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Abstract
Non-coding RNAs play a pivotal role in a number of diseases promoting an aberrant

sequestration of nuclear RNA-binding proteins. In the particular case of myotonic dystrophy

type 1 (DM1), a multisystemic autosomal dominant disease, the formation of large non-cod-

ing CUG repeats set up long-tract hairpins able to bind muscleblind-like proteins (MBNL),

which trigger the deregulation of several splicing events such as cardiac troponin T (cTNT)
and insulin receptor’s, among others. Evidence suggests that conformational changes in

RNA are determinant for the recognition and binding of splicing proteins, molecular model-

ing simulations can attempt to shed light on the structural diversity of CUG repeats and to

understand their pathogenic mechanisms. Molecular dynamics (MD) are widely used to

obtain accurate results at atomistic level, despite being very time consuming, and they con-

trast with fast but simplified coarse-grained methods such as Elastic Network Model (ENM).

In this paper, we assess the application of ENM (traditionally applied on proteins) for study-

ing the conformational space of CUG repeats and compare it to conventional and acceler-

ated MD conformational sampling. Overall, the results provided here reveal that ANM can

provide useful insights into dynamic rCUG structures at a global level, and that their dynam-

ics depend on both backbone and nucleobase fluctuations. On the other hand, ANM fail to

describe local U-U dynamics of the rCUG system, which require more computationally

expensive methods such as MD. Given that several limitations are inherent to both meth-

ods, we discuss here the usefulness of the current theoretical approaches for studying

highly dynamic RNA systems such as CUG trinucleotide repeat overexpansions.

Introduction
Many biological processes involve concerted interactions of macromolecules, such as protein-
protein or protein-nucleic acids complexes. For this reason, the role of such dynamics mecha-
nisms is increasingly important. Learning about how biomolecular interactions activate these bio-
logical processes may help us to get a better understanding of the underlying causes of diseases
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and improve drug design strategies to modulate and optimize ligand-macromolecule interactions.
Functional motions of proteins have been widely explored but of the dynamic behavior of RNA
has only recently been addressed. Modeling RNA flexibility remains extremely challenging,
owing to the complexity of the conformational landscape of this type of macromolecule.

It is becoming increasingly common to study nucleic acids structures for the design of small
molecules or peptides that target a particular secondary structure, such as microRNA associ-
ated with cancer [1,2] or HIV TAR viral RNA [3–6]. RNA-mediated diseases are usually related
with non-coding repeat expansions which induce cytotoxicity through different mechanisms.
[7–13] Among these, one of the most well-studied diseases involving toxic RNA is myotonic
dystrophy (DM).[14,15] DM is an inherited multisystemic disease which affects the skeletal
and smooth muscle, the eyes, the heart, the endocrine system and central nervous system. At
the molecular level, DM involves an aberrant CTG trinucleotide expansion in the DMPK gene
(which induces myotonic dystrophy type 1, DM1)[15–17] or a CCTG tetranucleotide expan-
sion in the intron 1 of the CNBP gene (myotonic dystrophy type 2, DM2)[18–20]. Subsequent
pre-mRNA microsatellites formed during transcription contain expanded CUG or CCUG
repeats (henceforth named rCUG and rCCUG respectively) which are capable of sequestering
nuclear RNA-binding proteins involved in splicing events such as the ones in the muscleblind-
like family (MBNL).[21–23] Consequently, these proteins are deprived of their normal func-
tions and induce RNA foci formations. [19,24]

Characterization of the pathogenic transcript secondary structure is crucial to gain insights
into the DM pathogenic pathway. For instance, rCUG sequences are usually considered as long
tract hairpins, but experimental evidence has demonstrated that rCUG microsatellites fold into
metastable hairpins with a variety of secondary structures that directly determine protein-bind-
ing properties.[25] UV melting [26] and nuclease mapping [27] studies have revealed that
rCUG stability is mainly driven by the A-form geometry given by the C•G and G•C canonical
base-pairs formation, which increases with the hairpin length. Additionally, X-ray crystallogra-
phy [28–33] and NMR [34] have demonstrated that 1×1 internal loops formed by U-U pairs
are quite loose and capable of adopting a variety of conformations involving a different number
of hydrogen-bonds; however, other studies have concluded that in CUG, CCG and CAG
repeats, higher hydrogen bond-forming potential does not result in higher stability.[26] Some
studies successfully have performed and analyzed the dynamics of different pathogenic tran-
scripts using molecular dynamics (MD), proving the ability of this technique to correctly
describe RNA dynamic-function relationships.[34–36] The relative population analysis of the
U-U pairs revealed that these mismatches are able to explore different conformations involving
up to two hydrogen bonds without distorting the A-form geometry, leading to results that are
in good agreement with NMR and X-ray data.

