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Abstract
Assessment and monitoring of soil organic matter (SOM) quality are important for under-

standing SOM dynamics and developing management practices that will enhance and

maintain the productivity of agricultural soils. Visible and near-infrared (Vis–NIR) diffuse

reflectance spectroscopy (350–2500 nm) has received increasing attention over the recent

decades as a promising technique for SOM analysis. While heterogeneity of sample sets is

one critical factor that complicates the prediction of soil properties from Vis–NIR spectra, a

spectral library representing the local soil diversity needs to be constructed. The study area,

covering a surface of 927 km2 and located in Yujiang County of Jiangsu Province, is charac-

terized by a hilly area with different soil parent materials (e.g., red sandstone, shale, Quater-

nary red clay, and river alluvium). In total, 232 topsoil (0–20 cm) samples were collected for

SOM analysis and scanned with a Vis–NIR spectrometer in the laboratory. Reflectance

data were related to surface SOM content by means of a partial least square regression

(PLSR) method and several data pre-processing techniques, such as first and second

derivatives with a smoothing filter. The performance of the PLSRmodel was tested under

different combinations of calibration/validation sets (global and local calibrations stratified

according to parent materials). The results showed that the models based on the global cali-

brations can only make approximate predictions for SOM content (RMSE (root mean

squared error) = 4.23–4.69 g kg−1; R2 (coefficient of determination) = 0.80–0.84; RPD (ratio

of standard deviation to RMSE) = 2.19–2.44; RPIQ (ratio of performance to inter-quartile

distance) = 2.88–3.08). Under the local calibrations, the individual PLSR models for each

parent material improved SOM predictions (RMSE = 2.55–3.49 g kg−1; R2 = 0.87–0.93;

RPD = 2.67–3.12; RPIQ = 3.15–4.02). Among the four different parent materials, the largest

R2 and the smallest RMSE were observed for the shale soils, which had the lowest coeffi-

cient of variation (CV) values for clay (18.95%), free iron oxides (15.93%), and pH (1.04%).

This demonstrates the importance of a practical subsetting strategy for the continued

improvement of SOM prediction with Vis–NIR spectroscopy.
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Introduction
Soil organic matter (SOM) is a key attribute of soil and environmental quality because it affects
physical, chemical and biological functions, which in turn influence soil productivity [1].
Moreover, SOM contains large nutrient pools for crop growth and can serve as a source or a
sink for atmospheric CO2 [2]. Quantitative assessment of SOM quality is therefore important
for understanding SOM dynamics and provides valuable information for determining manage-
ment practices that might maintain or increase SOM levels [3]. Typically, large numbers of
samples must be collected and analyzed in order to capture the spatial and temporal variability
of SOM [4]. Conventional methods may be expensive and require large amounts of labor and
chemicals for performing these tasks [5].

Over the past three decades, visible and near-infrared diffuse reflectance spectroscopy (Vis–
NIR) has been shown to be an effective alternative to conventional laboratory analysis, and can
provide time and cost effective approaches for the prediction of various soil properties, includ-
ing the SOM or SOC (the C within the SOM) content [6, 7, 8, 9,10, 11]. The basis for the Vis–
NIR estimation of SOM content are its broad absorptions in the visible region (350–700 nm),
due to chromophores and the darkness of humic acid, and the absorptions in the NIR region
(700–2500 nm) from the overtones and combinations of fundamental vibrations due to
stretching and bending of chemical bonds, such as O–H, C–H, and N–H [12, 13]. In fact, Vis–
NIR spectroscopy is an indirect analytical method based on the development of multivariate
statistical models, such as multiple linear regression [14], principal components regression
(PCR) [15], partial least-squares regression (PLSR) [16], and non-parametric data mining tech-
niques, including artificial neural networks and regression trees [9]. Among these methods, the
PLSR is the most common technique used for prediction of soil properties when there are
numerous predictor variables that are highly collinear [6, 13, 17, 18]. Meanwhile, different
mathematical pre-processing transformations have been applied to raw reflectance spectra in
order to improve estimation accuracy. The most commonly used are the first- and second-
derivatives with a smoothing filter, which can remove baseline drift and background interfer-
ence [19]. Depending on the quality of the raw spectral data, some studies employed the first
derivative in SOM estimation [6, 15, 16, 20], while others preferred the second derivative [21,
22]. For example, prediction models based on the PLSR method and the first derivative have
been developed by Chang et al. [15] and Dunn et al. [6] to estimate SOC content in the 400–
2500 nm region.

