd gd ad gd gd gd gd gd gd gd ad gd
woodpecker
19 Northern carmine d181 ed ed ed ed ed ed d7 ns, sd sa, ns
bee-eater
20 Rhinoceros hornbill di
21 Bar-tailed trogon sa, sd 5d58, i7 5d4, d10 sa i1, ns,
ns, d2 ns, ns 3d21
22 Cuckoo roller sa, ns di sd sa, ns d2, sa d2 d76
sd
23  Speckled 5d12,d1, sd a8 sa, ns, sa, sa, ed ed ns, ns sa, sd
mousebird sd d2 sd ns, ns
29  Sunbittern ed ed ns, d7 i1 sa, sa, ns, ed ed ed ed ed ed
i1 ns
31 Emperor penguin sa i7 sd ed ed
32  Adelie Penguin ns i2
34 Great cormorant d5, di, di 5d7, ns ns ns sd ns, ns, 3d4 i1, d11
ns d7 sd
35  Crested ibis d5 ns, di i1 d4
36 Little egret d5, ns ns sa, ns, sa ns d7 i13,d1, ns dz, di
sd ns, sd
37 Killdeer ed
44  Anna's ed ed d8 3d59 ed
hummingbird
(Continued)
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Table 1. (Continued)

No?
47
48

49
51
52
53
54
55

Species

Rock pigeon

Yellow-throated
sandgrouse

Brown mesite
Northern bobwhite
Japanese quail
Chicken

Wild turkey

Black grouse

etl®
ns
di, ns

d5
gd
gd
gd
gd
gd

e2 e3 e4 e5 e6 e7 e8 e9 el0 ell el2 el3
di, sd sd sd d20 sa

ed i ed ed ed d2
ed ed ns d1,d8 ns ed ns sa sd ns
gd gd gd gd gd gd gd gd gd gd gd gd
gd gd gd gd gd gd gd gd god gd gd gd
gd gd gd gd gd gd gd gd ad gd ad gd
gd gd gd gd gd gd gd gd gd gd gd gd
gd gd gd gd gd gd gd gd ad gd gd gd

& Species number used in this study. Species without mutations include: 1, rifleman; 24, barn owl; 25, turkey vulture; 26, white-tailed eagle; 27, golden
eagle; 28, white-tailed tropicbird; 30, red-throated loon; 33, Northern fulmar; 38, East African crowned crane; 39, hoatzin; 40, red-crested turaco; 41,
MacQueen’s bustard; 42, common cuckoo; 43, Chuck-will's-widow; 45, flamingo; 46, great crested grebe; 50, mallard; 56, white-throated tinamou; and 57,
African ostrich.
b Blank indicates no mutation in the given exon; sa, splice acceptor mutation; 5d#, #-nt deletion at the 5'-end; d#, internal deletion of # nt; i#, insertion of #
nt; ns, nonsense codon; 3d#, #-nt deletion at the 3'-end; sd, splice donor mutation; ed, exon deletion; tl, translocation; gd, gene deletion.

doi:10.1371/journal.pone.0152431.t001

throated loon, northern fulmar, East African crowned crane, hoatzin, red-crested turaco, Mac-
Queen’s bustard, common cuckoo, Chuck-will’s-widow, flamingo, great crested grebe, mallard,
white-throated tinamou, and African ostrich. Multiple sequence alignment of full-length
MOXD2 proteins showed sequence conservation (S2 Fig). These bird MOXD?2 proteins were
predicted to have a signal peptide and a GPI anchor signal as other previously reported
MOXD?2 proteins do, suggesting that they are functional [1, 2]. Rifleman (order Passeriformes;
species No. 1) MOXD2 was used as the reference sequence in subsequent analyses.

ORF-disrupting point mutations in MOXD2 in 31 bird genomes

Among the 57 bird species, 31 species were identified to have MOXD2 with ORF-disrupting
point mutations (Table 1). These species include golden-collared manakin, American crow,
hooded crow, ground tit, collared flycatcher, zebra finch, Atlantic canary, medium ground
finch, white-throated sparrow, kea, budgerigar, Puerto Rican Amazon, scarlet macaw, saker fal-
con, peregrine falcon, red-legged seriema, northern carmine bee-eater, rhinoceros hornbill,
bar-tailed trogon, cuckoo roller, speckled mousebird, sunbittern, emperor penguin, Adelie pen-
guin, great cormorant, crested ibis, little egret, killdeer, Anna’s hummingbird, rock pigeon, yel-
low-throated sandgrouse, and brown mesite.

