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Abstract

In this paper, generalized synchronization (GS) is extended from real space to complex
space, resulting in a new synchronization scheme, complex generalized synchronization
(CGS). Based on Lyapunov stability theory, an adaptive controller and parameter update
laws are designed to realize CGS and parameter identification of two nonidentical chaotic
(hyperchaotic) complex systems with respect to a given complex map vector. This scheme is
applied to synchronize a memristor-based hyperchaotic complex LU system and a memris-
tor-based chaotic complex Lorenz system, a chaotic complex Chen system and a memristor-
based chaotic complex Lorenz system, as well as a memristor-based hyperchaotic complex
L system and a chaotic complex LU system with fully unknown parameters. The correspond-
ing numerical simulations illustrate the feasibility and effectiveness of the proposed scheme.

Introduction

Since Fowler et al. proposed a complex Lorenz system in 1982 [1], modeling, analyses and syn-
chronization of complex systems have attracted more and more attention in nonlinear science
and technology fields, the reasons of which can be roughly summed up in the following two
aspects. On the one hand, some physical systems and phenomena should be accurately mod-
eled by complex systems, such as rotating fluids, detuned lasers, disk dynamos, electronic cir-
cuits, and so on [1-4]; on the other, due to the existence of complex variables which can double
the number of variables, complex systems can generate complicated dynamical behaviors with
strong unpredictability, and synchronization of complex systems has widely potential applica-
tions to many fields of physics, ecological systems, signal and information processing, and sys-
tem identification, especially to secure communication for achieving higher transmission
efficiency and anti-attack ability [5-7].

As we well know, chaos synchronization is the precondition of chaotic secure communication,
digital cryptography, chaotic image encryption, efc. Since the pioneering work by Pecora and Car-
rol in 1990 [8], chaos synchronization of real systems has been extensively investigated
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theoretically and experimentally, while the synchronization of complex systems has been
explored for less than a decade. In the beginning stages, some synchronization schemes were
directly used to synchronize complex systems, such as complete synchronization (CS) [9-10], lag
synchronization (LS) [7, 11], projective synchronization (PS) [12-13], phase synchronization
(PhS) [14], combination synchronization [15], etc. Recently, some complex synchronization
methods were presented based on their real versions. Liu et al. proposed a complex modified
hybrid projective synchronization (CMHPS) scheme to synchronize complex Dadras systems,
with different dimensions and complex parameters, up to a desired complex transformation
matrix [16]. Wang et al. investigated a hybrid synchronization method containing complex modi-
fied projective synchronization and module-phase synchronization [17]. Sun et al. realized com-
plex combination synchronization of three identical chaotic complex systems with complex
scaling matrices [18]. Jiang et al. designed a general controller to achieve combination complex
synchronization for fractional-order chaotic complex systems [19]. It is worth noting that

Refs [20-21] have explored the synchronization issues of complex systems with unknown param-
eters which are likely to exist in practice. Zhang et al. investigated the complex modified projec-
tive synchronization (CMPS) and parameter identification of uncertain real chaotic systems and
complex chaotic systems [20]. Liu et al. used an adaptive complex modified projective synchroni-
zation (ACMPS) method to synchronize two chaotic (hyperchaotic) complex systems up to a
complex scaling matrix, and to estimate the unknown complex parameters successfully [21].

Based on the above-mentioned complex synchronization methods, the response complex
systems can be synchronized with the drive complex systems up to the desired complex scaling
matrices. Shall we further generalize these synchronization schemes and synchronize the com-
plex systems with respect to a given complex functional relationship? That is, can generalized
synchronization (GS) be extended to synchronize complex systems? Rulkov et al. firstly pro-
posed the generalized synchronization, where two chaotic systems are said to be synchronized
if a given functional relation can be realized between the variables of drive and response sys-
tems [22]. With different given functions, GS can degenerate to various PSs, antisynchroniza-
tion (AS) and CS. Furthermore, the given functions are almost impossible to be predicted,
which can enhance secure performance when GS is applied to chaotic secure communication.
In the recent two decades, GS of chaotic or hyperchaotic real systems has been widely investi-
gated. For instance, Refs [23-25] realized GS of different chaotic and hyperchaotic systems,
while Refs [26-28] achieved adaptive generalized synchronization (AGS) and parameter iden-
tification of different chaotic systems with unknown parameters. However, to our best knowl-
edge, up to now, there are few published achievements on CGS of nonidentical nonlinear
complex systems. So, it is meaningful and challenging to extend GS from real systems to com-
plex systems, and to realize CGS and parameter identification of chaotic and hyperchaotic
complex systems with unknown parameters.

