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Abstract

Omega fatty acids are recognized as key nutrients for healthier ageing. Lipases are used to
release w-3 fatty acids from oils for preparing enriched w-3 fatty acid supplements. How-
ever, use of lipases in enrichment of w-3 fatty acids is limited due to their insufficient speci-
ficity for w-3 fatty acids. In this study use of phospholipase A1 (PLA1), which possesses
both sn-1 specific activity on phospholipids and lipase activity, was explored for hydrolysis
of w-3 fatty acids from anchovy oil. Substrate specificity of PLA1 from Thermomyces lenugi-
nosus was initially tested with synthetic p-nitrophenyl esters along with a lipase from Bacil-
lus subtilis (BSL), as a lipase control. Gas chromatographic characterization of the
hydrolysate obtained upon treatment of anchovy oil with these enzymes indicated a selec-
tive retention of w-3 fatty acids in the triglyceride fraction by PLA1 and not by BSL. 'C NMR
spectroscopy based position analysis of fatty acids in enzyme treated and untreated sam-
ples indicated that PLA1 preferably retained w-3 fatty acids in oil, while saturated fatty acids
were hydrolysed irrespective of their position. Hydrolysis of structured triglyceride,1,3-dio-
leoyl-2-palmitoylglycerol, suggested that both the enzymes hydrolyse the fatty acids at both
the positions. The observed discrimination against w-3 fatty acids by PLA1 appears to be
due to its fatty acid selectivity rather than positional specificity. These studies suggest that
PLA1 could be used as a potential enzyme for selective concentrationof w-3 fatty acids.

Introduction

Based on several prospective and retrospective studies it has been shown that consumption of
fish oils has health benefits, mainly in cardiovascular events, [1,2]. Most of the benefits of fish
oil were attributed to the polyunsaturated omega-3 (w-3) fatty acids, namely, eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA) [3]. The American Heart Association recom-
mends consumption of 1g/day of w-3 fatty acids by patients with coronary heart diseases [4].
w-3 fatty acids constitute approximately 30% of the total fatty acids in natural fish oils. Concen-
trated esters of w-3 fatty acids have been formulated to deliver higher amounts of EPA and
DHA per dose to patients [1]. However, conversion of fatty acids to ethyl esters followed by
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fractional distillation and urea concentration damages these oxidatively sensitive w-3 fatty
acids. Also, re-esterification to triacylglycerides requires further processing of these fatty acids,
which results in statistical distribution of fatty acids on the glycerol backbone [5].

To overcome these challenges, lipases were employed to selectively hydrolyse w-3 fatty acids
[6]. Triglycerides from natural fish oils are complex in composition [7]. Besides containing sev-
eral kinds of fatty acids, mainly saturated, monounsaturated and polyunsaturated, the fatty
acids are also non-uniformly distributed on the glycerol backbone. '>C NMR spectral studies
on anchovy fish oil shows that DHA in more abundant at sn-2 than at sn-1 and -3 positions,
while distribution of EPA is more abundant at sn-1 and sn-3 position compared to sn-2 posi-
tion [8]. The non-uniform distribution of fatty acids on glycerol further confounds their selec-
tive hydrolysis by lipases.

Lipases have been tested for selective concentration of w-3 fatty acids from fish oils either by
fish oil hydrolysis or by selective esterification [8-11]. Lipases possess some important proper-
ties such as partial selectivity towards chain length and position of fatty acid in glycerol and
they also discriminate between fatty acids with single and multiple double bonds. These prop-
erties of lipases make them as suitable candidates for enzymatic concentration of w-3 fatty
acids [12]. Most lipases preferentially hydrolyse saturated and mono-unsaturated fatty acids
from triglycerides and discriminate against w-3 fatty acids, apparently due to the presence of
double bonds that cause steric hindrance in the active site of a lipase [13,14]. Most lipases pref-
erentially hydrolyse EPA over DHA, probably due to the presence of an additional double
bond located closer to the ester bond in DHA [8,15]. In a study five lipases were tested for spec-
ificity in the hydrolysis of fish oil and fatty acid esters as controls. Discrimination against EPA
and DHA was observed with fatty acid esters but not with fish oils [6]. Another study on lipase
mediated fish oil hydrolysis suggested that hydrolysis is biased towards the chemical nature of
the fatty acid rather than to their abundance at a given position on glycerol [8]. In another
study, pancreatic lipase was observed to preferentially hydrolysed docosapentaenoic acid
(DPA) over EPA and DHA [16].

Phospholipase Alspecifically hydrolyse phospholipids to release fatty acids at the sn-1 posi-
tion and releases a 2-acyl lysophospholipid. Functions of PLA1 are not clearly established and
some PLA1s were reported to show lipase-like activity [17,18]. Lipases that show phospholi-
pase activity have been extensively investigated but not the reverse [19].The catalytic mecha-
nism between lipases and phospholipases is identical; however, the specificity emerges from
the active site properties. Studies have indicated that lipases with a short lid and a short 89 loop
are more suitable to accommodate polar phospholipids [20]. To investigate the ability of a
phospholipase in regioselective hydrolysis of triglycerides, we chose PLA1 in this study since it
is more likely to be selective for the sn-1,3 position in triglycerides.