Unfortunately, for the time being, MD requires thousands of hours and usually demands
supercomputing resources. Crucial to the usefulness of MDmethods are the reliability of RNA
force fields because their parameterization is still imprecise and may impact both small and
large-scale dynamics. In contrast, elastic network models (ENM) allow for the exploration of
the conformational dynamics of a molecular system near its equilibrium conformation using a
harmonic potential function.[37] Interestingly, though ENM has been widely used on proteins,
[38–43] its application on RNA folded structures has only recently been reported.[44,45] The
advantage of ENM relies on reducing the macromolecule structure to a network of nodes inter-
connected by springs. The dynamics if the molecular system can then be described by monitor-
ing of the network. In particular, anisotropic network models (ANM), [46] one of the most
widely used ENM strategies, establish the node connectivity according to a cutoff distance (rc)
and define springs with uniform force constants (γ). Nonetheless, although the usefulness of
these methods has been proved, ENM do not consider any type of interaction between pairs of
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atoms. Furthermore, the dynamics rely only on the proximity of the defined nodes. In addition,
ENM neglect nonlinear effects or couplings between nodes and do not take into account nor
solvent effects neither ion distribution around the substrate, which may be essential for under-
standing internal loop local motions. On one hand, thermally accessible conformational sub-
states take considerable amounts of time to equilibrate in MD simulations; on the other hand,
ENMmay only capture the near-equilibrium deformability space due to the inexistence of
potential energy barriers between substates.

Despite the inherent limitations of these methods, previous studies have shown that ENM
are able to describe experimentally observed RNA’s backbone conformational movements.
[44,45] Within this context, we sought to investigate the capability of ANM and MD to repro-
duce appropriately the structural dynamics of the repeat-associated pathogenic transcript
rCUG. First, we investigated the intrinsic dynamics of experimental rCUG repeats using ENM
techniques (see ANM of the rCUG ensemble section) and compared them to the ones obtained
from a conventional molecular dynamics (cMD) simulation (as shown in Conventional MD of
the rCUG system model). Ensembles from either macromolecules or MD trajectories can be
analyzed using essential dynamics analysis (EDA). EDA is based on the principal component
analysis (PCA) of the covariance matrix. Principal components (PCs) can be viewed as direc-
tional vectors of the structural variations through space spanned by the principal modes of
motion. Similarly, ANM are based on the diagonalization of the Hessian matrix and describe
the directions responsible for the movement of the network’s nodes. Thus, we used PCs and
ANM results to compare the structural sampling obtained by MD and ANM correspondingly.

Although ANM depend on the number of available experimental structures in order to obtain
meaningful results, MD simulations are subject to the sampling problem of the conformational
space.[47] We tried to address the MD sampling limitations by using accelerated molecular
dynamics (aMD), which provide access to events beyond those obtained with conventional MD
(described in Accelerated MD of the rCUG systemmodel). Finally, we discuss the conforma-
tional space obtained by all these methods and compare them to those conformers obtained by
deformation of the ANM softest normal modes (Comparison of ANM, PCA and EDAmodes).

Results
RNA hairpins containing N×N internal loops are involved in many diseases and they have
caught the attention of drug designers. On the one hand, RNA does not have clear pockets and
cavities, like the ones observed in proteins, hampering efforts to achieve selectivity. On the
other hand, many investigators have provided evidence that repeated internal loops (e.g.
rCUG) can be used as unique anchoring points so that molecules which contain repeated sub-
units with a spacer achieve better selectivity values. It is therefore clear that a good description
of (i) the structure of the internal loops and (ii) the intrinsic dynamics of the nucleotides
involved would improve the molecular design of RNA targeted drugs.

Computational methods for predicting the motions of proteins have been thoroughly
applied, but the dynamics of many RNA relevant structures still remains elusive. However, MD
require extensive computational resources and are subjected to force field limitations. In this
study, we investigated the dynamics of a pre-mRNA transcript implicated in an RNA-mediated
disease, specifically DM1 (trinucleotide CUG repeats, rCUG) using two distinct computational
methods to represent its intrinsic flexibility; these were elastic network models (ENM) andMD.

ANM of the rCUG ensemble
Anisotropic network models (ANM)[46] are based on the assumption that a system can be
described as particles connected by springs. Therefore, the intrinsic flexibility and dynamics of
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the macromolecule are treated as a set of normal modes within an oscillating system. Recent
studies have assessed the viability of ANM for conveying a set of apparent motions in RNA
and DNA ensembles and have succeeded in reproducing those observed in experimental data.
[44,45,48] By following these approaches, we sought to investigate a particularly relevant RNA
structure such as CUG trinucleotide repeat overexpansion.

Many RNA structures that include one or more CUG triplets in their sequence have been
reported by different investigators. We considered static X-ray dataset constituted an ensemble
of snapshots representative of the intrinsic dynamics of the RNA. The ensemble can be ana-
lyzed using principal component analysis (PCA) to extract the principal modes of structural
variations (i.e. principal component, PC) which, in turn, can be compared to ANM soft modes.
Nevertheless, the number and type of RNA motions are subject to the number of conforma-
tions that have been experimentally resolved.