Motivated by the above discussions, this paper investigates CGS and parameter identification
of different chaotic and hyperchaotic complex systems with unknown parameters. In practice,
the parameters of some nonlinear systems cannot be exactly known, so we choose uncertain non-
linear complex systems as the research objects, and use adaptive control and Lyapunov stability
theory to design CGS and parameter estimation scheme for them. In our proposed scheme, CGS
is defined by extending GS from real space to complex space, and designed with consideration of
error feedback control gains which are introduced to adjust converging velocity. Furthermore,
according to the orders of the drive and response nonlinear complex systems (i.e., same-order,
increased-order, and reduced-order), three different examples are presented to verify the correct-
ness, feasibility, and efficiency of the proposed scheme.

The rest of this paper is organized as follows. The definition and design of CGS of nonidenti-
cal complex systems are given in Section 2. CGS and parameter identification of a memristor-
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based hyperchaotic complex Lii system and a memristor-based chaotic complex Lorenz system
with the same orders, a chaotic complex Chen system and a memristor-based chaotic complex
Lorenz system via increased order, as well as a memristor-based hyperchaotic complex Lii sys-
tem and a chaotic complex Lii system via reduced order, are investigated theoretically and illus-
trated numerically in Section 3-5, respectively. Finally, some conclusions are drawn in Section 6.

Design of CGS
Definition of CGS
Consider the following nonidentical drive and response complex systems with fully unknown
parameters
x =F(x)0+ flx) (1)
Y =Gy)o+g(y) +ulx,y) (2)

where x = (x,, x5, - - -x,,) | and Y=Y x,,) " are complex state vectors of the drive sys-
tem (1) and response system (2) respectively, xx = xi., + jxci(k =1, - - -, 1), ¥k = Yier + jYilk =
1,---,m),j = v/—1, the subscripts r and i denote the real and image parts of the complex vari-
ables, vectors and matrices throughout this paper. R’ and €R? are real vectors of unknown
parameters. F(x)€C"* and G(y)€C"™*? are complex matrices, F(x) = F.(x) + jFi(x), G(y) =
G.(y) +jGi(y). flx)eC" and g(y)€C™ are vectors of nonlinear complex functions, and

[x) = fi(x) + jfi(x), g(¥) = &(¥) + jgi(y). u(x, y)€C™ is the complex control vector, and u(x, y) =
u(x, y) + jui(x, y).

Remark 1 Some nonlinear complex systems can be formed as system (1), such as complex
Lorenz system, complex Chen system, complex Lii system, memristor-based complex Lorenz
system, memristor-based complex Lii system, and so on. For synchronizing such complex sys-
tems, the complex variables and functions could be divided into the real parts and imaginary
parts.

Definition 1 For the drive system (1) and response system (2), CGS is achieved if there exist
a complex controller u(x, y) and a given complex map ¢(x):C"—C" such that

tim [ly — ()| = 0 (3)

where ¢(x) = [¢1(x), ¢1(x), - - -(/5,,l(x)]T is a nonzero complex map vector whose elements are
continuously differentiable complex functions of x, and ¢(x) = ¢.(x) + jé;(x).

Remark 2 If ¢(x) = Ox, some types of synchronization are special cases of CGS, such as
complex modified hybrid projective synchronization (CMHPS) as ©cC™*", complex modified
projective synchronization (CMPS) as © = diag(9;, 95, - - -9,)€C"™", complex projective syn-
chronization (CPS) as © = diag(9, 9, - - -9)eC™", modified hybrid projective synchronization
(MHPS) as ©R"™", modified projective synchronization (MPS) as © = diag(9,, 9,, - - -9,)€
R, projective synchronization (PS) as © = diag(9, 9, - - -9)€R™", antisynchronization (AS)
as ©® =diag(- 1, - 1, - - - — 1), and complete synchronization (CS) as © = diag(1, 1, - - -1).

