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Abstract
Growth factor receptor-bound protein 10 (Grb10) is an adaptor protein that can negatively

regulate the insulin-like growth factor 1 receptor (IGF-1R). The IGF1-1R pathway is critical

for cell growth and apoptosis and has been implicated in kidney diseases; however, it is still

unknown whether Grb10 expression is up-regulated and plays a role in diabetic nephropa-

thy. Catalpol, a major active ingredient of a traditional Chinese medicine, Rehmannia, has

been reported to possess anti-inflammatory and anti-aging activities and then used to treat

diabetes. Herein, we aimed to assess the therapeutic effect of catalpol on a mouse model

diabetic nephropathy and the potential role of Grb10 in the pathogenesis of this diabetes-

associated complication. Our results showed that catalpol treatment improved diabetes-

associated impaired renal functions and ameliorated pathological changes in kidneys of dia-

betic mice. We also found that Grb10 expression was significantly elevated in kidneys of

diabetic mice as compared with that in non-diabetic mice, while treatment with catalpol sig-

nificantly abrogated the elevated Grb10 expression in diabetic kidneys. On the contrary,

IGF-1 mRNA levels and IGF-1R phosphorylation were significantly higher in kidneys of cat-

alpol-treated diabetic mice than those in non-treated diabetic mice. Our results suggest that

elevated Grb10 expression may play an important role in the pathogenesis of diabetic

nephropathy through suppressing IGF-1/IGF-1R signaling pathway, which might be a

potential molecular target of catalpol for the treatment of this diabetic complication.
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Introduction
Diabetic nephropathy (DN) is one of the major causes of the late stage of renal diseases world-
wide, and>25% of patients with Type 1 and 2 diabetes suffer from DN. DN not only seriously
affects the health and quality of life of patients but also places a major burden on healthcare
resources. [1–3]

Growth factor receptor-binding protein 10 (Grb10) is a member of the adaptor protein super-
family. [4] In humans, the Grb10 gene is located on chromosome 7p11.2–12 [5], and was first
cloned in 1995. [6] The regulatory functions of Grb10 have been studied both in vitro and in
vivo, which has been implicated in the regulation of cell growth, proliferation, and plasma mem-
brane translocation of glucose transporter 4 (GLUT4). [7,8] It has been reported that Grb10
inhibits apoptosis through interacting with Bim L.[9] A disruption of the imprinted Grb10 gene
in mice exhibited altered body composition, glucose homeostasis, and insulin signaling during
postnatal life and could promote tumor formation. [10,11] Using gain-of-function or loss-of-
function approaches, several studies have demonstrated that Grb10 functions to negatively regu-
late IGF-1-mediated signaling both in vitro and in vivo. [12,13] In diabetic neuropathy, knock-
down of Grb10 expression could improve cognitive disorders. [14] In skeletal muscles, Grb10
regulates the development and number of muscle fibers. [15] Meanwhile, Grb10 has been shown
to play an important role in regulating islet function and β-cell apoptosis. [16,17] However, it is
unclear whether Grb10 is involved in the development of diabetic nephropathy.

Catalpol is an iridoid glucoside extracted from the plant Rehmannia glutinosa. R. glutinosa,
a traditional Chinese medicine, and has long been used to treat diabetes in China. Both in vitro
and in vivo studies have reported that catalpol exerts important and extensive pharmacological
activities, including anti-inflammatory, anti-aging, and anti-apoptosis activities.[18–20] Com-
pelling evidence has indicated that catalpol exhibits protective effects against oxidative stress,
inflammation, and subsequent tissue injuries associated with various diabetic complications,
including diabetic nephropathy. [21,22]

In this study, we observed the effect of catalpol on kidney pathology and dysregulated renal
functions in streptozotocin (STZ)-induced diabetic mice. Our results indicate that catalpol
treatment improved renal functions and ameliorated pathological changes and concomitantly
down-regulated Grb10 expression in kidneys of diabetic mice. Additionally, catalpol-induced
down-regulation of Grb10 expression correlated with up-regulation of IGF-1 mRNA expres-
sion and IGF-1R phosphorylation in kidneys of diabetic mice. These findings suggest that ele-
vated Grb10 expression may contribute to diabetic nephropathy via suppressing IGF-1/IGF-1R
signaling pathways, thus serving a potential molecular target of catalpol for the treatment of
diabetic nephropathy.