Soil properties change because of natural (inherited) variation in the soil forming factors
(i.e., climate, time, topography, vegetation, and parent materials) and human-made variation
(e.g., tillage practices and fertilization) [23]. Of the five soil forming factors, much of the varia-
tion in soil mineralogy and also Vis–NIR spectra is likely to be explained by parent materials,
which lead to differences in the type of clay formed [24; 25]. Previous studies have demon-
strated that geographic regionality, such as changes in soil parent material, may affect predic-
tion accuracies when using Vis–NIR spectroscopy [25, 26, 27, 28, 29]. Given that the
relationship between soil properties and spectral data can be highly non-linear and spatially
dependent [30], the main challenge limiting application of Vis–NIR technique for the predic-
tion of soil properties is finding suitable data pretreatments and calibration strategies [15]. It
difficult to construct a calibration that reflects the immense variation found in soils, even at a
regional scale and so a large calibration does not guarantee accurate predictions [31]. However,
spectral variation associated with soil properties can be locally stable [32]. Hence, one promis-
ing approach is to split the heterogeneous sample set into groups based on similar characteris-
tics and to develop individual prediction models for each of these subsets [17, 33]. Previous
researchers have investigated subsetting by characteristics such as parent materials [7, 24], soil
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types [10, 14, 34, 35], soil textures [36, 37], and spectral similarity [32] with varied results for
their particular sample sets. For example, a work by Madari et al. [36] indicated that an excel-
lent calibration performance, as expressed by the coefficient of determination (R2 = 0.87–0.96)
for total carbon content, was obtained from 1135 soil samples from Brazil using sample subsets
of different soil textural classes: very clayey, clayey, and medium texture. The same type of
result was achieved by vanWaes et al. [37] under laboratory conditions. They showed that
dividing the samples into texture groups (clay, silt, and sand) improved the standard errors of
prediction for agricultural grassland by 7%–16%. Stevens et al. [34] reported improved results
with local calibrations stratified by soil types compared with global calibrations: the root mean
square errors (RMSE) of prediction were 0.8–2.9 g C kg−1 and 5.3–6.2 g C kg−1, respectively.
Likewise, as Vasques et al. [10] noted, the simple subsetting of 7120 samples in Florida by soil
order improved the Vis–NIR SOC models in validation sets (RMSE = 0.33%–2.16%) relative to
results that use the whole dataset (RMSE = 4.60%). The improvement observed with subsetting
results from the fact that soil reflectance values are determined by constituents that vary greatly
across heterogeneous samples. Subsetting matches spectra to a narrower set of data and
improves accuracy. Nevertheless, other workers have shown some difficulties in gaining satis-
factory absolute accuracy when including different parent materials [7]. Hence, it is essential to
carry out a study concerning the Vis–NIR estimation of SOM content with samples derived
from different parent materials when the local soil spectral libraries are unavailable.

In this context, a heterogeneous set of soil samples were included in our study that covered
a relatively wide range of different parent materials and thus also a wide variation in SOM. The
specific objectives are to: (i) investigate whether predictions from a PLSR model built only
from a subset of samples that are similar with respect to parent materials will provide better
predictions than a global model built from a set of all possible samples, and (ii) evaluate the
effects of the raw vs. derivatives of spectral reflectance and the importance of wavelengths in
the Vis–NIR for estimating SOM content.

Materials and Methods

Study area and soil sampling
The study area is Yujiang County (116°410–117°090E, 28°040–28°370N), located in the transition
zone from the northeastern hilly area to the Poyang Lake Plain in Jiangxi Province, China, and
covers an area of 927 km2. Permission to enter the area was issued by the Agricultural Bureau
of Yujiang County. There is no endangered or protected species involved in the present study.

The study area is characterized by a warm climate, abundant heat and sunshine, plentiful
rainfall, and a long frost-free period. Hills and plains cover 78% and 22% of the county, respec-
tively. Low hills are the dominant landform, though high hills are found in the county’s north
and south extremes. Arable agriculture accounts for more than 52% of land use over the area
from which samples were collected. The dominant parent materials include red sandstone,
shale, river alluvium, and Quaternary red clay [38]. The red sandstone is spread across large
parts of the central and southern area, whereas the shale is centralized in the north hilly area.
Soils developed from the four parent materials are predominantly red soil (Acrisols, WRB) and
paddy soil (Anthrosols, WRB), which together account for over 90% of the county’s total area.
Major crops include rice, peanut, and rape.