General scheme of CGS and parameter identification
Define the complex CGS error vector as
¢ =y—o(x)=e +ie
=0 = 0.(x) Tl —9,(x))
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where e = (e;, €3, - - -¢,,) €C™, e, = (10> €205 - ~em,r)T€Rm,ei = (erp €2> - - -em,i)TeRm. By taking
the derivative of Eq 4 with respect time, the CGS error dynamical system is obtained as

i =y — (o) (5)

where J(¢)€C™” is the Jacobian matrix of ¢(x), and J(¢) = J.(§) + jJi(¢). By substituting Eqgs 1
and 2 into Eq 5, Eq 5 can be represented by

¢ =é +ije
= {&.(0) = L()fi(x) + J(D)f(x) — [J.()F,(x) — Ji(¢)F,(x)|0 + G,(¥)0 + u,(x,)} (6)
+i{g () = L(9)fi(x) — L(d)f(x) — [J(9)Fi(x) + J(9)F.(x)]0 + G,(y)S + u;(x,p)}

Therefore, the problem of CGS for two nonidentical complex systems (1) and (2) is trans-
formed to the stability analysis of zero solution of the error dynamical system (6). Adaptive
CGS scheme is given in Theorem 1 and is proved based on Lyapunov stability theory.

Theorem 1 For a given complex map vector ¢(x), CGS and parameter identification of the
response system (2) and the drive system (1) can be achieved if the complex adaptive controller
and the parameter update laws are designed as

u(x,y) =u(x,y)+ju(x,y)
= {—.(0) + L(O)f:(x) = J(S)f:(x) + [J(¢)F,(x) — J(¢)F,(x)]0 — G.(»)6 — Ke,} (7)
+H{ &) + (O (x) + T(O)o(x) + [J(6)F,(x) + J($)F.(x)]0 — G,(y)6 — Ke,}
{ 0 =0 =—[J(d)F,(x) - J(OF,(x)]"e, = [J($)F(x) + J(S)F.(x)]"e, — K,0 )
5=6 =[G +G) e~ Kb

where  and & denote the estimated parameter vectors of @and 6,0 = @ —@andé = 6 — &
denote the parameter error vectors. K = diag(ky, k- - -k,,), Ko = diag(ke, 1, ke, 2- - -kg, p) and K5 =
diag(ks, 1, ks, 2* - -ks, 4) are error feedback control strength whose elements are all positive con-
stants, which can adjust converging velocity.

Proof We introduce a positive Lyapunov function as

V(t) = Ll(e)"e, +(e) e, + 870 + 57 9)

The time derivative of V(f) along the trajectories of the error dynamical system (6) is calcu-
lated as

V() =(¢) e +(¢)e+0"0+86
= {&() = L(OU:(x) + J(O)fi(x) = [J($)F,(x) = J(S)F,(x)]0 + G, ()6 +u,(x,3)} e, ‘(10)
Ha ) = L(OUf(x) = (D), (x) = U(S)F (%) + J(S)F,(x)]0 + G(»)8 + u(x,y)} e,
+070 + 578
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Substituting Eqs 7 and 8 into Eq 10, then

V(t) = {[J(d)F,(x) = L($)F(x)]0 — G,(y)6 — Ke.}'e,
+{[Jr(¢ F'(x) + Jl(d))Fr(x)]é - Gi<y)3 - Kei}Tei
6 F(x) = J($)F(x)]"e, + [ (9)F,(x) + J(9)F,(x)]"e, - K,0}

1 1

S O A (1)
+0'{[G,(y)] e, + [G,(y)] e, — K;0}

—(e)"Ke,— 0"K,0 — 6"K,6

Based on Lyapunov stability theory, since V(£) and V (¢) are positive and negative respec-

tively, the CGS errors and the parameter errors asymptotically converge to zero as the time
tends to infinity, i.e., lim,___ e (t) = Oim,__ e (t) = 0,lim,___ 0(¢) = O and lim,__ 6(¢) = 0,

which indicate that CGS and parameter identification are realized. The proof is completed.

t—00

CGS of a Memristor-Based Hyperchaotic Complex Lii System and a
Memristor-Based Chaotic Complex Lorenz System (n =m)
In this section, we investigate CGS of two nonidentical complex systems with the same orders.