Materials and Methods

Ethics statement
This study was performed according to the International Guiding Principles for Biomedical
Research Involving Animals of the Council for International Organizations of Medical Sciences.
Animal experiments were approved by the ChongqingMedical University Committee on the Eth-
ics of Animal Experiments (Permit Number: 2012–0001). All animal procedures were performed
under sodium pentobarbital anesthesia, and all efforts were made to minimize the suffering.

Animal models
A total of 35 male C57BL/6 mice (6–7 weeks old, weighing 20–22 g) were purchased from the
Experimental Animal Center of Chongqing Medical University (Chongqing, China) and
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housed in a specific pathogen free Laboratory Animal Room (21°C ± 2°C, 12/12 h day/night
cycle, with lights on at 08:00). Throughout the experiment, mice were provided free access to
food and water. After 1 week, 25 mice were randomly selected to receive a single injection of
180 mg/kg STZ (Sigma-Aldrich, USA). STZ was dissolved in 0.1-M sodium citrate-hydrochlo-
ric acid buffer solution (pH 4.5). The remaining mice [the control group (Con)] were injected
with an equal volume of buffer solution. Metabolic cages were used to collect the urine of mice,
while blood samples were obtained from the tail vein of mice, and blood glucose level was mea-
sured using a glucometer (Accu-Check Aviva, Roche Diagnostics, Basel, Germany). Animals
with a blood glucose level>16.7 mmol/l at 72 h after STZ injection were considered to be dia-
betic. [23] The diabetic mice were further randomly divided into two groups, the diabetes mel-
litus (DM) group and DM treated with catalpol (DM + Cat) group (n = 10 per group).

Chemical characteristics and source of catalpol
Catalpol is an iridoid glucoside extracted from the plant R. glutinosa, and its molecular formula
is C15H22O10 and molecular weight is 362.33 g/mol. [22] Catalpol (purity 98%) was obtained
from Shanghai PureOne Biotechnology (Shanghai, China). It was dissolved in normal saline
(NS) before the experiment. Eight weeks later, the DM + Cat group mice were treated by intra-
peritoneal (i.p) injection of catalpol (10 mg/kg/day) for 14 consecutive days. [24] DM and con-
trol group mice were injected with an equal volume of normal saline (NS).

Kidney weight index and measurement of the 24-h urinary protein
excretion, blood urea nitrogen, and serum creatinine
The kidney weight index (KWI, the ratio of kidney weight to body weight) was recorded as a
measure of kidney hypertrophy. Urinary protein excretion (UPE) was measured over 24 h
using a Bradford protein quantitative assay (Nanjing Keygen Biotech CO. LTD, Nanjing,
China). Blood urea nitrogen (BUN) and serum creatinine were measured using and Urea
Assay Kit and a Creatinine Assay Kit, respectively (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China). All experiments were performed according to the manufacturers’ protocols.

Periodic acid-Schiff staining, Masson staining and
Immunohistochemistry
Animals were anesthetized by intraperitoneal injection of 1% pentobarbital solution and then
transcardially perfused with 0.9% sodium chloride solution. The right kidneys were removed
and immersed in 4% paraformaldehyde for 24 h. After dehydration, tissues were paraffin-
embedded and 4–5 μm sections were cut by using a Paraffin slicer. paraffin sections were
dewaxed by baking in the oven at 60°C and soaking in xylene and graded alcohol. Following
deparaffinization, tissue sections were washed in phosphate buffered saline (PBS), and incu-
bated in 0.3% hydrogen peroxide for 20 min to remove endogenous peroxidase activity. For
antigen retrieval, the sections were immersed in 10 mmol/L sodium citrate buffer (pH 6.0–6.3),
and heated in the microwave oven for 15 min at approximately 95°C. After washing in PBS,
sections were blocked in 5% goat serum and incubated with the primary antibody solution
(Grb10 antibody, dilution 1:300, caspase-3, dilution 1:200; Abcam, USA) overnight at 4°C. The
next day, sections were rewarmed for 1 h at 37°C. After extensive washing with PBS, tissue sec-
tions were incubated with biotinylated goat antirabbit secondary antibody (dilution 1:200) at
37°C for 45 min. After washing with PBS, sections were incubated with horseradish peroxi-
dase-labeled streptavidin solution at 37°C for 30 min and then washed in PBS again. Further,
sections were incubated in a 3,30-diaminobenzidine solution (Sigma, USA) until brown
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staining developed. After extensively washing with water, the nuclei were counter-stained with
hematoxylin. Finally, tissue sections were mounted with neutral gum. An Olympus PM 20
(Olympus, Tokyo, Japan) was used to photograph the sections. Image-Pro Plus, version 6.0
(Media Cybernetics, Inc., Silver Spring, MD, USA) was used to measure the average optical
density under the same conditions.