Soil sampling was undertaken across the study area at a density of one sample per 4 km2 in
July and November of 2014 from croplands after crop harvest. A total of 232 geo-referenced
sampling sites were chosen from different parent materials by simple random selection within
each alternate kilometer square grid. Of the 232 sampling sites, 62, 51, 65, and 54 were taken
from red sandstone, shale, river alluvium, and Quaternary red clay, respectively. At each site, a
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soil sample was composed of five sub-samples collected to a depth of 20 cm at random locations
within a 10×10 m square centered on the geographical position of the site by a Dutch type soil
auger. In the laboratory, samples were air-dried, passed through a 2-mmmesh sieve, and cleaned
from visible plant residues. Each sample was then split into two sub-samples: one was used for
the laboratory spectral measurements, while the other was used for the laboratory physicochemi-
cal analysis of four soil properties: SOM, soil pH, clay content, and free iron oxide content. The
SOM content was determined by theWalkley–Black method [39]. The soil pH was measured in
a 1:2.5 soil–water suspension using a glass electrode pHmeter, and clay content was measured
with the pipette method [40]. The free iron oxides were extracted with the dithionite citrate bicar-
bonate (DCB) method [41] and determined by atomic absorption spectroscopy.

As the frequency distribution of SOM was positively skewed, the SOM values were log-
transformed to normalize the data for model developments. Estimated SOM contents from
these models were back-transformed to original units (g kg−1) to assess model quality.

Spectral measurement and pre-processing
To remove the effect of moisture, soil samples were oven-dried at 105°C for 24 h prior to mea-
surements. Then, the diffuse reflectance spectra of the samples were measured in the laboratory
in the Vis–NIR (350–2500 nm) range (Fig 1), with a spectral resolution of 3 nm (from 350 to
1000 nm) and 10 nm (from 1000 to 2500 nm), using a Fieldspec 4 spectroradiometer (Analyti-
cal Spectral Devices, Boulder, Colorado, USA). A high-intensity contact probe (also from Ana-
lytical Spectral Devices) with a built-in light source (6.5 W halogen lamp) and a measuring

Fig 1. A soil probe developed to collect reflectance spectra of soils in Yujiang County of Jiangxi Province, China: (a) ASD contact probe, (b) ASD FieldSpec
4 spectroradiometer attached by a fiberoptic cable to the probe, and (c) soil sample.

doi:10.1371/journal.pone.0151536.g001
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spot size of 10 mm, was used to acquire the soil spectra. To avoid disturbing soil surface, the
probe was fixed to a burette stand with a clamp to avoid direct contact of the probe window
with the soil sample and to provide a fixed distance of 3 mm between the probe and the soil
sample (Fig 1C). Samples were placed in an aluminum dish (95-mm diameter, 15-mm height),
and the soil surface was gently pressed before leveling with a spatula. This resulted in a smooth
soil surface that ensured a maximum diffuse reflection and thus a good signal to noise ratio
[42]. The sensor was calibrated with a Spectralon (Labsphere, North Sutton, NH) white refer-
ence once every 10 measurements. Each sample was scanned four times with a 90° rotation
between 10 successive scans, and these forty readings were later averaged into one spectrum
per sample. The output spectral resolution of the data is 1 nm along the whole spectrum. To
eliminate noise at the edges of each spectrum, the raw spectra were first reduced to 380–2450
nm and then resampled in 5 nm increments across this range due to the highly collinear spec-
tra, resulting in 415 bands for data analysis of 232 spectra (S1 File).

Before developing the SOM prediction models, several pre-processing techniques were
applied, including the first and second derivatives (differentiation with second-order polyno-
mial smoothing with a window width of 10 nm) using a Savitzky-Golay filter [43], a standard
normal variate transform (SNV: [44]), and a multiplicative scatter correction (MSC: [19]).
Overall, the three pretreatments (i.e., the second derivative, SNV, and MSC) were applied in
order to obtain the best regression models but resulted in no improvement. Therefore, the
results presented below are from the first derivative spectra.

Multivariate calibration and validation
In this study, the PLSR method was used to correlate the spectral data with laboratory SOM
measurements. PLSR is a predictive module technique used in spectroscopy and is closely
related to PCR. However, unlike PCR, the PLSR algorithm selects orthogonal or latent factors
that maximize the covariance between predictor (X spectra) and response variables (Y soil lab-
oratory data). As a commonly used validation method [13], the leave-one-out cross-validation
with as many as 10 factors was adopted in the PLSR model. The number of latent variables for
a model was determined by examining a plot of leave-one-out cross-validation residual vari-
ance against the number of latent variables obtained from PLSR. The latent variable of the first
minimum value of residual variance was selected [8]. Outliers were detected by using the resid-
ual sample variance plot after the PLSR. Samples individually located far from the zero line of
residual variance were considered to be outliers and were excluded from the analysis [45].
More detailed information about the PLSR technique can be found in [46].