On the basis of a memristor-based hyperchaotic Lii system proposed in [29], a memristor-
based hyperchaotic complex Lii system is introduced as the drive system, which is described as

5C1 = al(x2 _xl)

5(2 = =X Xy + 5%y — a3(°‘1 + 3ﬁ1x3)x1

. 1, _

X =5 (%, + x,X,) — a,x, "
A

X, = E(xl +.X1)

where x1, x,€C, x3, x4€R, X, , X, € Cdenote the complex conjugate variables of
X1, X. 4y, Ay, a3 and a4 are unknown real parameters, o and j; are considered as known posi-
tive constants. When o =4, 51 =0.01, a; = 36, a, =20, a3 = 3.2, a, = 3 and x(0) = [-1 + 2j,
1 +3j,2, —1]%, the Lyapunov exponents of system (12) are calculated as (0.262, 0.103, 0, 0,
-15.764, -17.553), and a hyperchaotic attractor is plotted in Fig 1.

A memristor-based chaotic complex Lorenz system, proposed in [30], is introduced as the
response system

Y1 = —by, — (0, + 3By, + by, +u,
).’2 = b3y1 = Yo =Y ys T Uy

. 1, _
Vs 25()’1)’2 +Y,) — by +uy (13)

. 1,
Yi= _5()’1 +y,) +u,

where y1, 1,€C, y3, ¥4€R, by, b, b; and b, are unknown real parameters, a, and f3, are consid-
ered as known positive constants. uy, i, us and u, are controllers. When o, = 0.67 x 107>, 3, =
0.02%x 1072, b, =8, by =11, by = 50, by = 8/3 and y(0) = [2,1 + 4j, 0.1, 0]7, the system (13) oper-
ates in chaotic orbits without control, as shown in Fig 2.
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-20 _19 = °

Fig 1. Hyperchaotic attractor of the memristor-based complex Lii system.

doi:10.1371/journal.pone.0152099.g001

The drive system (12) and response system (13) can be rewritten with the form of Eqs 1 and
2, where 0 = [ay, a, as, ag)”, & = [by, by, b3, ba) T, w0 = [ug, s, us, u4]’, and

x,—x 0 0 0 0
0 x, —(o, +3B,x)x, O —X,X
F(x) _ 2 ( 1 ﬁl -1) 1 ’f(x) _ B 173

0 0 0 —X, (%, %, +%,x,)/2

0 0 0 0 (x, +x,)/2
> ¥y 0 0 — (o, + 3By,

Gly) = 0 0 y O 2(y) = Y, = Vs

0 0 0 -y, , ()/1)_’2 +)_’1)’2)/2
0 0 0 O ~( +3.)/2

PLOS ONE | DOI:10.1371/journal.pone.0152099 March 24, 2016 6/19
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Fig 2. Chaotic attractor of the memristor-based complex Lorenz system.

doi:10.1371/journal.pone.0152099.g002

The complex map vector is given by
B(x) = [x, + jxy, (2 = §)xy, 5, + x,, 1) (14)

The Jacobian matrix of the complex map vector is calculated as

1 j 0 0

soy= |0 200 (15)
0 0 1 1
0 0 0 2x

According to Eqs 7 and 8, the complex adaptive controller and parameter estimator can be
obtained as

u, = [(o + 3By )y, + 203X + (%, —x,,)a; — %58y + (o) + 3p.x7)x, a4, -|—y“l;1 — .0, — kleu]
3 [(o + 3Boyi)yis — X% + (%, — x,5)@, + x,,4, — (0 + 3B,x7)x, 4, +y1>il;1 fyﬁ@ — ke, ]

Uy = (Yo, 11y — (2%, +x)% + (2%, + %)@, — (2%, + x,;) (o, + 3,x7)a, —ylvrfag —kye,,] (16)
+ i s s — (2 — x, )% + (2%, — %, )a, — (2%, — x, ) (o, + 3f,x7)a; — b5 — kye,