The available structural models of rCUG transcripts in the RCSB Protein Data Bank should
be sufficient for dynamics simulations using PCA, although these models are quite sensitive to
small changes in structure. We performed the PCA on a collection of rCUG structures with a
number of repeats ranging from 3 to 6. First, a (CUG)3 ensemble was constructed by aligning
all the possible (CUG)3 fragments from the PDB X-ray structures (see details in Methods).
Then, the ability of ANM to capture variations within the structural ensemble was evaluated.
Previous studies suggested that the inclusion of ribose atoms into the coarse-grained model
improved the level of experimental agreement compared to the use of only phosphorous
atoms.[44] Following these criteria, we decided to test an all-atom model and two levels of
coarse-graining: P, C2’, C4’ atoms, and P, C2’, C4 and N3 atoms. We considered it important
to capture the hydrogen-bonding patterns and the U-U mobility, thus we sought to capture
this information through the N3 and C4 atom while P and C2’ describe the backbone dynam-
ics. At the same time, γ constant was optimized using a negative exponent weighting approach
(refer to Fig 1A). Different cutoffs ranging from 5 to 15 Å were tested. Finally, the generated
ANMmodels were compared to PCs obtained from the PCA of the ensemble.

The best ANMmodel was achieved using a cutoff of 9 Å and a coarse-grained model repre-
sented by atoms P, C2’, C4 and N3. No improvement was achieved by using an all-atom model
in terms of overlapping modes (see S1 Fig); hence, some loss of description level have occurred
even though the essential motions of the RNA are correctly described. When comparing ANM
modes with PCs we observed that the second NMAmode exhibits an acceptable overlap with
PC1 mode (71%), see Fig 1B. In other words, the second softest ANM theoretical mode is con-
firmed by the first experimental PC.

Visual inspection of the dominant motions extracted from coarse-grained PCA shows that
PC1 deformation vector corresponds to the bending of the RNA structure from end to end,
opening and closing the major groove (Fig 1C). Moreover, PC1 and ANM2 show an excellent
correlation (0.98), as shown in Fig 1D, meaning that the crystal structures have low dispersion
around this pair of PCA and ANMmodes. Interestingly, PC2 and PC3 represent the movement
of the base pairs along the xy plane. We observed that C•G and G•C pairs shear in opposite
directions along the plane, but U-U pairs move cooperatively in the same direction exhibiting a
base pair opening. Compared to the backbone movement, these modes overlap with the theo-
retical modes by 48% and 57% respectively.

The principal structural changes can be described through a set of low-frequency ANM
modes. The cumulative overlap can be interpreted as the extent to which this set of soft modes
can predict a PCA mode. In Fig 2, we report the cumulative overlap of the first three PC and
the percentage of captured variance. Notice that 20 ANMmodes can explain ~80% of PC1 and
PC3. In fact, the ANM1-12 provide a good description, while higher modes diminish its contri-
bution. Nonetheless, the distribution of motions is captured by the collectivity degree (κ)
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Fig 1. (A) Optimized distance dependent force constant (γ). Closest nodes are weighted by 12 (arbitrary units), and the weighting decays exponentially
down to 25 Å. (B) Overlap between the top six PCAmodes and the softest six NMAmodes. The second softest ANMmode exhibits the highest overlap with
PC1. (C) All-atom representation of (CUG)3 fragment and PC1 normal mode vectors. U-U pairs are represented in red. Normal mode vectors (in green) show
the structural variations along this mode. (D) Representation of the dispersion of the examined PDB structures along the PC1 and ANM2.

doi:10.1371/journal.pone.0152049.g001
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which provides a measure of the extent of distribution of motions across the structure. The col-
lectivity degrees for the first three PCs are 0.43, 0.64 and 0.74 correspondingly, meaning that
the first PC motions are distributed less frequently along the structure. In fact, PC2 and PC3
are mainly represented by the shear and stretching of all the base pairs, especially of the U-U
internal loops; thus, these two modes are considered to be highly collective and more relevant
for the present study.

Conventional MD of the rCUG systemmodel
In good agreement with previous reports, our approach shows that ANM can achieve an
acceptable level of description of global RNA dynamics. However, ANM are not able to cor-
rectly describe local dynamics and the available set of structures do not necessary represents all
accessible structural changes. For this reason, further rCUG dynamics were assessed using

Fig 2. Cumulative overlap of ANM soft modes to PC1 to PC3. The legend contains the percentage of variance (σ2) explained by the corresponding PC.
Notice that 20 ANMmodes explain ~80% of structural variations along the first and third PCs.

doi:10.1371/journal.pone.0152049.g002
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conventional MD (cMD) simulations. All the MD analysis was performed according to the
observed U-U conformations along the trajectory, which are the most relevant local changes,
and compared to the experimentally resolved structures.

Kiliszek et al. noticed that some uridines involved in U-U pairs tilt towards the minor
groove, breaking the palindromic symmetry in a seemingly random manner over the structure.
[29] The number of CUG repeats determines the number of available three-dimensional U-U
structures and hence, in longer RNA chains, there must exist a vast repertoire of U-U pair in
terms of available conformations. Kumar et al. reported two rCUG X-ray structures providing
different 1×1 nucleotide U-U internal loop conformations and considered that the small mole-
cule drug design should take into account all the available U-U conformations.[32]

Here we studied the behavior of the rCUGmodel through cMD simulations and determined
the dynamic properties of these particular non-canonical U-U pairs. Our model system con-
sists of two CUG repeats capped by C•G pairs, to increase the overall stability during the simu-
lation (see Fig 3A). The non-canonical base-pairs of the system model adopt the stretched U-U
wobble conformation; this conformation establishes interactions with only one hydrogen bond
between the carbonyl O4 and the N3 imino group of the second residue.