Phospholipase Al used in this study is a recombinant enzyme manufactured by Novo-
zymes. This enzyme was observed to hydrolyse both phospholipids and triglycerides with a
single active site [17,21]. The phospholipase activity of this enzyme is utilized in commercial
degumming of vegetable oils and for modifying phospholipids [22,23]. The lipase activity of
PLA1 was used in organic synthesis of structured lipids [17]. PLA1 also successfully immobi-
lised on different nanoparticles to further improve its catalytic properties [17,24,25]. In this
study, we used PLAL1 for concentration of w-3 fatty acids from anchovy fish oil. The ability
of PLA1 to concentrate w-3 fatty acids into the triglyceride portion was investigated by
examining the preferential fatty acid hydrolysis using gas chromatography and >C NMR
spectroscopy.
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Materials and Methods
Chemicals

Bleached anchovy oil was supplied by Ocean Nutrition Canada (Canada). The major fatty acid
composition of anchovy oil was determined by gas chromatography analysis [8]. Phospholi-
pase A1 (Lecitase Ultra™), Dioleoyl-2-palmitoylglycerol,gum Arabic and methyl nonadecano-
ate and gas chromatography standards were procured from Sigma-Aldrich(Castle Hill,
Australia). TLC plates were procured from Merck, India. All the buffers were made using ana-
Iytical grade chemicals. All solvents used were either analytical grade or higher.

Methods

Hydrolysis of anchovy oil. Reaction mixture containing 50 mMTris, 25 mM CaCl,, 5%
(w/v) gum arabic at pH 8.00 and 5% (v/v) anchovy oil were emulsified by sonication. 100 units
of PLA1 were added and the reaction was carried at 37°C with constant stirring in the presence
of nitrogen gas. Rate of reaction was monitored by pH stat (QQ Metrohm 718 STAT Tritino) by
titrating with 1 M NaOH. 2 ml of sample was drawn at different time points and free fatty acid
was separated from glyceride by solvent extraction method as described earlier [26]with modi-
fications. Enzyme hydrolysate (2 ml) was dissolved in 5 ml ethanolic (30%) KOH (0.5M) to sol-
ubilise free fatty acids as potassium salts. Insoluble glycerides in the alkaline ethanolic fraction
were extracted with 5 ml of hexane. The remaining ethanolic fraction containing free fatty
acids was extracted with 5 ml of hexane after adding 0.5 ml 12N HCI. The efficiency of extrac-
tion was confirmed by TLC. Solvents in the extracts were removed by evaporation in the pres-
ence of nitrogen gas and the glyceride fractions obtained were stored in an airtight
polypropylene tube at -20°C till further analysis. All procedures were done under nitrogen
environment to reduce the exposure of the sample to air.

TATROSCAN analysis. Both the unhydrolysed and hydrolysed portions of the fish oil
were analysed by capillary chromatography with flame ionization detector (Iatroscan MK5,
Iatron Laboratories Inc., Tokyo, Japan). The Iatroscan settings were: air flow rate, 200 ml/min;
hydrogen flow rate, 160 ml/min and scan speed, 30s/scan. Under these conditions, the chro-
marods were cleaned by scanning twice before applying samples. One microliter of each lipid
fraction in hexane was spotted onto the rods with the aid of an auto pipette along the line of
origin on the rod holder and rods were developed for 22 minutes in a solvent tank containing
hexane/diethyl ether/acetic acid (60:17:0.2, vol/vol/vol). TLC standards purchased from Nu-
Chek Prep were used to identify each lipid class [8].

Methylation and GC analysis. 5 pL (both free fatty acid and glyceride) sample was meth-
ylated by using acetyl chloride in methanol as described by Christie et al [27] with minor modi-
fications. 1 ml toluene was added to the methylation tubes followed by the addition of 200 pl
(5mM)of internal standard, methyl nonadecanoate (C19:0) and 200 ul (1mM) of butylatedhy-
droxytoluene (BHT). 2ml of acidic methanol (prepared by adding 10% acetyl chloride in meth-
anol drop wise on ice bath) was added to the tube and kept for overnight incubation at 50°C.
Fatty acid methyl esters (FAMEs) were extracted into hexane. The hexane layer was removed
and dried over anhydrous sodium sulphate. FAMEs were concentrated by drying using nitro-
gen gas and analysed by gas chromatography. Hydrolysed and unhydrolysed fish oil was ana-
lysed using gas chromatography (Agilent 6890) with flame ionisation detector (FID), equipped
with a Supelcowax 10 capillary column (30 m, 0.25 mm i.d., 0.25 pm film thickness; Supelco).
Helium was used as the carrier gas at a flow rate of 1.5 ml min™". The injector was maintained
at 250°C and a sample volume of 1 ul was injected. Fatty acid peaks were identified by compar-
ing with data on retention times of external standards (Sigma-Aldrich, St. Louis, MO, USA)
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and corrected using theoretical FID response factors [28]. Peaks were quantified with Chemsta-
tion chromatography software (Agilent Technologies, Santa Clara, CA, USA).

