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Abstract
Reliable quantitative description of light-limited growth in microalgae is key to improving the

design and operation of industrial production systems. This article shows how the capability

to predict photosynthetic processes can benefit from a synergy between mathematical

modelling and lab-scale experiments using systematic design of experiment techniques. A

model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol

194:91–99, 2015] is used as starting point, whereby the representation of non-photochemi-

cal-quenching (NPQ) process is refined for biological consistency. This model spans multi-

ple time scales ranging from milliseconds to hours, thus calling for a combination of various

experimental techniques in order to arrive at a sufficiently rich data set and determine statis-

tically meaningful estimates for the model parameters. The methodology is demonstrated

for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation

(PAM) fluorescence, photosynthesis rate and antenna size measurements. The results

show that the calibrated model is capable of accurate quantitative predictions under a wide

range of transient light conditions. Moreover, this work provides an experimental validation

of the link between fluorescence and photosynthesis-irradiance (PI) curves which had been

theoricized.

1 Introduction
Microalgae are considered one of the most promising feedstocks for medium-term biofuel pro-
duction [1], and have been the subject of extensive research in recent years. Despite this recog-
nised potential, one of the main issues to address is bridging the gap between maximal
theoretical biomass productivity (or even lab-scale realised productivity) and the actual bio-
mass productivity in large scale production systems. To meet this objective, models capable of
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reliable and quantitative prediction of all key phenomena affecting microalgae growth, particu-
larly light utilization, can be a great help to improve our understanding as well as optimise pro-
cess design and operation [2, 3].

Quite a large number of modelling approaches have been proposed over the years, and it is
beyond the scope of this article to provide an exhaustive review of the literature. The focus here
is on the so called state models, based on the concept of photosynthetic unit (PSU), which have
proved especially useful to characterise photosynthetic operation in practice. Kok [4] first pub-
lished a state model describing the damage of the photosynthetic apparatus under high light
conditions and the subsequent repair processes occurring in dark conditions. Later, Eilers and
Peeters [5] proposed a state model that predicts steady-state photosynthetic productivity, also
considering the inhibitory effect of excess light. Wu and Merchuck [6] extended Eilers and
Peeters’model by introducing a maintenance term representing the loss of biomass due to res-
piration when the culture is kept in the dark. The model by Han et al. [7] is equivalent to the
model by Eilers and Peeters, but it refines the biological interpretation of the model parameters.
In the work by Rubio et al. [8] the effect of photoacclimation is also considered, that is the abil-
ity of microalgae to adjust their pigment content and composition under varying light and
nutrient conditions. Photoacclimation was first represented as a steady state process, then the
model was later extended to represent photoacclimation dynamics [9]. Likewise, Nikolaou
et al. [10] have recently proposed a model building on both Han and Droop models to describe
the dynamics of photoproduction, photoinhibition and photoacclimation. Multiphysics mod-
els that integrate these biological state models within computational fluid dynamics simulation
in order to represent the effect of light attenuation and mass-transfer limitation, have also
started to emerge [11, 12]. Dynamic models for long-term algae bioprocess simulation in both
laboratory scale system [13] and industrial-scale system [14], which incorporate more operat-
ing factors (light attenuation, nutrient concentration, temperature, etc.), can also be found in
the literature.

Recently, Nikolaou et al. [15] have proposed a semi-mechanistic model capable of quantita-
tive prediction of the flux of fluorescence by taking into account three distinct processes acting
on different time scales: photoproduction encompassing all the processes that are responsible
for the capture and utilization of photons; photoinhibition, the observed loss of photosynthetic
productivity as a result of excess or prolonged exposure to light that is associated with the dam-
age of functional components of the photosynthetic apparatus; and photoregulation, also
referred to as non-photochemical-quenching (NPQ), encompassing all the regulatory mecha-
nisms that dissipate excess excitation energy as heat. It was established through this work that
the dynamics of chlorophyll-a fluorescence can help provide good predictions of the photosyn-
thetic response under variable light conditions, thus allowing for the mathematical modelling
of key photosynthetic mechanisms. However, it has recently been found that this fluorescence
model may not describe photoregulation adequately over long-term experiments, thus advo-
cating for a more detailed and biologically consistent representation.

The development of reliable mathematical models presents many challenges, particularly
when multiple phenomena spanning several orders of magnitude both in time and space scales
are to be accounted for, as is the case in [15]. This results in a number of identifiability (and
therefore experimental) issues [16]. For the purpose of design, control and optimisation none-
theless, model identification is key to attributing a biological meaning to the parameters as well
as to enabling accurate predictions under conditions that differ from those used during the
identification experiments (extrapolation) [17].

Experiments are often designed and planned based on the available biological insight about
the system, but as the complexity of phenomena and their correlation (as typically occurs in
multiscale systems) increases, an experimenter’s expertise alone may no longer be sufficient to
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identify a model in a statistically meaningful way. Accordingly, more informative experimental
protocols are required, as determined for instance with an optimal design of experiments
approach [18]. In particular, model-based design of experiments (MBDoE) provides a system-
atic approach to determining an experimental protocol that would maximise the level of infor-
mation available for identifying that model [18]. This approach has been successful in
numerous applications, including biological systems [19, 20].