Us = =V Vor — yl.iyZ‘,i + xl.r‘er + X1i% 4 + Xir — X34y +y3b4 - kzzea

Uy = Y, 1 2%,%, — ke,

PLOS ONE | DOI:10.1371/journal.pone.0152099 March 24, 2016 7/19
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a, = _(xlr - xl,r)el‘r - (xz‘i - xl‘i)el‘i —ky, (@, —ay)

dy=Xx,.€,, — X, €, — (sz,r + xz‘,i)ez,r - (2xzﬁi - xz,r)e2,i - kH.Z(&Q —a,)

as = [_xl,iel,r + X, .8+ (2x1,r + xl‘i)elr + (2xl‘i - er)eZ,i](a] + 3,81’63) - kH,S(aB —ay)

a, = x;e; — km(fh —a,)

l;l = Vil — N — k()"l(bl - bl)
Ez = V2 +y2,iel,i - k&,?(éz - bz)
X (18)
3 = Y16 +)’1,iez,i - k&,'s(b:s - b:;)

e S
w

b, = —ye, — ko4(l;4 —-b,)

where eq = y1r = X102 €1 = Y1 — X1~ Xop €20 = Yaur — 2Xor — X2 €2, = Y2 — 2Xp,H o €3 =
V3= X3 =Xy ey =Y, — X
In order to verify the validity and effectiveness of CGS between system (12) and (13)
with respect to the complex vector (14), ODE45 algorithm is used to solve the systems based
on Matlab 2013a. The values of known parameters are a; = 4, f; = 0.01, &, = 0.67 x 107, 8, =
0.02 x 1072, the true values of unknown parameters are 6 = [36, 20, 3.2, 317, 8=18, 11, 50,
8/3]%. The initial conditions of system (12) and (13) are randomly selected as x(0) = [-1 + 2j,
1+j,2, -11%, y(0) =[10 - 8j,4 - 3j, 6, —5]7. The initial values of all unknown parameters are
randomly chosen as zero, and the control strength is set as K = diag(20, 20, 20, 20), Ky = diag
(10, 10, 10, 10), K5 = diag(10, 10, 10, 10). The corresponding simulation results are shown in
Figs 3, 4 and 5. The CGS process is plotted in Fig 3, which indicate that the response system
(13) is synchronized with the drive system (12) with respect to the given complex map vector
(14). The synchronization errors, as shown in Fig 4, converge to zero in a short time. Fig 5
shows the identifying processes of unknown parameters, which indicates that the estimated
values tend to be their true values adaptively, i.e., 0 — 36, 20, 3.2, 3]" and

o —[8, 11, 50, 2.667]".

CGS of a Chaotic Complex Chen System and a Memristor-Based
Chaotic Complex Lorenz System (n<m)

In this section, we investigate CGS of two nonidentical complex systems via increased order. A
chaotic complex Chen system, investigated in [9], is introduced as the complex drive system,
which is described as

x, = C](‘xQ - ‘xl)
Xy = (6 = €)% — XX + X, (19)
. 1 _ _
X3 = 5 (X%, 4+ x,%,) — €%,
where x;, x,€C, x3€R, ¢1, ¢; and ¢3 are unknown real parameters. When ¢; =27, ¢, =23,¢3 =1,
and x(0) = [-3 — 2j, -1 — 5j, —4]", the complex Chen system (19) operates in chaotic orbits, as

shown in Fig 6. The memristor-based chaotic complex Lorenz system, i.e., system (13), is also
served as the complex response system.

PLOS ONE | DOI:10.1371/journal.pone.0152099 March 24, 2016 8/19
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Fig 3. CGS process of systems (12) and (13) with respect to the given complex map vector. ¢(x) = [x; +Jjx,, (2 —j)x,, X3 + x4, xﬂr. (@) X1, = X2, V1.1
(b) X1r = Xar, ¥1,i; (C) 2Xp,+Xas Yo, (d) 2Xo,i = Xa,r, Vo,i (€) Xa+Xa, ¥a; (X2, v,

doi:10.1371/journal.pone.0152099.g003

The drive system (19) and response system (13) can be rewritten with the form of Eqs 1 and

2, where 0 = [c1, ¢5, 317, 8 = [by, by, b3, ba] T, = [, Un, 3, 114] 7, and

X, — X, 0 0 0
F(x) = —X X, =X 0 7f(x) = —X X3
0 0 —X3 (xl)?z + xlxz)/Q
I 0 0 7(“2 + 3&)’3))’1
0 0 » O ) =V
G(y) = 1 , 8) = o
0 0 0 -3 (ylyz +)/1)/2)/2
0O 0 0 O —(y,+7,)/2
The complex map vector is given by
B(x) = [=jx,, —jxy, =5, %, ! (20)