After the cMD simulation we identified a total of 4 possible U-U pair conformations by
means of cluster analysis, which featured different hydrogen bonding patterns. Among the most
representative conformations, we observed the presence of 0, 1 or 2 direct hydrogen bonds,
some of which formed 1 or 2 water-mediated hydrogen bonds at the same time. The population
of U-U clustered conformations for each base pair are reported in the Supporting Information.
During the simulation each pair went through nearly two or three distinct conformations,
although some of them lasted for less than 5% of simulation time (Fig 3B). From highest to low-
est population, MD results suggest that U-U pairing formation involves 1, 0 or 2 hydrogen
bonds, whereas water mediated hydrogen bonds represent a 20% of total simulation time. The

Fig 3. (A) Schematic representation of the systemmodel used for the cMD. (B) Representative U-U pair types observed along the trajectory (left) and
coarse-grained (CG) schematic representation (right). White, red and blue spheres represent selected carbon, oxygen and nitrogen beads respectively.

doi:10.1371/journal.pone.0152049.g003
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analysis of the overall structure along the MD trajectory revealed that only the helical opening
was statistically significant, at the 95% confidence level, compared to the crystal structure. All of
these hydrogen bond patterns have been reported in a combined NMR andMD study of
(CCGCUGCGG)2.[34] In good agreement with our results, Parkesh et al. reported that after
sampling all the possibilities, the lowest-energy motif presented a single hydrogen bond.

Further non-canonical U-U pair structural analysis was performed in accordance with Ber-
glund and coworkers’ observations.[33] The authors noticed that six U-U conformations were
present in all X-ray and NMR available structure, if classified by their number of hydrogen
bonds and inclination (not inclined, or inclined towards the major or minor groove). These
types of U-U pairs are named following previously established criteria: type I non-canonical
U-U pairs contains 2 hydrogen bonds, with a shortened C1’-C1’ distance and inclined towards
the minor groove. Type II forms 1 hydrogen bonds and is also inclined towards the minor
groove. Type III do not state significant inclination and do not form any hydrogen bond. The
most frequently observed conformation is type IV that forms 1 hydrogen bond and inclines
towards the major groove. Types V and VI also inclines towards the major groove but contains
2 or 0 hydrogen bonds respectively. Using this description, we performed a classification using
the average structure of the MD trajectory to reproduce the most relevant conformation for
each pair.

A qualitative analysis suggested that each of the two average U-U pairs stayed in type IV
and II configurations during the simulation. The predominance of these substates has been
thoroughly discussed in literature and types IV and II are the most predominant configurations
among the crystal structures. Through examination of all rCUG NMR and crystal structures, it
becomes clear that U-U pairs can flex between many different conformations. Nevertheless,
looking at our MD results (S1 Table) we observed very close C1’-C1’ distances, helical averages
and standard deviation with experimental data, which suggest that our MD trajectory was able
to explore the most relevant experimentally observed U-U conformations, but not all of them.

Accelerated MD of the rCUG systemmodel
cMD allow us to reach time scales in the order of hundreds of nanoseconds. However,
advanced sampling techniques have been developed to explore structural changes in shorter
time scales (e.g. replica-exchange molecular dynamics, metadynamics and accelerated molecu-
lar dynamics, among others). Accelerated molecular dynamics (aMD) is an enhanced confor-
mational sampling technique that provides access to events beyond the ones obtained by
conventional simulations. For instance, our c MD was run on a sub-microsecond scale and it
was not able to explore all the available U-U configuration space, so it became clear that a more
exhaustive exploration was required. We decided to assess whether enhanced sampling tech-
niques such as aMD conformational sampling improved the results yielded by cMD.

Surprisingly, the aMD trajectory tends to drift away from that observed in cMD. As shown
in Fig 4 (see also S2 and S3 Figs), helical parameters from both simulation are within the same
range but large deviations occur in the 3’-end of the aMD without affecting the second U-U
pair. This effect was observed in less than 15% of the simulation (see S4 Fig). This effect might
be a force field artifact caused by improper description of non-bonded interactions or back-
bone definition. In sharp contrast with the cMD results, the aMD trajectory samples a
completely different region of the U-U conformational space. For instance, types I, III and V
are preferred along the simulations. In both cases, the main motions are governed by the back-
bone heavy atoms displacement and the base pair opening. This observation agrees with the
previous PCA so further comparison with essential dynamics analysis (EDA) was
accomplished.
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Comparison of ANM, PCA and EDAmodes
Once the MD simulations were analyzed, we proceeded to compare the EDA of the generated
trajectories with the referencemodes obtained from the crystal structures. A previous report
benchmarked the sampling of MD protein simulations against ANM and PCA using 20 ns tra-
jectories.[49] Those authors concluded that generating conformers using the softest ANM
modes covered a more comprehensive subspace than the MD ensembles. Moreover, ANM
requires very low computational resources compared to conventional methods.