Quantitative polymerase chain reaction
RNeasy Mini kit (Qiagen, Mississauga, ON, Canada) was used to extract total RNA from the
kidney cortex tissues. The concentration and purity of total RNA was measured using a
NanoDrop 2000c (Thermo Fisher Scientific Inc., Waltham, MA, USA). The pure RNA had an
A260/A280 ratio of 1.8 and 2.0. cDNA was synthesized from mRNA using the PrimeScript
RT Reagent kit (Takara Bio Inc.,Otsu, Japan) and the same machine was used to detect the
purity and concentration of cDNA. The primers of target genes were designed and synthe-
sized by Sangon Biotech (Shanghai, China). Primer sequences were as follows: Grb10, for-
ward, 5’-GTGAAAGAGGAGGACGCAAGT-3’;reverse: 5’-TCCAGCAATCAGGTAGAAG
ATG-3’; IGF-1, forward, 5’-AAGGCAGTTTACCCAGGCTC-3’; reverse, 5’-TCTTTA
TTGCAGGTGCGGTCA-3’; β-actin, forward, 5’-GTGCTATGTTGCTCTAGACTTCG-3’;
reverse, 5’-ATGCCACAGGATTCCA TACC-3’. The following components were added to
reaction tubes: 12.5 μl of SYBR Premix Ex Taq (Tli RNaseH Plus), 1.0 μl of forward primer,
1.0 μl reverse primer, 200 ng of cDNA template, and 8.5 μl of dH2O. Then, the contents were
amplified under the following conditions: 95.0°C for 30 sec, 40 cycles of 95.0°C for 5 sec, and
60.0°C for 30 sec, with the melt curve at 65.0–95.0°C. The comparative threshold cycle (Ct)
for quantitative target gene expression associated with β-actin was analyzed using Bio-Rad
CFX Manager software (Bio-Rad, Hercules, CA, USA). The relative change of gene expression
was calculated using the 2-DDCt equation.

Western blot analysis
The kidney cortex tissues were completely polished with tissue total protein lysis buffer. Tissue
total protein lysis buffer was produced by mixing RIPA, PMSF, and phosphatase inhibitors in
certain proportions. Protein concentration was estimated using a bicinchoninic acid (BCA)
protein assay kit (Beyotime Institute of Biotechnology, China). Tissue lysates used for immu-
noprecipitation, or 50–80 μg of protein per sample, were directly analyzed by SDS-PAGE, then
transferred to membranes that were probed with the following antibodies: a rabbit polyclonal
antibody for Grb10 (1:1500, Abcam, USA), a rabbit polyclonal antibody for IGF-1R (1:1000;
ImmunoWay Biotechnology Inc., Newark, DE, USA) and phospho-IGF-1R (Y1161) (1:1000;
ImmunoWay Biotechnology Inc., USA), and a mouse monoclonal antibody for β-actin
(1:1000; Beijing Zhongshan Golden Bridge Biotechnology Co. Ltd, Beijing, China).

Statistical analysis
All results were analyzed using SPSS 19.0 (SPSS Inc., Chicago, IL, USA) and presented as the
mean ± SEM. One way analysis of variance (one-way ANOVA) was conducted. All statistical
tests were two-sided with statistical significance set at p< 0.05.

Results

Effect of chronic hyperglycemia and catalpol in mice
Diabetes is caused by defects in insulin secretion and/or action, resulting in chronic hypergly-
cemia and metabolic diseases. [25] Abnormal metabolism of glucose and lipids is important
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contributors to the development of complications in diabetes. [26,27] In our study, mice that
were intraperitoneally injected with STZ (the DM group) had higher blood glucose levels than
control mice without STZ administration. Over time, diabetic mice exhibited symptoms such
as polydipsia and polyuria. After a few weeks, several diabetic mice exhibited listlessness and
decreased activity. During the experiment, animals with a blood glucose level< 16.7 mmol/l or
died were excluded in the experimental study. In the end, six diabetic mice were included in
the DM group while seven of them were included in DM group with catalpol treatment.

The mean blood glucose level was significantly higher in DMmice than in non-DM control
mice (P< 0.01). After 2 weeks of treatment with catalpol, the level of blood glucose in DM
+ Cat group had no significant decline in comparison with that in non-treated DMmice
(P> 0.05, Table 1). These results imply that a longer treatment time might be required for cat-
alpol to exert an hypoglycemic effect.