The core of this contribution is to demonstrate how our understanding and prediction capa-
bility of photosynthetic process may benefit from a synergy between modelling and experi-
ments using MBDoE. As a case study we consider the model by [15] as a starting point.
Experimental evidence [21] suggests that photoregulation mechanisms involve at least two
interdependent processes, which calls for a more complex NPQ representation in this model.
At the same time, a more complex NPQ representation augments the number of unknown
parameters, a condition that we will show can be compensated by a wider array of experimental
measurements combined with MBDoE. Eventually, we will be able to propose a biologically
consistent description of the NPQ mechanism leading to a significantly improved prediction
capability of photosynthetic production under a great variety of light conditions. Finally, we
will be able to verify the link between fluorescence and photosynthesis-irradiance (PI) curves
experimentally, a link that was theoricized in [22].

The remainder of the article is organised as follows. Section 2 presents the experimental
methods and protocols used to develop and identify the proposed model. The dynamic model
of chlorophyll fluorescence is presented and discussed in Section 3.1, with a particular focus on
the description of NPQ activation/relaxation. This new model calls for a tailored calibration
procedure in order to distinguish between the dynamics of NPQ and photoinhibition, whose
time-scales are overlapping. The model’s identifiability is analysed in Section 3.2. Section 4
applies this methodology to accurately calibrate and validate the model for the microalga N.
gaditana. A first calibration of the model parameters is conducted in Section 4.1, followed by a
sensitivity analysis and model-based design of experiment in Section 4.2 and 4.3, respectively.
The calibration results are discussed in Section 4.4, and the model is validated against multiple
additional experiments in Section 4.5. Finally, Section 5 concludes the paper. Symbols and
acronyms used in this work are listed and defined in Table 1.

2 Material and Methods

2.1 Strain Cultivation
Microalgae Nannochloropsis gaditana (CCAP, strain 849/5) were grown in a sterile, filtered F/2
medium, using sea salts (32 gL−1) from Sigma, 40 mMTris HCl, pH 8 and Sigma Guillard’s (F/2)
marine water enrichment solution. Growth experiments were performed in the multi-cultivator
MC 1000-OD system (Photon Systems Instruments, Czech Republic) at a temperature of 21°C
and a light intensity of 100 μEm−2s−1 provided continuously by an array of white LEDs. The sus-
pension culture was constantly mixed and aerated by bubbling air. Pre-cultures were grown at
100 μEm−2s−1 in glass bottles of 0.25 L under a continuous airflow, enriched with 5% CO2. At
the exponential phase, the pre-culture was centrifuged and re-suspended in fresh medium to
reach a final concentration of 9 � 106cellmL−1, before introduction in the multi-cultivator.

Three types of measurements are used for model validation and calibration purposes later
on, which are described in the following subsections.

2.2 PAM fluorometry
When a sample containing microalgae is exposed to light, a fraction of the incoming photons is
absorbed by pigment molecules, another fraction is scattered out and the rest passes through.
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Table 1. Symbols and acronyms. meaning.

Symbol Meaning and units

αF activity level of fast energy dependent quenching [-]

αS activity level of slow energy dependent quenching [-]

αSS reference function for energy dependent quenching activity [-]

A fraction of photosynthetic units in open state

B fraction of photosynthetic units in closed state

C fraction of photosynthetic units in inhibited state

ηD rate of basal termal decay relative to the rate of fluorescence [-]

ηI rate of inhibition related quenching relative to the rate of fluorescence [-]

ηP rate of photoproduction relative to the rate of fluorescence [-]

ηqE rate of energy dependent quenching relative to the rate of fluorescence [-]
�Z�CqE maximum rate of interaction energy dependent quenching relative to the rate of fluorescence [-]

�Z�FqE maximum rate of fast energy dependent quenching relative to the rate of fluorescence [-]

�Z�SqE maximum rate of slow energy dependent quenching relative to the rate of fluorescence [-]

F0 maximum rate of slow energy dependent quenching relative to the rate of fluorescence [-]

F0 dark-adapted minimal fluorescence flux

F 0
0 light-adapted minimum fluorescence flux

Fm dark-adapted maximal fluorescence flux

F 0
m light-adapted maximum fluorescence flux

FA
f

fluorescence quantum yield of a reaction centre in state A [-]

FA
P quantum yield of photosynthesis of an open reactioncentre of the photosystem II [mmole� mE

�1]

FB
f

fluorescence quantum yield of a reaction centre in state B [-]

FC
f

fluorescence quantum yield of a reaction centre in state C [-]

FC
f

fluorescence quantum yield of a reaction centre in state C [-]

Φf quantum yield of fluorescence [−]

ΦP photosynthesis quantum yield [mmolO2
mE�1]

ΦPS2 realised quantum yield of photosynthesis [mmole� mE
�1]

IqE irradiance level at which half of the maximal qE activity is realised [μEm−2s−1]

kd damage rate constant [-]

kr repair rate constant [s−1]

N chlorophyll specific number of photosynthetic units [mmolO2
g�1
chl]

n Hill parameter related to the shape of sigmoid function describing NPQ activity [-]

ν number of electrons per molecule of dissociated H2O

P photosynthesis rate [mmolO2
g�1
chl s

�1]

qNPQ NPQ index [-]

SF scaling factor for fluorescence model (proportional to the chlorophyll content)

σ total cross section [m2g�1
chl]

σPS2 effective cross section of photosystem II [m2 μE−1]

τ turn over rate [s]

ξF time constant of the fast NPQ activation/relaxationmechanism [s−1]

ξS time constant of the slow NPQ activation/relaxationmechanism [s−1]

Acronym Meaning

ASII functional antenna size

DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea

MBDoE model-based design of experiments

NPQ non-photochemical-quenching

PAM pulse amplitude modulation

(Continued)
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The absorbed photons have three possible fates: they can either be captured by the reaction
centre of photosystem II (RCII) to drive photosynthesis (photoproduction), or dissipated as
heat (photoregulation), or re-emitted as fluorescence [23]. Thus, much information about the
photosynthetic processes can be inferred by measuring the fluorescence fluxes under specific
lighting protocols that preferentially activate or inactivate the photoproduction and photoregu-
lation mechanisms.