In this study, we asked whether RNA small systems might span similar conformational cov-
erage using any of the aforementioned methods. That is to say, we compared the conforma-
tional sampling of experimental structures and simulations, all projected onto the principal
subspace spanned by the first three PCs. We represented each ensemble (the PDB ensemble
and the cMD and aMD trajectory snapshots) onto the PC1-3 subspace (Fig 5A).

In agreement with our previous analysis of the reference or experimental modes, it is clear
that the highest collective modes are PC2 and PC3. Compared to PC1, changes are less local-
ized and less pronounced along the other two PCs. In agreement with previous studies, [49–
50] conformers generated during cMD and aMD simulations encompass only part of the crys-
tal structure and explores the surrounding subspace. For instance, cMD and aMD conformers
drift away from the references and reproduce only half of the experimental structures, which is
reflected in its low essential space overlap (50% and 49% respectively). In sharp contrast, the
essential subspace overlap between cMD and aMD simulations account for a total of 77% of

Fig 4. Structural analysis of the cMD and aMD simulations. (A) Average and standard deviation for each helical parameter (base pair opening, buckle,
propeller and helical twist). cMD and aMD results are colored in blue and green respectively. Structures were aligned to all heavy atoms and represented with
PyMOL. Notice that the 3’-end from the aMD simulation yields significant deviation from the cMD. (B) Cartoon representation of two clustered structures from
the cMD simulation and opening effect (σ) of the U-U pair. The two main principal motions observed along the simulation correspond to the backbone
expansion-compression (opening and closing of the major groove) and the base pair opening of the uridines. (C) Cartoon representation of the first and
second CUG fragments from the aMD simulation. The main distortions are observed in the 3’-end, as stated by the helical parameter values.

doi:10.1371/journal.pone.0152049.g004
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subspace overlap. It is unclear whether the explored aMD conformers correlate events which
occur on longer time scales. However, the initial and final aMD frames are locate in the same
subspace region, meaning that the structure ‘visits’ several substates but is capable of returning
to the initial structure. From a structural point of view, MD simulations span a wide range of
U-U base pairs, but also the transition between them and the different combinations of the pos-
sible base pairing types. Likewise, the collectivity of the principal modes that describe these
motions suggest cooperative dynamics along the structure (see Table 1).

A previous work showed a remarkable coverage of the reference space by ANM predictions.
For this reason, we generated 2000 snapshots by deforming the structure along the softest three
ANMmodes and compared the subspace coverage with that of the cMD. As reported by Bakan
and Bahar, [49] deformation along the ANMmodes exhibit an excellent coverage of the refer-
ences. Superposition of our generated conformers with the references (Fig 5B) show that the

Fig 5. Projection over the PC1-3 subspace of (A) the cMD (blue) and aMD (yellow) snapshots, and the PDB ensemble (green). (B) Comparison between the
original PDB ensemble and 2000 conformers (salmon) generated using the softest three modes. The perspective is the same in both panels, but the ranges
differ. (C) Two-dimensional projection of the aMD, ANM generated ensemble and PDB ensemble over the first three PCs.

doi:10.1371/journal.pone.0152049.g005
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ANMmodes permit the exploration of a wider range of conformations along the modes. How-
ever, we noticed that the first principal mode was strongly favored without a significant loss in
terms of collectivity.

As we can see from Fig 6, the references global fluctuations are in qualitative agreement with
the cMD simulation. Not surprisingly, aMD experiences the largest relative displacements.
Due to limitations of the ANMmodels, interactions between beads depend on their distance
and not the type of interaction, hence ANM fluctuations of the nucleobases are prone to be
highly constrained. A differentiated correlation is observed when only backbone or nucleobase
beads are considered. Fig 6 also shows a clear correlation between P-P fluctuations for each
ensemble; thus, backbone global fluctuations are within the same range of native state fluctua-
tions. On the other hand, no correlation exists when only N3 beads, which mainly represents
the U-U configurational state, are considered due to a differentiated conformational explora-
tion of the bases. Table 2 summarizes the Pearson correlation coefficients.

Table 1. Variance (σ2) and collectivity (κ) for each ensemble system: PDB ensemble andmolecular dynamics (cMD and aMD).

PDB ensemble cMD aMD

Mode %σ2 κ %σ2 κ %σ2 κ

1 43.2 0.43 32.7 0.39 25.9 0.22

2 22.9 0.64 24.4 0.63 17.4 0.50

3 13.89 0.74 11.6 0.73 11.2 0.70

doi:10.1371/journal.pone.0152049.t001

Fig 6. Atomic global fluctuations extracted from the reference structures, and the cMD and aMD
ensembles.Only P, C2’, C4 and N3 atoms are considered. Computed fluctuations for the P atoms only are
plotted in the box in the top right corner of the figure.