The stability of the prediction models was verified by test-set validation with a 3:1 ratio of
calibration and validation samples. Two types of combinations of calibration/validation sets
were compared to study the effect of sample set heterogeneity on Vis–NIR prediction. First, a
“global” calibration/validation set containing spectral data for the full sample set area was cre-
ated (called the global PLSR). Secondly, a series of “local” calibration/validation sets regrouped
by soil parent materials were constructed to produce an individual model for each type sepa-
rately (called the local PLSR). This strategy has been adopted because using spectral data from
areas with heterogeneous soil parent material or soil type is known to diminish the predictive
ability of Vis–NIR spectroscopy [17]. For each type of combination, the soil samples were
divided into calibration and validation data sets by using a stepwise partitioning scheme,
whereby validation data comprised every fourth observation after sorting the SOM content of
all samples in an ascending order [18]. The independent validation sets were used to test the
accuracy and robustness of the calibration models developed using spectra that were not used
in the PLSR cross-validation.
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The prediction accuracy of the model for the calibration and validation datasets was evalu-
ated through parameters such as R2, RMSE, the ratio of prediction to deviation (RPD), and
ratio of performance to inter-quartile distance (RPIQ) [47, 48]. The equations describing the
statistics employed are as follows:

R2 ¼
XN
i¼1

ðŷ i � �yiÞ2
.
ðyi � �yiÞ2 ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
i¼1

ðŷ i � yiÞ2
.
N

s
ð2Þ

RPD ¼ SD=RMSE ð3Þ

RPIQ ¼ IQ=RMSE ð4Þ
where ŷ is the predicted value, y is the observed value, �y is the mean of observed values, N is the
number of data points, SD is the standard deviation of the observed values, and IQ is the inter-
quartile distance of the measured values. According to Zornoza et al. [47], a RPD< 2 is consid-
ered insufficient for applications, whereas a value for RPD between 2 and 2.5 makes approxi-
mate quantitative predictions possible. For RPD values between 2.5 and 3.0 and above 3.0, the
prediction is classified as good or excellent, respectively. Generally, a good model prediction
would have large values of R2, RPD, and RPIQ, and a small value of RMSE.

To determine the significant wavelengths used in calibrations, the PLSR models were also
assessed with variable importance in projection (VIP) as well as PLS regression coefficients
(called b-coefficients) [46, 48]. The VIP was calculated using:

VIPkðaÞ ¼ K
X
a

w2
akðSSYa=SSYtÞ ð5Þ

where VIPk(a) is the importance of the kth predictor variable based on a model with a factors,
wak is the corresponding loading weight of the kth variable in the ath PLSR factor, SSYa is the
explained sum of squares of y by a PLSRmodel with a factors, SSYt is the total sum of squares of
y, and K is the total number of predictor variables. Thresholds were introduced for the determi-
nation of important wavebands [46]. The thresholds for the VIP were set to 1 and thresholds for
the b-coefficients were based on their standard deviations [5, 49]. The wavelength was considered
to be important if both the values (VIP score and b-coefficient) exceeded the thresholds.

Data analysis
All data pretreatments and PLSR calibrations were performed with the Unscrambler 9.7 soft-
ware (Camo Inc., Oslo, Norway). No samples were considered outliers or excluded from the
analyses. In addition to using the PLSR models, Pearson correlations were computed to study
the relationships between SOM content and measured reflectance for each wavelength of the
entire spectral range of 380–2450 nm. This analysis was carried out using SPSS version 18.0 for
Windows (SPSS Inc., Chicago, IL).

Results and Discussion

Descriptive statistics
A summary of the statistics for laboratory SOM data analyzed with respect to the whole dataset,
calibration set, and validation set are given in Table 1. Considering the whole dataset, the SOM
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contents varied from 10.59 up to 58.95 g kg−1 with a mean of 30.23 g kg−1 and differed between
parent material types. For instance, soils derived from Shale contained, on average, more than
42.2% of the SOM content observed in the Quaternary red clay. Except for the shale samples,
the SOM content also showed also a relatively high variability within the same parent material.
The whole SOM contents had a positively skewed distribution (skewness = 0.23). In the cali-
bration set, the SOM content ranged from 10.59 to 56.27 g kg−1 with a standard deviation (SD)
of 9.94 g kg−1. A similar range of SOM values (11.82–58.95 g kg−1) with a SD of 10.30 g kg−1

was presented in the validation set. The fact that both calibration and validation sets have simi-
lar descriptive statistics indicates that stepwise selection followed by SOM stratification can be
used to represent the main variability of soil samples.