Today’s state-of-the-art equipment, such as pulse amplitude modulation (PAM) fluorome-
ters, can implement complex light protocols and record fluorescence fluxes both fast and accu-
rately. PAM fluorometry excites microalgae photosynthetic apparatus by using three distinct
light sources: a weak modulated light to measure the fluorescence flux; an actinic light to drive
photosynthesis by exciting the photosynthetic apparatus and activating photoregulation; and a
light pulse of high intensity to saturate the photosystems II (PSII).

Depending on the light conditions, the following fluorescence fluxes can be recorded by a
PAM fluorometer [24]:

• Dark-adapted, minimum fluorescence flux, F0: The measuring light is applied to a sample that
has been kept in the dark a sufficient length of time to completely oxidize the RCII. In the
dark adapted sample the active RCII are thus ready to accept incoming photons (open state)
and the NPQ processes are inactive.

• Dark-adapted, maximum fluorescence flux, Fm: The measuring light is applied, after a short
and intense light pulse, to a dark adapted sample. The PSII are completely reduced after the
intense light pulse, so the active RCII are all occupied and cannot accept further photons
(closed state), while the NPQ processes remain inactive.

• Light-adapted, minimum fluorescence flux, F 0
0: The measuring light is applied to a sample

that has been exposed to a constant actinic light, after switching-off of the actinic light. The
PSII are completely oxidized and the NPQ processes are active due to the application of an
actinic light.

• Light-adapted, maximum fluorescence flux, F 0
m: The measuring light is applied, after a short

and intense light pulse, to a sample that has been exposed to a constant actinic light. The PSII
are completely reduced and the NPQ processes are active.

• Light-adapted, steady-state fluorescence flux, F0: The measuring light is applied to a sample
that has been exposed to a constant actinic light. The PSII are only partially reduced, mean-
ing that the active RCII are in a mix of open and closed states and the NPQ processes are
active.

All of the above-mentioned fluorescence fluxes also depend on the presence of damaged
(inactive) RCII that result from the evolution of photoinhibition when the incoming photons
flux exceeds the capacity of the PSII.

In this work, all the fluorescence measurements are performed using a Dual PAM (Walz,
Germany), after a dark adaptation period of 20 min. For model calibration purposes three

Table 1. (Continued)

PI photosynthesis-irradiance

PSII photosystems II

PSU photosynthetic unit

RCII reaction centre of photosystem II

doi:10.1371/journal.pone.0152387.t001
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fluorescence experiments are performed. The first experiment (Exp1) considers a light protocol
with increasing actinic light intensities applied in steps of 60 s. Before switching-on of the
actinic light and during the final 2 s of each step, a saturating light pulse of 6000 μEm−2s−1 is
applied during 0.6 s, followed by a dark period (actinic light off) of 1.4 s; measurements are
recorded before and after the saturating pulses and after the dark periods, which correspond to
F0, F 0

m and F 0
0 respectively (see section 4.1). The second experiment (Exp2) considers an actinic

light profile at 2000 μEm−2s−1 during 10 minutes followed by a dark period of 60 minutes. Satu-
rating pulses are applied at regular intervals during this experiment in order to measure F0, F 0

m

and F 0
0. The third experiment (Exp3) is optimally designed in order to improve upon the

parameter estimation as described later in Section 4.4.
Our previous work [15] assumed a constant 1% variance of the fluorescence flux measure-

ments. Here, we assume a variance model whereby a constant term (equal to 0.0015) is added
to the 1% of the fluorescence fluxes, accounting for the sensitivity of the photomultiplier mea-
suring the fluorescence signal. The utilization of a more realistic variance model for the mea-
suring device may cause further practical identifiability problems.

2.3 Photosynthesis Rate
Out of the possible ways of measuring the photosynthesis rate, we consider measurements of
the maximal rate of photosynthetic oxygen evolution at a specific actinic light using a Clark
electrode (Hansatech, UK). In order to use PI measurements for parameter estimation, knowl-
edge of the exact experimental light protocol is paramount, as established in Bernardi et al.
[22]. Here, we consider PI measurements obtained from three separate experiments. Each
experiment, involves exposing a dark adapted sample to two different light intensities over var-
iable time periods (the exact protocols are reported in Table 2). The photosynthesis rate is mea-
sured at the end of each time period, thus providing a total of six experimental PI points.
Sample 1 is to be included in the calibration data set, whereas the other two experiments are
used for model validation only.

2.4 Antenna Size Measurements
Antenna size measurements are used to study the saturation dynamics of the PSII. A LED
pump and probe JTS10 fluorometer in fluorescence mode is used for the measurement. Fluo-
rescence inductions are measured in the infrared region of the spectrum upon excitation with
blue light at 450 nm. 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) is added at a concen-
tration of 80 μM to prevent oxidation of the primary quinone acceptor QA [25, 26]. In the pres-
ence of this inhibitor, the half-saturation time constant of the fluorescence rise response is
known to be inversely proportional to the so called functional antenna size (ASII) [27].