Catalpol influenced the renal function
We then determined whether catalpol has a protective effect on renal function in diabetic mice.
As shown in Table 1, the renal function of diabetic mice was severely damaged, which was
manifested as proteinuria and elevated serum creatinine levels and blood urea nitrogen levels.
Following administration with catalpol, the 24 h urinary protein excretion, serum creatinine
levels, and blood urea nitrogen in the DM + Cat group was significantly lower than that in the
non-treated DM group (P< 0.05). These results suggest that catalpol could significantly
improve the impaired renal functions in diabetic mice.

Expression of endogenous Grb10 in diabetic nephropathy
Using qPCR andWestern blotting, we examined alterations in the expression of Grb10 in the
kidney. The expression levels of Grb10 mRNA and protein in the kidney tissues were signifi-
cantly higher in the DM group than those in non-diabetic control group (Figs 1A and 2A;
P< 0.01). On the contrary, Grb10 mRNA and protein levels in the kidney tissues were signifi-
cantly down-regulated in the DM + Cat group as compared to non-treated DM group
(P< 0.05). These results suggest that catalpol-mediated protective effects on diabetic nephrop-
athy correlate with down-regulated Grb10 expression in diabetic kidneys.

Table 1. The measurement results of indicators in each group.n = 6,x±s.

Group Con DM DM+Cat

Indicator

Glycemia (mmol/l) ①① 6.7833±0.76790 28.0875±0.64240** 27.6375±0.80167

KWI ②② 0.0072±0.00118 0.0117±0.00163** 0.0101±0.00152ΔΔ

24h urinary protein (mg/24h) ③③ 0.0686±0.04449 0.9362±0.42527** 0.4939±0.32543Δ

BUN (mmol/l) ④④ 5.4026±1.01644 9.9609±1.35238** 8.1559±0.94499Δ

SCr (μmol/l) ⑤⑤ 56.9184±14.35010 109.0958±19.50298** 92.9539±8.90225Δ

Con: normal control group; DM: diabetes mellitus group; DM + Cat: diabetes mellitus treated with catalpol group.

*P < 0.05 vs Con;

**P < 0.01 vs Con
ΔP < 0.05 vs DM;
ΔΔP < 0.01 vs DM.

BUN: Blood urea nitrogen; SCr: Serum creatinine.

doi:10.1371/journal.pone.0151857.t001
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Expression of IGF-1 and IGF-1R in the kidney
Since Grb10 has been demonstrated to negatively regulate IGF-1/IGF-1R signaling,[12] we
then determined whether catalpol-mediated down-regulation of Grb10 expression was coupled
to up-regulation of IGF-1/IGF-1R signaling in diabetic kidneys. As shown in Fig 1B, the IGF-1
mRNA levels were lower in the kidney tissues of DMmice than those in non-diabetic control
mice (P< 0.01). Consistently, the level of IGF-1R phosphorylation (phosph-IGF-1R, the phos-
phorylation site of Tyr1161) was also significantly lower in the DM group than that in the non-
diabetic control group (Fig 2B; P< 0.01). Additionally, IGF-1 mRNA levels and IGF-1R phos-
phorylation were higher in kidneys of the DM + Cat group than those in the non-treated DM
group (P< 0.05). These findings suggest that the elevated Grb10 expression was reversely

Fig 1. Quantitative real-time PCR analysis of Grb10 and IGF-1 mRNA expressions in kidneys. The
levels of Growth factor receptor bound protein 10(Grb10) (A) and insulin-like growth factor 1(IGF- 1) (B)
mRNA expressions were measured using qPCR. The average levels were shown in the graphs. The data
were shown as the mean ± SEM (A, n = 3; B, n = 5). (*, P < 0.05; **, p < 0.01). Abbreviations: Con: normal
control group; DM: diabetes mellitus group; DM + Cat: diabetes mellitus treated with catalpol group.

doi:10.1371/journal.pone.0151857.g001

Fig 2. The expression levels of Grb10 and IGF-1R proteins in kidneys. The levels of Growth factor receptor bound protein 10 (Grb10) (A) and Insulin-like
growth factor 1 receptor (IGF- 1R) (B) proteins were measured byWestern Blotting. Statistical analysis was done using factorial ANOVA with Fisher’s
multiple comparisons post (*, P < 0.05; **, P < 0.01). The data were shown as the mean ± SEM (A, n = 3; B, n = 5). Abbreviations: Con: normal control group;
DM: diabetes mellitus group; DM + Cat: diabetes mellitus treated with catalpol group.

doi:10.1371/journal.pone.0151857.g002
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associated with a lower level of IGF-1/IGF-1R signaling in diabetic kidneys, thus might play an
important role in diabetic nephropathy.