Soil spectral characteristics
The mean Vis–NIR spectra of cropland soils developed from different parent materials (Fig
2A) and their respective standard deviations have basic shapes similar to those observed by
other studies [7, 50]. In the 380–760 nm range, the reflectance profiles showed a rising trend
and shifted quickly toward the long-waveband direction. In the 850–2350 nm range, the reflec-
tance spectra changed gently. All soil reflectance spectra exhibited prominent absorption fea-
tures at approximately 1400, 1900 and 2200 nm, which are strongly associated with clay
minerals, for example the OH features of free water at 1400 and 1900 nm, and clay lattice OH
features at 1400 and 2200 nm [50, 51]. Absorption peaks were generally enhanced in the first
derivative graphs relative to the raw reflectance graphs (Fig 2C).

In general, increasing SOM concentration would lower reflectance magnitude across the
whole Vis–NIR spectrum [15, 50]. Average spectral curves for the raw reflectance decreased

Table 1. Statistical characteristics of the organic matter content of soil samples developed from different parent materials in Yujiang County of
Jiangxi Province, China.

N SOM (g kg-1) CV (%) Skewness

Minimum Maximum Mean SD

Original dataset

Red sandstone 62 10.59 53.57 28.81 10.07 34.95 0.46

Shale 51 17.90 58.95 37.93 9.02 23.78 0.14

Quaternary red clay 54 11.45 42.51 26.67 9.10 34.12 -0.21

River alluvium 65 13.68 50.82 28.49 8.36 29.34 0.29

Full 232 10.59 58.95 30.23 10.01 33.11 0.23

Calibration

Red sandstone 47 10.59 53.57 28.71 10.30 35.88 0.45

Shale 39 17.90 58.95 37.90 9.44 24.91 0.12

Quaternary red clay 41 11.45 42.51 26.56 9.25 34.83 -0.19

River alluvium 49 13.68 50.82 28.33 8.45 29.83 0.30

Full 174 10.59 56.27 30.11 9.94 33.01 0.18

Validation

Red sandstone 15 13.81 49.94 29.10 9.69 33.30 0.61

Shale 12 25.39 52.86 38.02 7.89 20.75 0.38

Quaternary red clay 13 12.90 39.99 27.04 8.97 33.17 -0.28

River alluvium 16 15.89 45.69 28.97 8.32 28.72 0.34

Full 58 11.82 58.95 30.57 10.30 33.69 0.36

Note that: N, number of samples; SOM, soil organic matter; SD, standard deviation of SOM content; CV, coefficient of variation of SOM content.

doi:10.1371/journal.pone.0151536.t001
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from Quaternary red clay, river alluvium, red sandstone, and shale (Fig 2A). The observed
decrease in reflectance may be partly related to mineralogy but also to differences in SOM con-
tent. The parent material has an indirect effect on soil reflectance by influencing soil mineral-
ogy and texture [52]. Soils originating from the Quaternary red clay had low organic matter
content (on average 26.67 g kg-1) and had a reddish color. By contrast, soils from shale had
higher organic matter content (on average 37.93 g kg-1) and appeared brownish in color. The
Yujiang’s cropland soils in South China had an intermediate SOM content and varied iron
oxide content in different parent materials (Table 2). Water and iron oxides are considered,
along with organic matter, to be the main soil chromophores [50]. Iron oxides adsorb strongly
in the ultraviolet and blue spectral regions, but are strongly reflecting in the red and infrared
regions (800–1000 nm). The spectral region of 690–930 nm that is influenced by SOM and
iron oxide is the recombination region [13, 53], and the presence of SOM tended to subdue the
iron oxide reflectance features in the 600–750 nm range [50]. From Fig 2B it can be observed

Fig 2. Average spectral curves of (a) the raw reflectance, (b) their corresponding standard deviation values (shaded regions), and (c) the first derivative of
reflectance for the soil samples developed from different parent materials in Yujiang County of Jiangxi Province, China.

doi:10.1371/journal.pone.0151536.g002
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that several absorption features occurred in the regions at approximately 430, 560, and 850 nm,
which is consistent with other research findings [3, 54]. Thus, the spectral variability induced
by these two constituents is likely to be reduced when considering the different soil parent
materials separately.