We consider antenna size experiments for five different actinic light intensities (45, 80, 150,
320, 940 and 2050 μEm−2s−1) at 630 nm and four replicates are measured at each light intensity.
Fig 1 shows a set of such experimental saturating curves. For each saturating curve the value of
ASII is derived by fitting the data with a first order model, as further described in Section 3.2.

Table 2. PI experimental protocol. Light irradiance and corresponding time duration for the PI measurements in all three experiments.

Sample 1 Sample 2 Sample 3

irradiance [μEm−2s−1] 400 1500 100 750 250 3600

stage duration [s] 130 150 230 200 150 130

photosynthesis rate [go2
g�1
chlh

�1] 4.10 5.58 1.22 5.18 2.58 7.22

doi:10.1371/journal.pone.0152387.t002
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2.5 Numerical Aspects
Simulations of the fluorescence model are conducted in the modelling environment gPROMS
(Process System Enterprise, gPROMS v 4.1, www.psenterprise.com/gproms, 1997–2016),
together with the formulation and solution of parameter estimation and MBDoE problems.
Parameter estimation is performed using maximum likelihood estimation and statistical confi-
dence analysis [28], in order for the model predictions to match the measured fluorescence
fluxes (F0

m, F
0
0 and F

0), and ASII and PI measurements. MBDoE optimises the actinic light pro-
file and the measuring instants during a PAM experiment by minimizing the A-criterion [29],
as other optimal criteria (namely D- and E-criteria) present numerical issues. The A-criterion
aims to minimize the trace of the variance-covariance matrix of the parameter estimates to
determine an information-rich experiment.

3 Model Development and Analysis

3.1 Modelling Chlorophyll Fluorescence
The model by Nikolaou et al. [15] predicts fluorescence fluxes by taking into account the state
of the PSII and the activity of photoregulation. This model builds upon the well established

Fig 1. Antenna size experiment. Evolution of the fluorescence flux of PSII from dark-adapted acclimated cells treated with DCMU. The time required for
reaching half of the maximum response is inversely proportional to ASII. The fluorescence flux is reported for three different actinic lights and normalised by
the maximum flux value (a.u.: arbitrary units).

doi:10.1371/journal.pone.0152387.g001
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state model by Han et al. [7] describing the state of the PSII in terms of open, closed and dam-
aged RCII, and it introduces an activity equation describing the evolution of photoregulation
in a semi-empirical manner (first-order process).

This latter modelling assumption introduces an important limitation since, from a biologi-
cal point of view, NPQ in algae is related to at least two distinct processes. The first one is a fast
process involving the LHCSR protein, with a time constant of seconds for both its activation
and relaxation [30]. The second one is related to the xanthophyll cycle and acts on a time scale
of minutes. More specifically, zeaxanthin can have a complex effect on the NPQ activity as it
both enhances the quenching effect of LHCSR and acts as an additional quencher [21]. In the
model by Nikolaou et al. [15] the two interdependent NPQ processes are lumped into a single
first order process. This approximation of the actual biological mechanism may lead to poor
prediction of the fluorescence fluxes, for instance in experiments where the actinic light is kept
constant for several minutes. This is illustrated in Fig 2(a), where the model predictions
obtained with the parameter values established in [15], significantly deviate from the data gen-
erated by an experiment with a constant actinic light applied for 600 s, followed by a recovery
period of 3600 s. Moreover, Fig 2(b) suggests that the recovery phase involves a two time-scale
NPQ relaxation mechanism rather than a simple first-order process.

Given that a first-order process is not sufficient to accurately describe the actual photoregu-
lation mechanisms, we propose the following, more complex dynamics:

a_ F ¼ xFðaSS � aFÞ ð1Þ

a_ S ¼ xSðaSS � aSÞ ð2Þ

aSS ¼
In

InqE þ In
ð3Þ

ZqE ¼ aFð�ZF
qE þ a�ZC

qEÞ þ aS�Z
S
qE: ð4Þ

Fig 2. Constant actinic light PAM experiment. (a) Comparison between the predicted and measured fluorescence fluxes F 0
m (triangles), F 0

0 (squares) and F0

(circles) in response to a constant light experiment. The grey-shaded area represents the light intensity. (b) Measured value of qNPQ, defined as
ðFm � F 0

mÞ=F 0
m, during the recovery phase of experiment Exp2 along with predicted values using different modelling assumptions. The dashed lines consider

a first-order model to represent NPQ; the solid line considers the NPQ as the combined effect of two interdependent processes with different time scales.

doi:10.1371/journal.pone.0152387.g002
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The combined effect of LHCSR protein and zeaxanthin is apparent in Eq (4), where the param-
eters �ZF

qE and �ZS
qE represent the rates of the fast (LHCSR-related) and slow (zeaxanthin-related)

NPQ processes, both relative to the rate of fluorescence. The parameter �ZC
qE represents the

enhancing effect of zeaxanthin in the quenching capability of the LHCSR protein. The activities
of the fast and slow NPQ processes are described by the conceptual variables αF and αS, both
modelled as first-order processes. Moreover, the reference αSS is the same in Eqs 1 and 2 since
LHCSR- and zeaxanthin-related quenching are both triggered by low lumenal pH [21], yet
with different time constant ξF and ξS. The reference αSS itself is modelled as a sigmoid (Hill)
function, in agreement with experimental measurements of the NPQ index as function of I in
[31], with IqE and n representing the irradiance level at which half of the maximal NPQ activity
is triggered (αSS = 0.5) and the sharpness of the switch-like transition, respectively. Overall, the
NPQ dynamic is parametrized by �ZF

qE, �Z
S
qE, �Z

C
qE, ξF and ξS, instead of only two parameters in the

original model [15]. The remaining model equations remain unchanged compared with [15],
and are listed below for completeness:

F ¼ SFsFf ð5Þ

Ff ¼
1

A
FA
f
þ B

FB
f
þ C

FC
f

ð6Þ

A
_ ¼ �IsPS2Aþ 1

t
B ð7Þ

B
_ ¼ IsPS2A� 1

t
Bþ krC � kdsPS2IB ð8Þ

1 ¼ Aþ Bþ C ð9Þ

sPS2 ¼
s
Nn

FA
P ð10Þ

FA
P ¼ ZPF

A
f ð11Þ

FA
f ¼ 1

1þ ZP þ ZD þ ZqE
ð12Þ

FB
f ¼

1

1þ ZD þ ZqE
ð13Þ

FC
f ¼ 1

1þ ZI þ ZD þ ZqE

: ð14Þ

Eq (5) defines the fluorescence flux, as a function of the total cross-section, s ½m2g�1
chl �; the

fluorescence quantum yield, Ff [−]; and a parameter depending on the characteristics of the
PAM fluorometer and the chlorophyll content of the sample, SF [Vgchlm

−2]. The fluorescence
quantum yield, given in Eq (6), is the harmonic mean of the fluorescence quantum yields of
open (A), closed (B) and damaged RCII (C). The dynamics of A, B and C are described accord-
ing to the Han model [7] in Eqs (7)–(9), with the following parameters: the effective cross-
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section of the PSII, σPS2 [m
2 μE−1]; the turnover rate, τ [s−1]; the damage rate constant, kd[−];

and the repair rate constant kr[s
−1]. Eq (10) relates the effective cross-section, σPS2 of the Han

model with σ, effectively linking the state of the RCII with the fluorescence flux. It is important
to note that while σPS2 is a constant in the Han model, it becomes a function of the photoregu-
lation activity (Eq 4), via the quantum yield of photosynthesis of an open RCII (Eqs 11 and 12).
The parameter N represent the chlorophyll specific number of photosynthetic units
½mmolO2

g�1
chl �, and ν is a stoichiometric factor reflecting the minimum theoretical value of 4 elec-

trons for each dissociated water molecule per the water dissociation reaction (2H2O + 4e− !
O2 + 4H+). Eq (11) defines the quantum yield of photosynthesis of an open RCII. Finally, Eqs
(12)–(14), define the quantum yield of fluorescence of the open, closed and inhibited PSUs,
with the parameters ηP, ηD and ηI representing, respectively, the rates of photoproduction,
basal thermal decay in dark-adapted state and qI-quenching respectively. Overall, the maxi-
mum and minimum fluorescence fluxes F 0

m and F 0
0 can be calculated from Eqs (5) and (6) by

varying A and B. Specifically F 0
m is obtained by imposing A = 0 and B = 1 − C, whereas F 0

0 by
imposing A = 1 − C and B = 0. Moreover, the distinction between dark and light-adapted fluxes
depends on the value of the variables αF and αS, with αF = αS = 0 for the dark-adapted state.

The improved representation of the NPQ mechanisms in Eqs (1)–(4) increases the com-
plexity of the model in terms of the number of parameters from 13 to 16. The augmented
parameter vector is as follows:

y ¼ ½xF; xS; n; IqE; kd; kr;N; ZD; ZP; �Z
F
qE; �Z

S
qE; �Z

C
qE; ZI; s; SF; t�:

The parameter estimation problem is further complicated by the fact that the three recovery
processes are now overlapping, while NPQ relaxation and damaged PSUs recovery were acting
on distinct time scales in the original model [15].

3.2 Coupling Fluorescence with PI and ASII Measurements
The models (1)–(14) presents some identifiability issues [32] in the sense that not all of its
parameters can be estimated uniquely when only fluorescence measurements are available. We
note that, even in the original model [15], the parameters ηD, N, kr and τ could not be uniquely
estimated.

Based on the work by Falkowski and Raven [33], Bernardi et al. [22] derived an expression
of the photosynthesis rate as:

P ¼ sFPI; ð15Þ

with FP the photosynthesis quantum yield [mmolO2
mE�1]. The units for p are

[mmolO2
gchl

�1 s�1], which by definition is the chlorophyll-specific photosynthesis rate expressed

in terms of O2 production. The fluorescence models (1)–(14), predicts the value of the realized

quantum yield of photosynthesis, FPS2 ¼ F0m�F0
F0m

in units of [mmole� mE
�1], from which we then

derive FP ¼ FPS2
n [34]. This way, the photosynthesis rate expression (15) does not introduce any

additional parameters and conveniently couples PI measurements with fluorescence measure-
ments in order to conduct parameter estimation. Although parameters σ, SF and N are structur-
ally unidentifiable when using fluorescence measurements only, they become identifiable in
adding PI measurements to the calibration set.

Note that fluorescence or PI measurements alone may only give information about the
steady-state values of the fraction of open/closed RCII as a function of the light intensity, since
the measurement frequency is not high enough to probe their dynamics. Based on such steady-
state information it is only possible to estimate the ratio between σPS2 and τ. In contrast, ASII
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measurements can provide information about this fast time scale, thereby providing a means
of estimating the parameters σPS2 and τ independently.