The ORF-disrupting point mutations included splice site mutations, frameshifting small
insertions/deletions, and nonsense mutations. Two representative exons (exons 1 and 4) of
selected species with such point mutations are shown in Fig 2. Other selected exons with point
mutations are presented in S3 Fig. These point mutations are not attributable to sequencing
errors; alignments and assemblies of WGS sequences derived from these exons confirmed that
the exon sequences were assembled from a large amount of raw sequence data and therefore
the mutations were genuine. Partial genomic assemblies that span the selected exons in S3 Fig
are presented in S4 Fig.

As a representative case, the exon 1 sequences of 12 species (11 selected species with point
mutations and the rifleman) are shown in Fig 2A. The rifleman (order Passeriformes) MOXD2
gene, which may encode an intact full-length protein, was used as the reference sequence. Exon
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Exon 1

Rifleman (aa)

Rifleman
Golden-collared manakin
American crow

Hooded crow

Ground tit

Collared flycatcher
Zebra finch

Atlantic canary

Medium ground finch
White-throated sparrow
Rock pigeon
Yellow-throated sandgrouse

Rifleman (aa)

Rifleman
Golden-collared manakin
American crow

Hooded crow

Ground tit

Collared flycatcher
Zebra finch

Atlantic canary

Medium ground finch
White-throated sparrow
Rock pigeon
Yellow-throated sandgrouse

Rifleman (aa)

Rifleman
Golden-collared manakin
American crow

Hooded crow

Ground tit

Collared flycatcher
Zebra finch

Atlantic canary

Medium ground finch
White-throated sparrow
Rock pigeon
Yellow-throated sandgrouse

Rifleman (aa)

Rifleman
Golden-collared manakin
American crow

Hooded crow

Ground tit

Collared flycatcher
Zebra finch

Atlantic canary

Medium ground finch
White-throated sparrow
Rock pigeon
Yellow-throated sandgrouse

M MATIVFSRTIKTR
gactcaggaattgcagtggtgctgttgATGATGGCAATTGTCTTCTCGAGAATCAAGAGG
gactcagaaattgaagtggtactgttggtgATGGCAGTGTCCTTCTCAAGAATCCAGGGT

gactcagaaactgcag-- --tgATGATGGTGATGCTCTTCTCAGGGATCAAGAGA
gacacagaaactgcag: tgATGATGGTGATGCTCTTCTCAGGGATCAAGAGA
gtaccagagactgcag agATGATAGTGATGTTCTTTTCAGGAATCAAGAGA
gactcagagactgcag-- --agATGATGGTTTTGTTCTTCTCAGGAATCAAGAAA
gactcagagactgcag-- --agATGATGGTGATC---TTTTCAGGAATCAAGAGA
gactcagagactgcag agATGATGGTGATGTTCTACTCAGGAATCAAGAGA

gacttggagactg-ag-- - -agATGATGTTGATGTTCTTCCCAGGAATCAAGAGA
gactcagagactgcag--------- agattATGGTGATGTTCTTCTCAGAAATCAAAAGA
gactccgaaattgcagtggtcctggtgataATGGCAGTTCTTTTCTCAAGTATCAAGGGT

gactcagaaactgccgtggtcctgttgATGATGGCAGTTGTCTTCTCAAGAACCAAGGGT
* * ok Ak ¥ P * o * k%