Correlation of SOM and Vis–NIR spectra
The importance of different wavelength regions can be assessed using correlation plots. In our
study, the correlation coefficients between SOM and reflectance spectra showed both positive
and negative peaks across the spectrum (Fig 3). The SOM content was well correlated with the
original reflectance and the first derivative treatments of the absorbance. For the original reflec-
tance, the bands at approximately 560–850 nm had relatively high correlation coefficients
(rmax = –0.65). For the first derivative spectra, the bands at approximately 485–580 nm (rmax =
–0.60), 760–940 nm (rmax = 0.66), 1035–1165 nm (rmax = –0.63), 1270–1400 nm (rmax = 0.61),
1600–1900 nm (rmax = 0.69), 2020–2055 nm (rmax = –0.56), 2160–2180 nm (rmax = 0.56), and
2310–2370 nm (rmax = 0.62) were highly correlated with SOM content. The bands at 1340–
1380 nm are usually associated with the carbon–hydrogen (C–H) bonds, while the bands at

Fig 3. Correlation of the organic matter content of the soil samples in Yujiang County of Jiangxi Province, China with the original reflectance and
the first derivative of the original reflectance (n = 232) at different wavelengths.

doi:10.1371/journal.pone.0151536.g003

Table 2. Statistical characteristics of soil physicochemical variables for soil samples developed from different parent materials in Yujiang County
of Jiangxi Province, China.

Parent material N pH Clay (%) Free iron oxides (g kg-1)

Range Mean CV Range Mean CV Range Mean CV

Red sandstone 62 4.52–5.13 4.86 2.88 13.64–29.00 17.63 21.55 2.37–22.57 8.64 57.80

Shale 51 4.75–4.96 4.80 1.04 15.56–34.36 25.06 18.95 13.61–23.76 19.00 15.93

Quaternary red clay 54 4.66–5.08 4.87 1.85 15.48–26.98 19.67 20.62 6.63–19.56 11.57 24.98

River alluvium 65 4.53–5.36 4.83 3.73 10.52–20.04 15.10 19.01 1.62–17.57 5.62 54.73

Full 232 4.52–5.36 4.84 2.69 10.52–34.36 19.03 26.75 1.62–23.76 10.75 58.60

Note that: N, number of samples; CV, coefficient of variation of soil variables (%).

doi:10.1371/journal.pone.0151536.t002
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1860–1900 nm are related to amide nitrogen–hydrogen (N–H) and O–H bonds [50]. Although
the best correlation coefficients were generally observed in the NIR region, preliminary investi-
gations did not show a significant improvement in prediction accuracy when only the NIR
region was used instead of the whole spectrum [20]. Hence, for the purpose of calibrating soil
properties to spectral characteristics, it is preferable to use information over the entire spec-
trum, rather than attempting to interpret individual absorption features. Soil spectra result
from overlapping absorption features of many organic and inorganic components, and thus
subtle differences in spectral shape may provide valuable information about soil properties.

SOM prediction by PLSR analysis
The best pretreatments of spectral data for each PLSR calibration technique were identified
based on the highest RPD values. Model performance statistics are summarized in Figs 4 and 5,
which plot the laboratory measured and predicted SOM concentrations using PLSR analysis
for the calibration and validation data sets, respectively. The R2 values in the validation set
were lower and RMSE values were higher than the corresponding values in the calibration set,
but statistical performance was not much different. The cross-validation approach gave over-
optimistic results in terms of SOM predictions for new unknown samples. It is uncommon to

Fig 4. Plots of the measured versus predicted SOM content in the calibration sets obtained via the local PLSRmodels for soils in Yujiang County of Jiangxi
Province, China: (a) the original spectra and (b) the first derivative spectra, and the global PLSRmodels for (c) the red sandstone, (d) the shale, (e) the
Quaternary red clay, and (f) the river alluvium. The 1:1 line is indicated on each figure.

doi:10.1371/journal.pone.0151536.g004
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obtain similar prediction levels when independent samples are used for validation [55], even if
the data sets were both from the same spatial domain. Validation tests using samples that were
not involved in the calibration test were thus necessary.