Periodic acid-Schiff, Masson and immunohistochemical staining of
Kidney Tissues
Glycoproteins are stained purple by Periodic acid-Schiff (PAS) staining. As shown in Fig 3,
pathological changes were observed in both DM and DM + Cat groups. However, the degree of
staining, representative of pathological severity, was lower in the DM + Cat group than that in
the DM group. In addition, in Fig 4, the kidney fibrosis observed in DM + Cat group was signif-
icantly attenuated as compared with that in the non-treated DM group, suggesting that catalpol
treatment could inhibit diabetic nephrology-related kidney fibrosis.

We also examined the changes in Grb10 protein expression in mouse kidneys at 10 weeks
following the induction of diabetes. As shown in Fig 5A, Grb10 protein expression, located
both on the cell membrane and in the cytoplasm, was mainly distributed in the glomerulus,
tubules and interstitial blood vessels. The expression level of Grb10 protein in kidneys of the
DM group was significantly higher than that in the DM + Cat group (p< 0.05). As shown in
Fig 5B, caspase-3 expression was increased in kidneys of non-treated diabetic mice, but signifi-
cantly decreased in kidneys of catalpol-treated diabetic mice (P< 0.05).

Fig 3. Periodic acid-Schiff staining of kidney tissues in each group. The kidney tissues were stained with Periodic acid-Schiff. Cells with a positive
reaction were stained purple (magnification, ×400). In picture B, fuchsia positive cells were more than that of the other two groups. A (Con): normal control
group; B (DM): diabetes mellitus group; C (DM + Cat): diabetes mellitus treated with catalpol group.

doi:10.1371/journal.pone.0151857.g003

Fig 4. Masson staining of kidney tissues in each group. The topically microscopic images of the kidney tissues were stained with ponceau and aniline
blue dye. Positive reaction is represented by blue staining (magnification, x400). In picture B, blue stained areas were more than that of the other two groups,
indicating more severe fibrosis. A (Con): normal control group; B (DM): diabetes mellitus group; C (DM + Cat): diabetes mellitus treated with catalpol group.

doi:10.1371/journal.pone.0151857.g004
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Discussion
Chronic hyperglycemia may cause structural and functional changes in the kidney. Abnormal
glucose metabolism can cause a series of pathophysiological changes and simultaneously cause
abnormal lipid metabolism. [26] Thus, chronic hyperglycemia causes abnormal metabolism.
Intervention studies have convincingly demonstrated that hyperglycemia is a major pathogenic
factor for development of various diabetic complications. [28] In the current study, we
observed that mice with continuous hyperglycemia developed diabetic nephrology (DN) which
was manifested by pathological changes in kidneys, proteinuria, elevated serum creatinine and
blood urea nitrogen levels.

Catalpol ameliorated diabetic nephropathy
Both in vitro and in vivo studies have indicated that catalpol can exert various pharmacological
activities. For example, catalpol is reported to delay cellular senescence and protect against apo-
ptosis. [29] Furthermore, catalpol exhibits anti-inflammatory properties [30] and mitigates dia-
betic nephropathy by reducing the deposition of extracellular matrix proteins. [22] However,
the mechanisms underlying catalpol-mediated beneficial effects on diabetic nephropathy are
still unclear. In this study, we showed that administration of catalpol could reverse, to certain
degrees, the impaired renal functions and pathological changes in diabetic kidneys. Clinically,
proteinuria, serum creatinine and blood urea nitrogen are commonly used to evaluate renal
functions, which are gradually elevated upon the impairment of renal functions. [31] Catalpol
treatment decreased the 24 h-urinary protein excretion, serum creatinine and blood urea nitro-
gen levels. These observations suggest that catalpol can protect against diabetic nephropathy
by ameliorating renal function loss.