M F FLLFFPCFCSGQLAPPUPIL

ATGTTCTTCCTCTTGTTCTTCCCATGCTTTTGTTCTGGTCAGCTTGCACCTCCACCGCTG
ATGCTCTTCCTCTTGTTC (GGTCAGCCTGCAGCTCCACTACTG
ATGCTCTTCCTCTTGTTCCTCCCATGCTTTTGTTCTGGCCAGCTTGCACCTCCACTGCTG
ATGCTCTTCCTCTTGTTCCTCCCATGCTTTTTTTCTGGCCAGCTTGCACCTCCACTGCTG
ATGCTCTTCCTCTTGTTCCTCCCATGCTCTTGTTCTGGCCAGCTTGCATCTCTGCTGCTG
ATGCTCTTCCTCM@TTCCTCTCATGCTTTTGTTCTGGCCTGCTTGCATCTCCCCTGCTG
ATGCTCTTCCTTTTGTTCT---CTTGCCTCTGTTCTGGCCAGCTTGCATCTCCACTGCTG
CTGCTCTTCCTCTTTTTCCTTCCATGCTTTTGTTCTGGCCAGCTTGCATTTCCACTGCCG
ATGCTCTTCCTCTTGTTCCTCCCATGCTTTTGTTCTGGCCAGCTTGCATCTCCTCTGATG
ATGCTCTTCCTCTTGTTCCTCCCATGCTTTTGTTCTGGCCAGCTTGCATTTCCACTGCTG
ATGCTCTTCCTCTTGCTCCTCCCATACTTTTGTTTTGGTCAGCCTGCACCTTCACTGCTG
ATGCTCTTCCTCTTRTTCTCCCCATGCTTTTATTATGATCAGCCTGCAACT CCATIBCTG

*

HE RRRERKE K KK KRk REKE K *

R FSTFLDPSNMVYLHUWDUHTDTD

CGTTTCTCCACTTTCCTGGATCCTTCCAACATGGTCTACCTCCACTGGGACCATGATGAT
CATTTCTCCACCTCCCTGGATCCTTCCAACACAATCCACCTCCGCTGGGACCATGATGAA
CGTTTCCCCACCTTATTGGATCCTTCCAGCATGTTCTACCTCCACTGGGACCACGAGGAA
CGTTTCCCCACCTTATTGGATCCTTCCAGCATGTTCTACCTCCACTGGGACCACGAGGAA
AGTTTCCCCACCTTCCTGGATCCTTCCAGCATGTTCTACCTCCGCTGGCACTATAAGGAA
CGTTTCCCCACCTTCCTGGATCCTTCCAGCATGTTCTACCTCTGCTGGGACCACAAGGAA
CGTTTCTCCACCTTCCTGGATCCTTCTAGCATGTTCCACCTCTGCTGGGACCATGAGGAA
CGTTTCCCCACCTTCCTGGATCCTTCCAGCATGTTCTACCTCTGCTGGGACCATGAAGAA
CTTTTCCCCACCTTCCTGGATCCTTCCAGCATGTTCTACCTCTGCTGGGAGCACAAGGAA
CATTTCCCTGCCTTCCTGGATCCTTCCAGCATGTTCTGCCTH TGAGGAA
CATTTCTCCATCTTCCTGGAGCCTACAATCATGGTTTACCTCTGC (GACCATGACGAA
CGTTTCTCCATCTTCCTGGATCCTTCAAACATGGTCTACCTCCGCTGGGACCATGACGAA

KKK K K RkEE KKK K K k% K RERE * Rk

Q ELMTTFETLI QVHTTGWVA F G F

CAGGAGCTGATGACATTTGAGCTGCAGGTCCATACAACTGGCTGGGTGGCA-TTTGGATT
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alignments. Exonic and intronic sequences are in uppercase and lowercase letters, respectively. See S3 Fig for more disruptive mutations in other exons.

doi:10.1371/journal.pone.0152431.9002

1 of golden-collared manakin (order Passeriformes; species No. 2) MOXD2 showed a 17-nt
deletion and a splice donor mutation (gt to gg). The other 8 passerine birds (American crow,

hooded crow, ground tit, collared flycatcher, zebra finch, Atlantic canary, medium ground
finch, and white-throated sparrow; species Nos. 3 to 10), rock pigeon, and yellow-throated

sandgrouse had diverse ORF-disrupting point mutations, including small insertions/deletions,
nonsense mutations, and a splice site mutation. Some mutations were shared by closely related

species, for example, a 1-nt deletion was common in 8 passerine birds (see species Nos. 3 to 10

in Fig 2A), indicating this mutation occurred in a common ancestor of these birds.