PLOS ONE | DOI:10.1371/journal.pone.0152099 March 24, 2016
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Fig 6. Chaotic attractor of the complex Chen system.

doi:10.1371/journal.pone.0152099.9006

The Jacobian matrix of the complex map vector is calculated as

- 0 0
0 —i 0

J(6) = J (21)
0 0 —1
0 0 1

According to Eqs 7 and 8, the complex adaptive controller and parameter estimator can be
obtained as

U = [(0‘2 + Sﬁzyi)yu + (xz,i - xl,i)al +)’1$rb1 - yzAer - kleLr]
+j [(“2 =+ 3[32)’2))@ - (xl‘r - xl,r)&l +yl‘il;1 - yz‘iéz - klel,i}
Uy = [)’z,r +)’1,ry3 — XiX3 — xl,iél + (x2,i + Xy _yl‘rI;S - erZ‘r}

Cy
+j b’z,i F V1Y XXy X6, — (xz,r + xl‘r)a‘? - yl,ibs - kZeZ‘i]

Us = _yl.ryZ,r Vi) T XKy T X% + X3C3 +}’3b4 - k363

Uy =Yy, T X,%, + X ;%,; — X3C5 — ke,
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E1 = _(xz,i - xl.i)el.r + (xZ.r - xl,r)el.i + xl,ieZ,r - erez.i - kBl(El - Cl)
é? = _('xZ,i + xl.i)ez.r + (x2.r + xl.r)ez.i - k02(é2 - C2) (23)
83 = —X;e; + X3¢, — k():s(e's - C3)

b, = Vil — Ni€i — ks, (b, —b,)

BZ =Yy, T Vas€1; — k&z(éz —b,)

Bs = Y116 T V1625 — kss(bs — by)

1= 7)€ — k(54(?’4 - b4)

T

where €)= y1; — X145 €15 = Y1itX1e €20 = Yo — X2 €25 = Y2, Xop €3 = Y3+X3, €3 = Y4 — X3
Numerical simulations are presented to verify the validity and effectiveness of CGS
between systems (19) and (13) with respect to the complex vector (20), under the following
parameter configurations and initial conditions: the known parameters o, = 0.67 x 107>, 8, =
0.02 x 1072, the true values of unknown parameters 0 = [27,23,1] T §=18,11, 50, 8/3]%, the
initial conditions of system (19) and (13) x(0) = [-3 — 2j, -1 - 5j, -4, y(0)=[2-2j,1-j,6,
1]7, the initial values of unknown parameters 0(0) = [10, 10, 10, 10]",
5(0) = [10, 10, 10]", and the control strength K = diag(20, 20, 20, 20), Ky = diag(10, 10, 10,
10), K5 = diag(10, 10, 10, 10). The corresponding simulation results are shown in Figs 7, 8
and 9. The CGS process is plotted in Fig 7, from which one can see that y, ;, ¥, , y4 are syn-
chronized with x ;, x5, X3, and y; 5, ¥, y3 are antisynchronized with x; ,, x ., X3. The syn-
chronization errors, as shown in Fig 8, converge to zero in a short time. Fig 9 shows the
identifying processes of unknown parameters, which indicates that the estimated values tend

to be their true values adaptively, i.e., § — [27, 23, 1]" and d — [8, 11, 50, 2.667]".

CGS of a Memristor-Based Hyperchaotic Complex Lii System and a
Chaotic Complex Lii System (n>m)

In this section, we investigate CGS of two nonidentical complex systems via reduced order.
The memristor-based hyperchaotic complex Lii system, i.e., system (12), is acted as the drive
complex system. And a chaotic complex Lii system, investigated in [9], is introduced as the
response complex system, which is described as

yo=di, =)+
Vo = —Wys T Aoy, + iy (25)

. 1 _ _
Vs = 2 (V1) +y1¥s) — days + 1y
where y, 1,€C, y3€R, d, d, and d; are unknown real parameters, u;, u, and u; are controllers.