The addition of DCMU to a dark-adapted sample inhibits the transition B! A, by prevent-
ing oxidation of the primary quinone acceptor QA. This way, the fluorescence induction curves
shown in Fig 1 contain information about the dynamics A! B only. The time constant of this
activation process can be obtained by fitting a first-order response model [6–8] for each light
intensity.

The values of ASII for the different light intensities are reported in Fig 3 along with a regres-
sion fit. The standard deviations remain small with a maximum value of about 2.5% of the
ASII value at 2050 μEm−2s−1. The slope of the regression line is 0.25 ± 0.009[μE−1m2] with an
R2 value of 0.993.

Fig 3 validates the Han hypothesis of a linear correlation between ASII and the light inten-
sity, and provides useful information to enhance the parameter estimation of the fluorescence
model. Specifically, in our models (1)–(15) the antenna size corresponds to the product
between the effective cross-section σPS2 and the light intensity I, ASII = σPS2 I. Therefore, the
slope of the linear regression in Fig 3 represents the parameter of the Han model σPS2 for a
dark adapted sample (αF = αS = 0). Recall also that in the models (1)–(15), σPS2 is related to the
parameter σ via Eq (10) and is a function of the photoregulation activity. In particular, the time
horizon of 0.35 seconds for the antenna size experiment is sufficiently short to prevent signifi-
cant activation of the photoregulation mechanisms. One way to exploit the information
obtained through the antenna size experiments consist of adding a virtual experiment to the
calibration set, whereby the value of σPS2 is a measured variable with a standard deviation of
0.009 μE−1 m2.

Fig 3. Antenna size experiment. Linear regression of ASII from the antenna size measurements at five
different light intensities. The shaded area represents the confidence region of the linear regression.

doi:10.1371/journal.pone.0152387.g003
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4 Model Validation Methodology

4.1 Step 1: Preliminary Identifiability Analysis
The model parameters are estimated using the two PAM experiments Exp1 and Exp2 described
in Section 2.2, the PI measurements from Sample 1 described in Section 2.3 and the ASII mea-
surements in Section 2.4. It can be established, e.g. by using a differential algebra approach as
available through the software package DAISY [35], that all the parameters but ηD are structur-
ally identifiable with such a calibration set. In principle, one could estimate the parameter ηD,
representing the rate of basal thermal decay relative to the rate of fluorescence, based on the
probability of thermal dissipation and the probability of fluorescence for a photon absorbed by
a dark adapted RCII. Because this kind of measurements was not available to us, we set this
parameter to ηD = 5 subsequently, which is the mean of those ηD values for which the com-
puted fluorescence quantum yields are consistent with the data from Huot and Babin [36].

The results reported in Table 3 show that part of the estimated parameter values are not sta-
tistically meaningful. In particular:

• the parameters kr and kdmay not be confidently estimated due to their large correlation with ηI;

• the parameter �ZFqE has a very low sensitivity caused by the fact that the dynamics of LHCSR

protein activation are much faster than the resolution of the PAM fluorometer.

It is well known that even when a model is structurally identifiable, can measurements noise
and other sources of uncertainty still hinder its practical identifiability [19, 37]. Since the parame-
ters kd, kr, and ηI are highly correlated, it is unlikely that generic experiments will provide the level
of information that is needed to achieve statistically significant estimates for these parameters.

Table 3. Preliminary model calibration. Parameter estimates along with their 95% confidence interval and t-values. The reference t-value is 1.65. The cali-
bration set is comprised of Exp1, Exp2, ASII measurement and Sample 1 of PI measurements.

Parameter Estimated value 95% conf. int. t-value 95% Units

ξF 1.83 × 10−1 1.91 × 101 0.0096 * s−1

ξS 9.68 × 10−4 6.57 × 10−5 14.74 s−1

IqE 5.96 × 102 4.18 × 101 14.26 μEm−2s−1

kd 2.04 × 10−6 1.32 × 10−6 1.55 * −

kr 2.78 × 10−5 5.98 × 10−5 0.46 * s−1

N 5.31 × 10−1 8.61 × 10−2 6.16 mmolO2
g�1
chl

n 2.18 × 100 1.74 × 10−1 12.54 −

ηI 2.77 × 100 1.45 × 100 1.92 −

�Z�FqE 8.17 × 100 9.18 × 10−1 8.90 −

�Z�SqE 1.92 × 101 1.20 × 100 16.02 −

�Z�CqE 2.44 × 101 3.32 × 100 7.35 −

ηP 1.14 × 101 3.07 × 10−1 36.97 −

σ 7.79 × 10−1 1.19 × 10−1 6.55 m2g�1
chl

τ 8.45 × 10−3 1.07 × 10−3 7.87 s

SF1
a 1.77 × 100 2.72 × 10−1 6.53 Vgchlm

−2

SF2
a 1.97 × 100 3.04 × 10−1 6.47 Vgchlm

−2

a SF1 refers to Exp1, SF2 refers to Exp2 experiment. The different values are due to different cell concentrations in the respective samples.

* an individual 95% t-value smaller than the reference t-value indicates that the available data may not be sufficient to estimate the parameter precisely

doi:10.1371/journal.pone.0152387.t003
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4.2 Step 2: Sensitivity Analysis
The sensitivity of a parameter θ with respect to a measured variable y can be computed as (y0 −
y)/Δθ, where y and y0 are the measured variables calculated with the nominal and perturbed value
of the parameter, respectively, and Δθ is the parameter perturbation. By calculating the sensitivity
of each parameter one can derive useful information about a model’s practical identifiability.