As another representative case, exon 4 sequences of 11 species (10 selected species with

point mutations and the rifleman) are shown in Fig 2B. These include 4 parrots (order Psittaci-
formes; kea, budgerigar, Puerto Rican Amazon, and scarlet macaw), 2 falcons (order Falconi-

formes; saker falcon and peregrine falcon), cuckoo roller, speckled mousebird, sunbittern, and

great cormorant. As in exon 1, a variety of point mutations, including splice site mutations,

small insertions/deletions, and nonsense mutations, were observed. Some mutations were

shared by closely related species, for example, a 1-nt insertion was common in parrots (species

Nos. 11 to 14 in Fig 2B) and a 1-nt deletion was common in falcons (Nos. 15 and 16).
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Exon deletions and translocations in MOXD2 in 22 bird genomes

Among the 32 birds with a disrupted MOXD?2 gene, 22 were identified to have an exon dele-
tion. When an exon was not present in any genomic contig and its 5'- and 3’-flanking regions
were found in a single genomic contig, the missing exon was regarded to be deleted in the bird
genome. For example, exons 1 to 10 and 13 of the emperor penguin MOXD?2 gene were found
in the contig “JMFQ01072246.1” and exons 11 and 12 were not present in this contig or any
other contigs, suggesting that a genomic deletion that spanned exons 11 and 12 occurred in
this species (S1 Fig, species No. 31). A genomic deletion that removed at least 1 exon was
observed in 22 birds (marked as “ed” in Table 1): 21 of them also had at least 1 point mutation
in other exons; the killdeer (No. 37) was the only species that had an exon deletion with no
point mutation in other exons.

Some exons were identified to be translocated: an exon was considered to be translocated
when its 5'- and the 3'-flanking regions were present in a genomic contig with other exons and
the given exon itself was found in a different genomic contig. Exon translocation events were
identified in MOXD?2 in 8 bird genomes (marked as “tI” in Table 1). For example, exons 1, 3,
and 13 of the American crow MOXD2 gene were present in the contig “JMFN01085921.1,”
while exons 2 and 12 were found in different contigs, “TMFN01029801.1” and
“IMFN01085927.1,” respectively (S1 Fig, species No. 3).

Dotplots between the rifleman MOXD2 genomic sequence and those of each of the 57 birds
were produced to confirm and visualize genomic rearrangements that resulted in exon dele-
tions and/or translocations (S5 Fig). Representative dotplots of 10 birds are shown in Fig 3. For
example, American crow MOXD2 exhibited a genomic deletion that spanned exons 4 to 11
and two translocations involving exons 2 and 12 (Fig 3, species No. 3). The deletion spanning
exons 4 to 11 was common in the 9 passerine birds (species Nos. 2 to 10), suggesting that this
deletion occurred in a common ancestor of these birds after the rifleman diverged. The translo-
cation event involving exon 2 was shared with the other 7 passerine birds (species Nos. 4 to
10). Exon 12 translocation was also found in the hooded crow (species No. 4), the closest rela-
tive of the American crow.

Possible complete deletion of MOXDZ2 in 6 bird genomes

In 6 bird genomes, no MOXD2 sequence was detected, raising the possibility of whole-gene
deletion (marked as “gd” in Table 1 and with an asterisk in Fig 1). These birds include downy
woodpecker, northern bobwhite, Japanese quail, chicken, wild turkey, and black grouse.

The downy woodpecker (species No. 18), which belongs to the order Piciformes, did not
show any MOXD?2 sequence. It is possible that the lack of the MOXD?2 sequence is because of
incomplete coverage of the WGS data. However, a sequence similarity search of the downy
woodpecker WGS sequences using the MOXD2 genomic contigs of Northern carmine bee-
eater, which is the closest species of downy woodpecker in our dataset, as queries, yielded 5
WGS contigs. Dotplot comparisons of downy woodpecker WGS contigs with Northern car-
mine bee-eater (S6 Fig) or rifleman genomic sequences (S5 Fig, species No. 18) suggested that
the whole MOXD2 genomic segment is missing in the downy woodpecker. It is also noteworthy
that an almost complete sequence of downy woodpecker MOXD1I, a paralog of MOXD2, can be
recovered from current genomic sequence data. Therefore, it is likely that the MOXD2 deletion
is genuine.