doi:10.1371/journal.pone.0152049.g006
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Transferability of ANM to longer repeats
The transferability of ANMmodels optimized for short repeats to n-repeated structures is not
only an interesting but also a controversial topic. Additional simulations were performed to
investigate the effect of varying the length of CUG repeats in the reliability of MD and ANM
models. Those were conducted with a 6-repeats rCUG (from a X-ray structure, PDB ID:
3gm7) and a 12-repeats rCUG (homology modeled). The essential subspace overlap between
ANM and EDA modes extracted from the (CUG)6 accounts for a total of 47%, a 3% less than
in the (CUG)2 fragment from the previous cMD simulation. However, the overall collectivity
of PC1 increased up to 0.80 which reflected an even higher degree of cooperative dynamics. In
contrast, the essential subspace overlap for (CUG)12 increased up to a 67%, but the collectivity
degree remains similar to the (CUG)6 structure (0.73). The amount of residues involved in
deformation movements was quite similar in both ANM and MD simulations, but there was a
tendency of ANM to provide less collective fluctuations. As shown in Table 3, the ANM
approach yielded an acceptable description of global flexibility in the crystal structure in
terms of cumulative overlap of PC1 and PC2, using the 20 softest normal modes (> 50%).
However, this value was substantially lower than those obtained for (CUG)2 and (CUG)12,
and PC3 yields a poor overlap (38%). Interestingly, ANM performed better in predicting
deformations from short and long CUG fragments. Unfortunately, the bias introduced by the
simulation length is non-negligible and non-harmonic movements are likely to have more
impact in simulations of short helices.

Discussion
RNA plays critical roles in cellular biology hence it is an extremely important target for small
molecule therapeutics. Unfortunately, knowledge of RNA-small molecule interactions is still
scarce yet insights into the intricacies of the dynamics of RNA are essential to provide novel

Table 2. Pearson correlation coefficients between CG set (P, C2’, C4 and N3), P beads and N3 beads
fluctuations extracted from the references, cMD and aMD ensembles.

CG P N3

Ref | cMD 0.75 0.95 0.34

Ref | aMD 0.28 0.74 0.11

cMD | aMD 0.37 0.85 -0.23

doi:10.1371/journal.pone.0152049.t002

Table 3. Percentage of captured variance (%σ2), collectivity (κ) and cumulative overlap (CO) extracted
from the first three PCs of models with 2, 6 and 12 CUG repeats. Cumulative overlap was calculated for
the 20 softest normal modes.

PCA %σ2 (MD) κ (MD) κ (ANM) %CO

(CUG)2 PC1 37.3 0.39 0.55 90

PC2 22.4 0.63 0.40 72

PC3 10.9 0.73 0.51 80

(CUG)6 PC1 30.3 0.80 0.76 52

PC2 18.8 0.79 0.67 74

PC3 15.7 0.75 0.46 38

(CUG)12 PC1 26.1 0.72 0.69 92

PC2 20.2 0.71 0.73 60

PC3 13.8 0.82 0.62 93

doi:10.1371/journal.pone.0152049.t003
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therapeutic scaffolds. In particular, targeting rCUG sequences has proved to be the most
appropriate approach for treatment of DM1, since RNA acts as the causative agent, whereas
MBNL1 remains unmodified. Structure-based drug design relies on understanding the target
structure and its dynamic properties as the structural conformations are not unique in time.
The rCUG are characterised by their ability to adopt a large set of conformations each of
which has been observed in X-ray or NMR resolved structures. The druggability of non-
canonical pairs is not yet well-established and their repertoire of possible conformations may
increase the complexity of the system under study by including a large set of possibilities.
[51,52]

In our study, we assessed two of the most relevant techniques to explore the rCUG confor-
mational landscape, which are elastic network models (ENM) and molecular dynamics (MD).
In agreement with previous studies, the use of ENM with a simplified coarse-grained represen-
tation is able to reproduce the global motions observed in experimental structures. In particu-
lar, the information gathered from the slow modes obtained from ANM is identical to that
contained in the PDB ensemble. The best parameterization for our RNA model was obtained
with a coarse-grained model represented by atoms P, C2’, C4 and N3. Optimal performance
was achieved with a 9 Å cutoff and a distance dependent force constant. In this regard, we have
confidence that ANM parametrization was able to correctly describe the global fluctuations of
a highly dynamic RNA structure such as rCUG, but it required the consideration of both back-
bone and nucleotide coordinates to attain a good level of description.

In order to assess the viability of ANMmethods to capture local motions derived from U-U
pairs we proceeded to investigate their motions as described by MD simulations. MD is proba-
bly the most accurate computational method for the theoretical study of large-scale dynamics,
since it is based on rigorous physical formalisms and quantum-mechanical and experimental
parameterizations. However, its high computational cost still limits all-atom simulations to the
microsecond scale. Comparison of cMD and aMD simulations demonstrated a clear difference
in conformational space exploration. The softening of energy barriers that aMD provides
allows to explore a higher number of internal loop conformations than cMD in the same time
scale. For instance, the aMD trajectory analysis concluded that types I, III and V are preferred
along the simulation. From the point of view of the rCUG local conformational landscape, the
U-U pairs adopt preferentially a type IV conformation (1 hydrogen bond inclined towards the
major groove) which is the most experimentally observed conformation.