Apoptosis of kidney cells is a hallmark in diabetic nephropathy fibrosis. Caspase-3 is a cru-
cial executor or initiating factor of cell apoptosis. [32,33] Histologically, we demonstrated that
fibrosis developed in the kidney tissues of diabetic mice. During chronic hyperglycemia, kidney
cell apoptosis appeared to be initiated. We observed that Catalpol administration significantly

Fig 5. Immunohistochemical study on the expression of Grb10 and caspase-3 proteins in kidneys. The distribution and expression levels of growth
factor receptor-bound protein 10 (Grb10) (A) and caspase-3 (B) were determined by immunohistochemical staining. Images shown at magnifications of
×400. Brown granules represent positive results. Average optical density values were measured by Image-Pro Plus, version 6.0, and expressed as the
mean ± SEM (n = 4) of two independent experiments. Statistical analysis was performed using factorial analysis of variance with Fisher’s multiple
comparisons. (*, p < 0.05; **, p < 0.01). Con: normal control group; DM: diabetes mellitus group; DM + Cat: diabetes mellitus treated with catalpol group.

doi:10.1371/journal.pone.0151857.g005
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decreased caspase-3 expression, suggesting that catalpol could inhibit caspase3-mediated apo-
ptosis in DN. Therefore, we speculated that catalpol ameliorated DN-associated kidney fibrosis
possibly by protecting renal cells from apoptosis. In addition, our data showed improvement in
DM-associated abnormal structures of the glomerulus and tubules following catalpol treat-
ment, suggesting that catalpol can also protect against pathological damages in DN.

Elevated Grb10 expression may play a role in diabetic nephropathy but
could be reversed by catalpol
Grb10 has also been shown to be involved in regulating insulin signaling pathways and meta-
bolic actions. [34,35] Here, we examined the potential role of Grb10 in diabetic nephropathy
and have revealed that Grb10 protein expression was located in both the glomerulus and
tubules and increased along with the development and progression of diabetic nephropathy.
The increased expression of Grb10 was correlated with renal function impairment and patho-
logical changes in kidneys of diabetic mice. Thus, elevation of Grb10 expression may have a
detrimental effect on the development and progression of DN. Meanwhile, we found that catal-
pol treatment significantly abrogated the elevated expression of Grb10 protein in diabetic kid-
neys, suggesting that catalpol ameliorated renal function loss and pathological damages
possibly by down-regulating Grb10 expression in diabetic nephropathy.

Elevated Grb10 expression correlates with decreased levels of IGF-1/
IGF-1R signaling in diabetic nephropathy
Grb10, an adaptor protein, binds to tyrosine-phosphorylated receptor, IGF-1R, and subse-
quently inhibits IGF-I signaling.[36] It has been shown that Grb10 inhibits IGF-1/IGF-1R sig-
naling via blocking the access of phosphatase to the activated IGF-I receptor.[12] As is known,
IGF-1 exerts its biological functions via activating IGF-1R-mediated downstream signaling
pathways. Previous study showed that IGF-1 can inhibit mesangial cell apoptosis and hypergly-
cemia-induced DNA damage and promote DNA repair via activating IGF-1R signaling.
[37,38] Aberrant IGF-1/IGF-1R signaling has been implicated in various kidney diseases,
[39,40] suggesting that IGF-1/IGF-1R may play a vital role in the development of diabetic
nephropathy by regulating cell growth and apoptosis. In the current study, we found that an
elevated expression of Grb10 correlated with a decreased level of IGF-1/IGF-1R signaling in
diabetic kidneys, while treatment of diabetic mice with capaltol not only down-regulated
Grb10 expression but also simultaneously up-regulated IGF-1 mRNA expression and IGF-1R
phosphorylation in diabetic kidneys. Collectively, our findings support the notion that catalpol
exerts its therapeutic effects on diabetic nephropathy possibly by down-regulating Grb10
expression and the subsequent activation of IGF-1/IGF-1R signaling.

Conclusion
In conclusion, our data indicates that continuous hyperglycemia might lead to an elevated
expression of Grb10 and the subsequent decrease in IGF-1/IGF-1R signaling in kidneys, which
may consequently contribute to the pathogenesis of diabetic nephropathy. Catalpol treatment
could improve diabetes-associated impaired renal functions and ameliorate pathological
changes in diabetic kidneys, while such beneficial effects correlate with a down-regulation of
Grb10 expression and a concomitant up-regulation of IGF-1/IGF-1R signaling in diabetic kid-
neys. These findings suggest that elevated Grb10 expression may contribute to diabetic
nephropathy via suppressing IGF-1/IGF-1R signaling pathways, thus serving a potential
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molecular target of catalpol for the treatment of diabetic nephropathy. But more studies are
warranted for further mechanistic exploration.
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