All the other 5 species belong to the order Galliformes, suggesting that the MOXD?2 deletion
may be the ancestral state. It is also possible that the genomic segment containing the MOXD2
fragment needs to be sequenced. However, the gene is absent even in the chicken, the genome
of which has been extensively studied. All these 5 Galliformes bird genomes yielded complete
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Fig 3. Examples of exon deletions and translocations in bird MOXD2. Dotplots between MOXD2 genomic sequences of selected birds (vertical) and that
of the rifleman MOXD2 gene (horizontal) are shown. Exonic and intronic segments of rifleman MOXD2 are marked in green and yellow, respectively.
Diagonal lines indicate an aligned segment and hence the presence of corresponding genomic segments. Note that some exons are missing in these birds,
as evidenced by the lack of a segment aligned with the rifleman MOXD2 exons. Red and blue numbers indicate deleted and translocated exons, respectively.
See S5 Fig for dotplots of MOXD2 in other birds.

doi:10.1371/journal.pone.0152431.9003

or partial sequences of MOXD]I, a paralog of MOXD2, suggesting that the lack of MOXD2
sequences in these genomes may not be because of incomplete sequencing. A region from the
chicken chromosome 1 was identified to be orthologous to the mallard genomic contig
NW_004676532.1. A dotplot comparison of a 6,000,000-bp-long segment from the chicken
chromosome 1 and the 1,916,416-bp-long mallard genomic contig confirmed the complete
deletion of MOXD2 gene in the chicken (S7 Fig). Interestingly, the deleted segment was in an

PLOS ONE | DOI:10.1371/journal.pone.0152431  April 13,2016 8/12



@’PLOS ‘ ONE

Frequent Inactivation of MOXD2 in Birds

inversion boundary, suggesting that MOXD?2 gene deletion might have been accompanied by a
genomic rearrangement. Therefore, it is highly probable that the MOXD?2 deletion is genuine
in these 5 Galliformes birds, and it might have occurred in a common ancestor of these birds.

Discussion

Analysis of 57 bird genomes revealed that MOXD?2 has been inactivated in 38 birds, as evi-
denced by ORF-disrupting point mutations, genomic rearrangements that cause exon deletions
and/or translocations, or whole-gene deletions. Although in some cases ORF-disrupting muta-
tions might lead to functional modifications which may be neutral or even result in evolution
of advantageous phenotypes [20, 21], it is not likely that mutant bird MOXD2 genes produce
functional proteins because they have multiple and/or highly disruptive mutations. As shown
in Fig 1, 19 birdsn with an intact MOXD2 gene and 38 birds with a disrupted gene were distrib-
uted throughout the bird phylogenetic tree, indicating that MOXD?2 inactivation is widespread
and independent in bird lineages.

In some lineages, mutations were shared by closely related species, implying that the gene-
disrupting mutation occurred in a common ancestor of those birds. For example, a genomic
deletion that spanned exons 4 to 11 was commonly found in 9 passerine birds (see Table 1, spe-
cies Nos. 2 to 10), suggesting that the deletion occurred in a common ancestor of these birds
after the rifleman diverged. The 4 parrots (see Table 1, Nos. 11 to 14) shared many mutations
in MOXD2, including a 5-nt deletion in exon 1, a 1-nt insertion in exon 4 (see Fig 2B), and 3
genomic deletions that spanned exons 2, 5 to 7, and 9 to 13, respectively.

The 6 birds, downy woodpecker, northern carmine bee-eater, rhinoceros hornbill, bar-tailed
trogon, cuckoo roller, and speckled mousebird, in which MOXD?2 was identified to be inactive,
form a single clade, although they belong to different orders (Fig 1, species Nos. 18 to 23).
Mutations in MOXD?2 in these birds were not common, suggesting that the gene inactivation
was of independent origin. The rhinoceros hornbill had only 1 mutation, a 1-nt deletion in
exon 7 (S3E Fig), implying that the gene inactivation might have occurred quite recently in this
bird. Even in the 2 closely related penguins, the emperor penguin and Adelie penguin, there
was no common mutation (Table 1, species Nos. 31 and 32). This suggests that the gene might
have become inactivated independently in each penguin lineage. Another possibility is that the
gene might become of less or no use in an ancestral penguin species and accumulated different
mutations after they diverged around 23 million years ago [22].