We illustrate this technique by analysing the sensitivity of the parameter ξF with respect to
the measurement times of the fluorescence fluxes, considering a 5% increase in the value of ξF.
We simulate an experiment in which the actinic light is switched on for 60 s at 2000 μEm−2s−1

and then switched off for another 60 s. The time-varying sensitivity profiles of F 0
m, F

0
0 and F

0

with respect to the parameter ξF are plotted in Fig 4. The sensitivities of the three fluxes pass by
a maximum within a few seconds after the light switch occurs and then decrease exponentially
to zero, confirming that ξF may only be estimated if a measurement is taken shortly after the
light has been switched on or off.

Fig 4. Sensitivity analysis. Sensitivity trajectories, s, of the fluxes F 0
m, F

0
0 and F0 with respect to the parameter ξF. The red continuous line represents the

sensitivity of F 0
m, the green dotted line represents the sensitivity of F0, and the blue dashed line represents the sensitivity of F 0

0. The light protocol used to
obtain these curves is 60 seconds of actinic light at 2000 μEm−2s−1 followed by 60 seconds of dark. The nominal value of ξF is 0.18 s−1.

doi:10.1371/journal.pone.0152387.g004
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In a standard PAM experiment, like the two experiments used for calibration in the previous
section, measurements are usually taken within 40 to 60 s after a variation in actinic light. It is
therefore clear that the sensitivity of the measurements will usually be very low with respect to
the parameter ξF and the resulting estimate may not be confident. Instead, an informative
(designed) experiment should ensure that some of the measurements are sampled when sensi-
tivities of the measured variables are indeed maximal.

4.3 Step 3: Model-Based Design of Experiments
MBDoE is an effective methodology for designing experiments that contain maximal informa-
tion based on a mathematical model, whose parameters are to be estimated. The experiment
design is formulated as an optimisation problem wherein the decision variables correspond to
time-invariant or time-varying inputs and the measurement times for the variables [18].

In practice, experimental designs often fail to take into account the relationship between the
measured variables and the model parameters in order to effectively excite the system and to
collect the measurements where they are the most informative. In other words, experimental
protocols for model identification are not always designed in order to guarantee that the vector
y(t) of measured output variables is maximally sensitive to the model parameters, as could be
observed in the previous section for the parameter ξF.

Here, the measured outputs are the three fluorescence fluxes F 0
m, F

0
0 and F

0 that can be opti-
mally sampled at 57 points during the experiment, with two consecutive measurements being
separated by at least 40 s, a constraint posed by biological considerations. The experimental
design variables consist of the corresponding measurement times, along with the actinic light
profile as discretized on 20 constant light stages and whose durations are also decision vari-
ables. Note that the PAM fluorometer used to conduct the experiments can only apply discrete
actinic light intensities of 0, 6, 13, 22, 37, 53, 70, 95, 126, 166, 216, 273, 339, 430, 531, 660, 825,
1028, 1287, 1594 and 1952 μEm−2s−1. The total experimental horizon has been set equal to
2400 s and at the end of the experiment a dark period of 3 hours is added to better probe the
slow dynamics of damaged RCII recovery. To summarise, the design vector includes: the mea-
suring instants of the three fluorescence fluxes, the durations of actinic light stages, and the
level of actinic light during each stage.

The new fluorescence experiment designed with MBDoE, based on the preliminary parame-
ters values obtained in Section 4.1 is shown in Fig 5(c), and referred to as Exp3 subsequently.
Notice howMBDoE leads to a complex dynamic light protocol so as to excite the system in
order to provide a highly informative input-output data set.

4.4 Step 4: Final Parameter Estimation
The designed experiment (Exp3) is included along with Exp1 and Exp2 in the parameter esti-
mation problem. The updated parameter estimates along with their 95% confidence intervals
and t-values are listed in Table 4, and the fitting results of the model are presented in Figs 5
and 6.

The addition of experiment Exp3 now allows for the accurate estimation of both ξF and kd,
and besides, kr is also estimated in a statistically meaningful way. The rest of the parameters are
also obtained with better confidence, thus demonstrating the effectiveness of MBDoE tech-
niques. The estimated value of ηI is significantly different from the one obtained in Table 3,
which is not surprising considering its high correlation with the parameters kd and kr, and the
fact that such parameters could not be properly estimated in the preliminary calibration in Sec-
tion 4.1.
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As shown in Fig 5, the model capability to represent the experimental data is generally
very good, although some small mismatch can still be noticed. The first mismatch is related
to the recovery phase of the three experiments, as the value of F 0

m is underestimated by the
model in Fig 5(a) and 5(c), whereas it is overestimated in Fig 5(b). Here, we have to consider
that the three experiments were conducted using samples drawn from different cultures.
Although the growth conditions were identical for all three cultures, the intrinsic biological
variability of the system is likely to be responsible for the different responses in the experi-
mental data.

The second mismatch is evident in Fig 5(c) between 1000 and 2000 s, where the predicted
flux F 0

m is underestimated during the low light periods. Although it is systematic this underesti-
mation remains quite small. Future experiments will help understand whether this mismatch is
related to structural inconsistency of the model, or if it can be attributed to biological variability
or experimental issues.