When considering global calibrations (Fig 5A and 5B), the first derivative transformation
was generally more accurate and had higher performance values (R2 = 0.84, RPD = 2.44, and
RPIQ = 3.08) than the original spectral prediction (R2 = 0.80, RPD = 2.19, and RPIQ = 2.88)
based on the validation set. The RPD values for these two methods were both less than 2.5
which means that the models can just make approximate quantitative predictions possible.
This finding was in line with those of the other studies [8], in which the first derivative worked
the best. Based on these results, the remaining local calibration models were performed by
using the first derivative of the Vis–NIR spectra for the four soil parent materials. Fig 5 also
shows that the two local PLSR models improved the prediction ability for the red sandstone
(R2 = 0.87, RPD = 2.78, and RPIQ = 3.15) and the Quaternary red clay soils (R2 = 0.87,
RPD = 2.67, and RPIQ = 4.02), indicating that they were good prediction models. Excellent
predictions were obtained from the shale and river alluvium soils, with RPD values greater
than 3.0 (Fig 5D and 5F). The relatively poor results from the global calibrations may be due to
the heterogeneity of the sample set, as optimal calibration requires limited (but sufficient) set
heterogeneity [56]. The weak relationship between the SOM and its reflectance when soil

Fig 5. Plots of the measured versus predicted SOM content in the validation sets obtained via the local PLSRmodels for soils in Yujiang County of Jiangxi
Province, China: (a) the original spectra and (b) the first derivative spectra, and the global PLSRmodels for (c) the red sandstone, (d) the shale, (e) the
Quaternary red clay, and (f) the river alluvium. The 1:1 line is indicated on each figure.

doi:10.1371/journal.pone.0151536.g005
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samples are collected from large geographic areas has been attributed to probable parent mate-
rial influences on soil mineral reflectance [57]. This would suggest that the local PLSR model
could be used to predict SOM values for similar soil parent materials in the region, even for
samples pre-screened for spectral similarity [7]. It is supported by the improvements presented
by Sankey et al. [31] when predicting SOC at one site using a subset of calcareous soil samples
compared to using the whole library.

When applying local calibrations, the relatively similar RMSE values in the calibration
(2.30–3.41 g kg−1) and validation (2.55–3.49 g kg−1) stages ensured that the extracted models
were stable and reliable for further use. The accuracy of SOM predictions with independent
validation was roughly comparable to other published studies [4, 8, 58, 59]. By using the first
derivative Vis–NIR PLSR modeling and completely random 30% test sets, Brown et al. [8]
obtained validation RMSE values of 1.09–1.27 g kg−1 for SOC in six sites with similar soils
across three counties in north central Montana. Wetterlind et al. [58] reported a farm-scale cal-
ibration model for SOM using 25 soil samples only, and achieved a good prediction (R2 = 0.89,
RMSE = 4.70 g kg−1, and RPD = 3.0) at Hacksta in southern Sweden. Over a dataset of 152
samples with variability in nine soil types, O'Rourke and Holden [60] reached a RMSE of 4.46
g kg−1 and a RPD of 2.49 for SOM validation model by applying the first derivative with
Savitzky–Golay smoothing technique. It was also reported by Tian et al. [59] that the PLSR cal-
ibration model with the first derivative spectra for estimating SOM gave a better performance
(R2 = 0.91, RMSE = 3.11 g kg−1, and RPD = 3.48) than the original spectral reflectance (R2 =
0.84, RMSE = 4.24 g kg−1, and RPD = 2.55), which was conducted for five different soil types
originating from seven eco-climatic zones in middle and eastern China. The above compari-
sons suggest that the results of the present study were very satisfactory for heterogeneous soil
sample sets in a hilly area.

In spite of the fact that the global models have larger sample concentration ranges than all
the individual parent materials, the greater soil variability (e.g., clay, free iron oxides, and par-
ent materials) of the mixed sample set has resulted in smaller R2 and RPD values. Because the
soils for the study area were developed under similar varieties and distribution of vegetation,
land-use, and pedogenic factors, the variation of soil properties could be attributed to the dif-
ferent geological genesis and parent materials, as reflected by the Vis–NIR spectra as well as
physicochemical analysis. As a consequence of the spatial proximity and similar parent materi-
als, soil samples from the same zone are more likely to exhibit less variation in soil properties
and facilitate more accurate predictions [30]. Our analysis has shown that there are substantial
differences in the performance of PLSR models for SOM prediction based on Vis–NIR for soils
developed over different parent material types across the study area. Regarding the individual
parent materials, the quality of validation statistics for SOM increased as set homogeneity of
parent materials (expressed by CV of soil physicochemical properties) increased. Among the
four different parent materials, the largest R2, RPD, and the smallest RMSE were observed in
the validation dataset for the shale soils, which had the lowest CV values for clay (18.95%), free
iron oxides (15.93%), and pH (1.04%). Similarly, Peng et al. [28] demonstrated that the accu-
racy of the models from the subsets depended on the soil parent material by using the Danish
soil spectral libraries to predict SOC at the field scale. It is noteworthy that the interest of Vis–
NIR spectroscopy for quantifying soil properties depends on the proportion of samples used
for calibration; it also depends on the stability of predictions when different calibration sample
selections are carried out. As seen from this study, the R2 or RPD values of the PLSR models
were higher compared to previous studies [4, 6, 7, 8, 10, 32, 45], which might be due to the
small samples size, large range in SOM, and the sample dividing method of stepwise selection.