When d, =29, d, =21, d; =2, and y(0) = [4 + 10j, 6 + 10j, 12]7, the complex Lii system (25)
operates chaotically without control, as shown in Fig 10.
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doi:10.1371/journal.pone.0152099.9007

The drive system (12) and response system (25) can be rewritten with the form of Eqs 1 and
2, where 0 = [a1, a3, a3, asl’, 6 = [dy, ds, d3)7, u = [uy, un, u5]7, and

x,—x 0 0 0 0
0 x, —(o; +3B,x%)x 0 —X, X.
F(x) _ 2 ( 1 ﬂl 4) 1 ’f(x) _ B 173
0 0 0 —X, (%, %, +%,x,)/2
0 0 0 0 (x, + %,)/2
Yo—=»n 0 0 0
Gy)=| 0 » 0|, gb)= Vs
0 0 V3 (ylyz +?1)’2)/2

The complex map vector is given by

B(x) = [jxy, jo;, x5 — x/ﬂT (26)
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The Jacobian matrix of the complex map vector is calculated as

(27)

According to Eqs 7 and 8, the complex adaptive controller and parameter estimator can be
obtained as

Uy =[x, x5 — X,,4, + (0 + 3B,x3)x, a5 — (v, — y,.)d, — ke, A
+j (x5 4+ X, 8, — (0 + 3,x7)x, 4y — (1, — y,)d, —k e
= s — (% = %,)d, = yo,dy — oy ] (28)
+i s+ (%, —x,,)a, fyzvicAlQ — ke, ]
= =V Vo — Vibas T X%, X%, — 2x) X, — X4, +y3£i3 — ke,
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&1 = (xz,i - xl.i)ez.r - (xz,r - xl,r)eli - k()l(&l - a1)

Ay = X581, — X615 — kez(az - aQ)

. (29)
a; = (_xl,iel.r + xl,rel,i)(al + 3ﬁ1x2) — kys(a; — ay)

‘i4 = x;e; — kyy(a, — a,)

Ell = (yZ.r _yl.r)eLr + O’Z,i - )’1,1)61,1 - kél(gll - dl)

EIQ = V2,6, T V21605 — ks, (‘32 - dz) (30)

33 = V& — kd;s(as —dy)

where e, =%,+ X € =Y T %o € = Var + X3 € = Vo = X163 = )3 — X3 + xj

In order to verify the validity and effectiveness of CGS between Systems (12) and (25)
with respect to the complex vector (26), simulation results are presented in Figs 11, 12
and 13, with the following parameters and initial conditions: a; = 4, 5, =0.01, 0 =
(36,20, 3.2,3]", 8 = [29,21,2]", x(0) = [~1 + 2j, 1 +j, 2, —1]", y(0) = (4 + 10j,
6 + 10j,12),0(0) = [10, 10, 10, 10]",6(0) = [0, 0, 0]",K = diag(20, 20, 20, 20), K, = diag
(10, 10, 10, 10), K5 = diag(10, 10, 10, 10). The CGS process is plotted in Fig 11, from which
one can see that y; ,, y, . are antisynchronized with x, ;, X1 ;, ¥1,5> ¥2,; are synchronized with x,,
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» X1,» and ys is synchronized with x, — x3, respectively. The synchronization errors converge
to zero quickly, as shown in Fig 12. Fig 13 shows that the estimated values of the unknown

parameters tend to be their true values adaptively, i.e., 0 — [36, 20, 3.2, 3]" and
6 —[29, 21, 2]".

Conclusions

This paper investigates a novel synchronization scheme named complex generalized synchro-
nization, and its application to synchronization and parameter identification of two nonidenti-
cal complex nonlinear systems with fully unknown parameters. An adaptive controller and a
parameter estimator are proposed and proved theoretically based on Lyapunov stability theory.
Three illustrative examples are presented to verify the correctness and effectiveness of the pro-
posed scheme, namely, CGS of a memristor-based hyperchaotic complex Lii system and a
memristor-based chaotic complex Lorenz system, CGS of a chaotic complex Chen system and
a memristor-based chaotic complex Lorenz system, as well as CGS of a memristor-based
hyperchaotic complex Lii system and a chaotic complex Lii system. The proposed CGS scheme
has some advantages, for instance, it can be applied to synchronize complex systems with
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different orders (generalizability), can be transformed to other types of synchronization with

different given complex map vectors (feasibility), can be achieved in a short time with the
appropriate control strength (timelines), and can be almost impossibly predicted with the com-
plex map vector (security). So, CGS has extensively potential applications to secure communi-
cation, digital cryptography, and so on, which will be involved in our future works.
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