Nonetheless, MD techniques allowed us to explore a higher myriad of conformations which
induces high local fluctuations onto the structure. In line with these results, other studies have
demonstrated that MBNL1 binding to U-U pairs induces local melting of the RNA structure.
That recognition step depends on the occasional loss of the hydrogen bonding patterns of the
internal loops. Nevertheless, both MDmethods showed that the main motions, global and
local, are highly dependent on the backbone heavy atoms displacement and the base pair open-
ing effect. In addition, the local information is affected by the precision of the force field, which
is compounded by inaccuracies in its parametrization. Thus, the conformational analysis is not
void of errors and these can compromise the reliability of the data extrapolated fromMD simu-
lations. However, the short nanosecond time scale used in this study and the agreement in
terms of overlapping global space with experimental structures permitted confident compari-
son of ENM and MD techniques. It is reasonable to assume that, even though we do not assess
the intrinsic stability of the molecular system, a deformation along the ANMmodes partially
explores the conformational possibilities whereas force field parametrization of MD simula-
tions guides the system through a more comprehensive conformational landscape. However,
the harmonic approximation of this method requires a potential minimum, limiting the utility
of ANMs to model non-equilibrium dynamics.
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As mentioned above, ANM fail to properly describe local motions which can be easy dis-
cerned from the U-U pairing sampling. All U-U conformations found in the ANM ensemble
correspond to type IV, the same as the ones in the reference structure. Therefore, the bulk of
the results presented demonstrate that MD simulations are required if insights into U-U
dynamics and transitions are relevant. In addition, U-U pairing highly depends on the ionic
distribution and water mediated hydrogen bonds, which are not contained within the ANM
formalism. Thus, the simplified potential of ANM cannot provide quantitative data about the
intrinsic movements of CUG repeats.

From structure-based drug design point of view, traditional rigid docking fails to describe
small molecule—RNA interactions due to the lack of RNA adaptation. In fact, a fast and practi-
cal approach to improving molecular docking in proteins is to generate an ensemble of confor-
mations obtained from experimental structures. However, our results suggest that ANM are
not suitable for structure-based drug because high local fluctuations are not efficiently cap-
tured. Several studies have succeeded in applying a molecular dynamics approach for drug-
design of rCUG binders, [48,49] but time and computational limitations for exploring small
molecule—RNA interactions exist and large virtual screening campaigns cannot be performed.
Other authors have suggested the combined use of ENM and MD, [41] which can favour par-
ticular modes observed in the MD simulations over the global backbone motions, improving
the reproduction of both local and global modes. In addition, all the metrics demonstrate the
robustness of ANMs to reproduce harmonic global fluctuations observed during sub-microsec-
ond MD simulations of different length RNAs.

In conclusion, our work gives a comprehensive comparative analysis of ANM and MD
methods for assessing small scale and large scale events along a highly dynamic RNA structure.
However, these results will be subject to improvements implemented in other RNA force fields,
which are constantly being revised. Further analyses will be conducted to study and compare
the accuracy of the force field revisions and their effect on the local and global configurations
of the RNA. These studies should provide useful insights that could be exploited for computer-
aided drug design strategies.

Methods

ANM/PCA/EDA from experiments and simulations
The system is represented by a set of nodes (one node per atom if all-atom representation; one
or several nodes per residue if coarse-grained representation). The general form for the ANM
harmonic potential is:

VANM ¼ � g
2

XN�1

i¼1

XN

j¼iþ1

ðsij � s0ijÞ2Gij

2
4

3
5

where sij and sij
0 are the instantaneous and equilibrium distances of atoms i and j respectively,

γ corresponds to a homogeneous force constant, and Γij is the ijth element of the Kirchhoff
matrix. In this study we tested several distance dependent γ weighted by a negative exponential
function before finding the most suitable one (see Results section). The second order derivative
of the potential energy function were collected in the Hessian matrixH which can be decom-
posed in 3N-6 nonzero λi eigenvalues and their corresponding eigenvectors u

i:

H ¼
X3N�6

i¼1

liu
iui

T
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Principal modes were obtained by decomposing the covariance matrix (C) for the conformers:

C ¼
Xn

i ¼ 1

sip
ipi

T

where σi and p
i correspond to the ith eigenvalue and eigenvector of C respectively, and n is the

number of non-zero eigenvalues. The ANM covariance matrix is directly related with Hessian
matrix (i.e. CANM/H-1), thus the PCA σi is the counterpart of 1/λi and u

i is the counterpart of pi.
For experimental validation of the ANM/PCAmethods a (CUG)3 ensemble was constructed

by aligning (CUG)3 fragments from available experimental structures (PDB IDs: 1zev [31],
3gm7 [29], 3syw [32], 3szx [32], 4e48 [30], 4fnj [33]). A total of 15 fragments were aligned with
VMD and saved as a single rCUG PDB ensemble file. ANM analysis, which uses a single struc-
ture, were performed over one of the central CUG fragment of 3gm7. All ANM and PCA calcu-
lations were conducted with the ProDy suite.[53]

Essential dynamics analysis (EDA)
Essential dynamics were based on the cross-correlation between the fluctuation of the P, C2’,
C4 and N3 atoms observed during the molecular dynamics trajectory. Essential modes were
obtained by decomposing the Cmatrix for 2000 equally distributed snapshots extracted from
the simulations. Mean-square fluctuations were computed as previously described.[50]

Comparison metrics for dominant modes
The overlap between ANM and PCA modes is given by the dot product of the corresponding
eigenvectors:

Oij ¼ pi � uj

The cumulative overlap was used to measure the correlation between predicted and experi-
mental modes. The cumulative overlap is the extent to which a set of ANM soft modes can pre-
dict a PCA mode, hence it measures how well a subset of J ANMmodes reproduces the ith
PCA mode:

COJ
i ¼

XJ

j¼1

ðOijÞ2
2
4

3
5

1=2

The essential subspace overlap between two subspaces spanned by top Kmodes is evaluated
as:

SOK ¼ 1

K

XK

i¼1

XK

j¼1

ðOijÞ2
2
4

3
5

1=2

The degree of collectivity (κ), which provides a measure of the extent of distribution of
motions across the structure, was computed using the definition proposed by Brüschweiler
[54]:

kk ¼
1

N
exp �

XN

i¼1

u2
iklogðu2

ikÞ
8<
:

9=
;

All these metrics were computed using the ProDy suite.[53]
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Models preparation for molecular dynamics
The molecular structure of a double stranded RNA with 2 CUG repeats in each slide was taken
from high resolution X-ray data (PDB ID: 3gm7 [29]) and it was edited by capping the struc-
tural model with C•G pairs. The resulting model was prepared using tleapmodule from the
Amber molecular dynamics package. We used the AMBER [55] force field with revised χ[56]
and α/γ[57] torsional parameters for all simulations. A total of 14 Na+ counterions were added
to neutralize the system charge using Joung and Cheatham parameters.[58] The system was
solvated in a truncated octahedron with a spacing of 12 Å around the RNA using the TIP3P
[59] water model. (CUG)6 model was prepared as previously described using the X-ray 3gm7
structure. (CUG)12 model was prepared with tleap using 3gm7 model as template.

Conventional molecular dynamics protocol
Prior to the production phase each system was prepared using the following protocol: the RNA
was constrained and the solvent and counterions were minimized during a 2,500-step minimi-
zation stage. Next, a second minimization 15,000-step long simulation was run without con-
strains. After system minimization, the backbone was constrained and the system was heated
at 300 K within 100 ps followed by a 200 ps long MD at 300 K with decreasing force con-
straints. After relaxation, a 2 ns long MD was performed under NpT ensemble (p = 1 bar,
T = 300 K) allowing density balance. The production trajectories were obtained at NVT condi-
tions at 300 K. In all the simulations the PME [60,61] method for treatment of electrostatic
interaction was used under periodic boundary conditions. A 9 Å short-range cutoff was applied
and the SHAKE [62] algorithm was used to fix all hydrogen atom positions. The time step was
fixed to 2 fs and coordinates were stored every 1 ps. The total simulation time was 200 ns.

Accelerated molecular dynamics protocol
Accelerated molecular dynamics (aMD) simulations were conducted using the same protocol
as equilibration and production runs of conventional molecular dynamics. The first 30 ns of
the previous production trajectory were used to calculate the parameters related to the average
total potential energy and the average dihedral energy parameters, required for aMD parame-
trization (i.e. EthreshD = 483 kcal/mol, alphaD = 11 kcal/mol, EthreshP = -36257 kcal/mol,
alphaP = 2192 kcal/mol).

Molecular dynamics analysis
Conformations and frequencies of the different non-canonical U-U pairs were analyzed on
each trajectory using the clustering tool from Amber cpptraj[55] module. Clustering was per-
formed over each non-canonical U-U pair using the average-linkage algorithm and specifying
a minimum distance of 3.0 Å.

Helical parameters were monitored using the 3DNA [63] software and extracted at intervals
of 20 ps, including intra-base pair parameters (shear, stretch, stagger, buckle, propeller and
opening), inter-base pair parameters (shift, slide, rise, tilt, roll and twist) and backbone
torsions.

Supporting Information
S1 Fig. Maximum overlapping achieved by using different cutoffs and residues description:
all-atom, CG-1 (atoms P, C2’, C4’) and CG-2 (atoms P, C2’, C4’, N3). A similar overlapping
is achieved with an all-atom model and rc = 14 and CG-2 and rc = 9.
(TIFF)
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S2 Fig. Base pair (shear, stretch, stagger, buckle, propeller and opening) and base step
parameters (shift, slide, rise, tilt, roll and twist) extracted from the cMD simulation. Aver-
age and standard deviation are indicated.
(TIFF)

S3 Fig. Base pair (shear, stretch, stagger, buckle, propeller and opening) and base step
parameters (shift, slide, rise, tilt, roll and twist) extracted from the aMD simulation. Aver-
age and standard deviation are indicated.
(TIFF)

S4 Fig. RMSD of the cMD (black lines) and aMD (blue line) simulations.
(TIFF)

S5 Fig. Graphical representation of the three RNA structures considered in the study. The
effect of varying the length was evaluated using 2, 6 and 12-repeats rCUG.
(TIFF)

S1 Table. Structural parameters inferred fromMD simulation clustering (CUG centroids)
and experimental data. The same tabular format as Coonrod et al. has been used for compari-
son purposes (Coonrod et al. (2012). Biochemistry, 51, 8330–37).
(PDF)
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