Widespread and independent inactivation of MOXD?2 in bird lineages implies that this gene
might have become generally dispensable during bird evolution. The phenotype associated
with the inactivation of MOXD2 in birds has not been identified. MOXD2 was suggested to be
involved in olfactory perception in mammals based on its strong expression in the mouse olfac-
tory epithelium, although its molecular function has not yet been determined [6]. Inactivation
of MOXD2 was proposed to be associated with diminished olfaction in apes and whales [1, 2].
As in birds, MOXD2 inactivation in apes and whales seemed to have occurred independently
in lineages of each clade [1, 2]. The human MOXD2 gene has a genomic deletion that spanned
exons 12 and 13, while chimpanzees, bonobos, and gorillas have a gene with intact ORF.
Orangutans have a couple of nonsense mutations, while gibbons lost the whole gene by a geno-
mic deletion. Both toothed and baleen whales have MOXD2 with disruptive mutations. How-
ever, no common mutation was found between these 2 whale clades [2].

Similar inactivation patterns for sensory perception genes occurred along with ecological
habitat shift and/or changes in feeding or communication behaviors. For examples, a large por-
tion of olfactory receptor (OR) genes are inactive in catarrhine primates, possibly because of
reduced reliance on olfaction [7, 11]. On the basis of the same reason, TRPC2, which encodes
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the transient receptor potential cation channel, subfamily C, member 2 protein, a crucial com-
ponent of pheromone transduction, is inactive in catarrhine primates and whales, and it is fre-
quently inactivated in bats and other aquatic mammals [23-26]. Tas1r2, which encodes a
component of the sweet receptor, is inactive in many carnivorous mammals such as cats, spot-
ted hyenas, and seals [27]. It is probable that the sweet receptor became dispensable in these
exclusive meat-eaters and accumulated disruptive mutations under absence of selection.

Interestingly, TasIr2 was found to be deleted in 16 bird genomes [28]. In addition, penguins
do not have genes for the umami and bitter taste receptors, probably because they swallow
food whole and have no dependence on the taste perception, which might have allowed the
loss of these taste receptor genes. Bird genome analysis also revealed that two diet-related
genes, AGT and GULO, that encode alanine/glyoxylate aminotransferase and 1-gulonolactone
oxidase, respectively, had been inactivated independently in some bird lineages: AGT is inactive
in the cuckoo roller, American crow, zebra finch, medium ground-finch, and Anna’s hum-
mingbird, while GULO is a pseudogene in the golden-collared manakin, zebra finch, and
medium ground finch [29]. MOXD2 seems to be another example of a gene that was indepen-
dently inactivated during bird evolution.

Recent studies have shown that the olfactory bulb (OB) size and OR gene repertoires in
birds are correlated with their ecological adaptations and behavioral characteristics [30, 31].
For example, semi-aquatic birds have relatively larger OBs than terrestrial birds, suggesting
that the former rely on olfaction more than the latter. Interestingly, the mallard, an Anseri-
formes, which inhabits a semi-aquatic environment, has an intact MOXD2 gene, while its close
relatives, Galliformes including chicken and turkey that are terrestrial, lost the gene by com-
plete gene deletion. Songbirds (Passeriformes), or vocal-learning species, which more rely on
cognitive ability than olfaction, have the smallest OBs and least number of OR genes [30, 31].
As expected, the MOXD2 gene is inactive in all passerine birds. This observation strengthens
our notion that loss of MOXD?2 gene is associated with evolution of olfactory function in birds
although detailed further study is required for a conclusive answer.

In summary, 57 bird genomes were analyzed and widespread and independent losses of
MOXD2 were found in 38 birds. Frequent MOXD?2 inactivation in some birds may be associ-
ated with the evolution of olfaction in these birds depending on their ecological and/or behav-
ioral adaptations.

Supporting Information

S1 Fig. Summary of bird MOXD?2 genes.
(PDF)

S2 Fig. Alignment of full-length bird MOXD?2 protein sequences.
(PDF)

S3 Fig. Alignment of selected exons with point mutations.
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S6 Fig. Dotplot comparison of the downy woodpecker and Northern carmine bee-eater
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