The PI measurements simulated by the model along with the experimental values are
reported in Fig 6. The black squares represent the data used for model calibration, whereas the

Fig 5. Final calibration results. PAM fluorescence profiles along with the model predictions corresponding to Exp1, Exp2 and Exp3 for the model
parameters in Table 4.

doi:10.1371/journal.pone.0152387.g005
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blue stars are considered for model validation later in Section 4.5. The model shows a good
agreement with the measured PI values used for model calibration (Sample 1). An interesting
finding is that only two PI measurements are sufficient here to identify the parameter N, thus
removing the need for time-demanding PI measurements.

Although some small discrepancies are observed, which may relate to the intrinsic variabil-
ity of the microalgae sample, the model is able to reproduce experiments that are very different
from each other, and statistically meaningful parameter estimates can be determined for all but
one (ηD) parameters.

4.5 Step 5: Model Validation
Three additional PAM experiments are considered in order to validate the model. The valida-
tion set includes one constant light experiment (Val1) and two different variable light experi-
ments (Val2 and Val3) where the sample is subject to complex actinic light profiles. The
predicted fluorescence fluxes with the parameter estimates given in Table 4 along with the
experimental data are shown in Fig 7. Moreover, two additional PI experiments are used for
validation purposes, each consisting of two PI measurements, as shown in Fig 6.

The model predicts all three validation experiments in a very satisfactory way and is capa-
ble of capturing the variations in photosynthetic response triggered by different light dynam-
ics. Moreover, the model gives accurate prediction of photosynthesis rate measurements. In
particular, it is important to note that the model predictions remain accurate even for PAM
protocols very different from the ones used in the calibration set, that is when the model is
used for extrapolation. This confirms that the model provides an effective tool to predict PI
curves without the use of classical measuring techniques that take time and resources to

Table 4. Final parameter estimation. Parameter estimates along with their 95% confidence interval and t-values. The reference t-value is 1.65. The calibra-
tion set is comprised of Exp1, Exp2, Exp3, Sample 1 of PI measurements and ASII measurements.

Parameter Estimated value 95% conf. int. t-value 95% Units

ξF 2.68 × 10−1 3.50 × 10−2 7.67 s−1

ξS 1.32 × 10−3 6.97 × 10−5 18.88 s−1

IqE 5.95 × 10 2 2.07×101 28.76 μEm−2s−1

kd 9.95 × 10−7 2.67 × 10−7 3.73 −

kr 5.10 × 10−5 2.67 × 10−5 1.78 s−1

N 4.83 × 10−1 7.52 × 10−2 6.43 mmolO2
g�1
chl

n 2.40 × 100 1.27 × 10−1 18.87 −

ηI 1.41 × 101 3.98 × 100 3.54 −

�Z�FqE 5.96 × 100 4.98 × 10−1 11.95 −

�Z�SqE 1.23 × 101 5.75 × 10−1 21.35 −

�Z�CqE 2.47 × 101 1.69 × 100 14.58 −

ηP 1.04 × 101 2.33 × 10−1 44.54 −

σ 7.33 × 10−1 7.50 × 10−2 6.84 m2g�1
chl

τ 6.95 × 10−3 7.50 × 10−4 9.26 s

SF1
a 1.81 × 100 3.01 × 10−1 6.82 Vgchlm

−2

SF2
a 2.06 × 100 3.01 × 10−1 6.81 Vgchlm

−2

SF3
a 1.30 × 100 1.90 × 10−1 6.82 Vgchlm

−2

a SF1 refers to Exp1; SF2 refers to Exp2; SF3 refers to Exp3 experiment. The different values are due to different cell concentrations in the respective

samples.

doi:10.1371/journal.pone.0152387.t004
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implement. The main discrepancy between the experiments and the model predictions can
be observed in Fig 7(c) during the first 300 s of the experiment, which is similar in nature to
the mismatch previously observed in Fig 5(c). However, the fits are generally good, thus con-
firming that the model is capable of accurate quantitative prediction for a wide range of PAM
experiments. To our knowledge, no other mathematical model to date has been tested
through such challenging experimental protocols or has demonstrated such a consistent pre-
diction capability.

5 Conclusions
Amathematical model incorporating a detailed and biologically consistent representation of
the NPQ mechanism has been proposed and validated using experimental data. The challenge
of model identification has been tackled by introducing specific measurements, namely PI and
antenna size measurements and by designing a tailored PAM protocol using MBDoE tech-
niques. The results show that the model is able to predict chlorophyll fluorescence and photo-
synthesis rate with a good accuracy under a large variety of light conditions for N. Gaditana,
thus paving the way towards a more reliable and realistic description of the effects of light
dynamics on microalgae growth. Furthermore, the connection between PI curves and fluores-
cence has been verified practically, which could prove beneficial for reducing the experimental
effort relative to PI curves experiments.

Fig 6. Experimental PI measurements along with model prediction. The solid line represents the model predicted PI curve; the black squares are the
experimental data used for model calibration; and the blue stars represent the experimental data used for model validation.

doi:10.1371/journal.pone.0152387.g006
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Future work will aim at moving up in the multiscale description of photosynthetic mecha-
nisms and microalgae growth rate. This will involve incorporating a suitable description of
photoacclimation phenomena into the model, following the work by Nikolaou et al. [10]. The
focus will also be on combining the model with physics-based hydrodynamic and light attenua-
tion models for full-scale photobioreactor simulation and optimisation [2].

Supporting Information
S1 Dataset. Experimental data. Excel file containing all the experimental data used in the
paper.
(XLSX)
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