To reveal possible coherence in the selection of important variables for predicting SOM
from PLSR calibrations, the VIP scores and b-coefficients (Fig 6) are plotted on an average soil
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spectrum. The important variables with VIP> 1 mainly lay in the regions of 380–720 nm and
approximately 1900 nm, with some in the region of 2370–2450 nm. In terms of b-coefficients,
the wavelengths near 435, 530, 900, 1060, 1300, 1330, 1400, 1730, 1870, 1900, 2000, 2160, 2230,
2300, and 2440 nm were identified as important wavelengths for PLSR modeling. This finding
reinforced the evidence given by other authors [9, 11, 42, 57, 61], who had also reported associ-
ation of important wavelengths identified by PLSR analysis for predicting SOM or SOC. For
example, Henderson et al. [57] found that short-wave infrared bands (1955–1965, 2215, 2265,
2285–2295, and 2315–2495 nm) gave high correlation with SOC content (R2 > 0.96). Addi-
tionally, Lee et al. [61] reported 450–550, 900, 1400, and 1775–2200 nm as important wave-
lengths for SOC. Vasques et al. [11] identified wavelengths 400, 1000, 1400, 1900, 2100, and
2200 nm as important for different forms of carbon. Moreover, some other researchers found
that wavelengths greater than 1200 nm are associated closely with SOM [14, 57, 62]. These
bands have the advantage of being uncorrelated with iron oxide and therefore may demon-
strate a higher predictive capacity for different parent materials [57]. The latter results agreed
with the findings of the present study, as the most successful SOM prediction model (with local
PLSR calibrations) used more than 15 spectral variables at wavelengths greater than 1200 nm
(Fig 6). On the other hand, the complexity of both SOM chemistry and the SOM spectral
response make it difficult to assign absorption features to specific SOM functional groups,
resulting in a highly variable use of wavelengths in different predictive models [63]. This vari-
ability is the main reason that researchers often tend only to develop local calibration models
for each field in which they make measurements with Vis–NIR spectroscopy [42].

Conclusions
Based on comprehensive analysis of the relationship between SOM content and corresponding
reflectance spectra in the four different parent materials from a hilly area in Yujiang County,
we have provided the basis for future study of sample subsetting for large datasets based on
parent material types. This particular investigation of subsetting for SOM prediction had varied

Fig 6. Plots of variable importance projection (VIP) scores (solid curves) and b-coefficients (dashed curves) associated with the PLSR cross-
validationmodel for organic matter content of the soil samples in Yujiang County of Jiangxi Province, China. The threshold for the VIP was set to 1
(solid horizontal line) and the thresholds for the b-coefficients were based on their standard deviation (σ = 52.4) (dashed horizontal lines).

doi:10.1371/journal.pone.0151536.g006
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results with a sample set containing 232 soils. The different subset models created based on
parent material types showed improvement across all parameters (i.e., R2, RMSE, RPD, and
RPIQ) compared to the full sample set. The best prediction for SOM was obtained from the
shale parent material with validation R2, RMSE, RPD, and RPIQ values of 0.93, 2.55, 3.12, and
3.75, respectively. The lower RMSE values in validations (< 3.49 g kg−1) from these local mod-
els could be very helpful for monitoring of small changes in SOM content. Moreover, although
not addressed in this paper, there are indications that other important soil properties such as
clay content, pH value, cation exchange capacity, and nitrogen content can simultaneously be
analyzed using Vis–NIR spectroscopy and local PLSR models. The above results are quite
promising; however, they have the drawback that parent material information is not always
available for a new soil sample. In future studies, the practical implementation of the subsetting
strategy is done either by including readily available soil covariates (e.g. mineralogy, texture,
and iron oxide content) in the spectroscopic modeling or by building a spectral library for all
kinds of parent materials in a region. In addition, the developed models with different calibra-
tion/validation groupings need to be tested further across a wider range of soils characterized
by similar parent materials to confirm their wider applicability.

Supporting Information
S1 File. Laboratory measured Vis–NIR spectra of 232 samples. To every fifth wavelength
was retained to reduce the size of the file.
(XLSX)
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