Analysis of positional distribution of fatty acid by NMR. 300 pl of fish oil was dissolved
in 1 ml of CDCl; (99.8% pure). NMR spectra were collected by using Bruker 600MHz NMR
machine. Peak corresponding to different fatty acids at different positions were assigned as
described earlier [29]. Relative quantification was done by comparing the area under each
peak. Quantitative '>C NMR spectra of the unhydrolysed oils were recorded under continuous
"H decoupling at 24°C.In order to quantify the residue of each fatty acid at different positions,
peak area ratios were analysed by integration and presented in percentages [8].

Results
Esterase activity of Phospholipase A1

PLAL1 used in this study was isolated from Thermomyces lanuginosus(Lecitase'™) and is a recom-
binant enzyme preparation. This enzyme has been explored primarily for the degumming of veg-
etable oils [23,30]. However, its ability to hydrolyse triglycerides is only marginal in the vegetable
oil degumming processes. Initially we have studied the esterase activity of PLA1 with p-nitrophe-
nyl esters of fatty acids of various chain lengths. Some of the pNP esters were synthesised based
on published methods [31,32]. Fig 1 shows that PLA1 was able to hydrolyse esters of chain length
from C4-C20 with comparable efficiency. The activity was highest for C10 and lowest with C4
ester (40% of C10). The presence of unsaturation, single or multiple double bonds, did not signif-
icantly impact the esterase activity appreciably. However, esters of DHA were not efficiently
hydrolysed. A similar chain length study was performed with lipase from Bacillus subtilis (BSL)
and it was found that C8 chains were most efficiently hydrolysed [33]

Hydrolysis of Anchovy oil by PLA1

Initially hydrolysis of anchovy oil was tested in an oil-in-water emulsion and the extent of
hydrolysis was monitored by Iatroscan. Fig 2A shows the scan before and after hydrolysis of
the oil by PLA1. To obtain more quantitative kinetics of the hydrolysis, anchovy oil hydrolysis
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Fig 1. Phospholipase A1 activity towards pNP esters with different acyl chains. Activity of PLA1 on
pNP-decanoate was taken as 100%.

doi:10.1371/journal.pone.0151370.g001
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Fig 2. Time course of hydrolysis of anchovy fish oil by PLA1 and BSL. A, latroscan of unhydrolysed
(light trace) and hydrolysed (darker trace) fraction of anchovy oil by PLA1. Start and the end of the scan are
identified. B, pH stat based determination of rate of hydrolysis of anchovy oil in the presence of PLA1 (closed
circle) and BSL (open circle).

doi:10.1371/journal.pone.0151370.g002

was monitored by a pH Stat, while maintaining a constant pH and with gum arabic (5%) as
emulsifier. Initially we measured the rate of hydrolysis of anchovy oil by PLA1 and BSL (Fig
2B). Both enzymes were able to hydrolyse the oil at a comparable rate. At 37°C the extent of
hydrolysis reached 45% by 2 h and then plateaued. The fatty acid fraction was separated from
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Fig 3. Time course of hydrolysis of anchovy oil and fatty acid distribution in the hydrolysate. Anchovy
oil was subjected to hydrolysis by PLA1 (A) and BSL (B). The reaction product at various times was subjected
to methylation and GC analysis. Percent hydrolysis of each fatty acid was calculated based on its hydrolysis
att, as a fraction of t,. Saturated (o), Monounsaturated (®), EPA (o), DHA (4), Total hydrolysis (m).

doi:10.1371/journal.pone.0151370.g003

the glyceride fraction, methylated and analysed by GC. Fig 3A shows the time course of release
of various fatty acids from anchovy oil by PLA1. Both saturated and monounsaturated fatty
acids were extensively hydrolysed (approximately 40%of the total), while the percent hydrolysis
of both the w-3 fatty acids EPA and DHA was relatively poor 15% and 4%, respectively. Identi-
cal experiments were also performed with BSL (Fig 3B). BSL also hydrolysed oils with similar
efficiency. However, the extent of hydrolysis of various fatty acids BSL was equal. While the
extent of hydrolysis of saturated, monounsaturated and EPA were equal (50%), only 30%
hydrolysis of DHA was observed. The fatty acid products obtained after 3h hydrolysis are
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Fig 4. Percent hydrolysis of various fatty acids (from Fig 3) at 32% hydrolysis of anchovy oil by PLA1
(light) and BSL (dark). The relative proportions of fatty acids at other time points were also similar.

doi:10.1371/journal.pone.0151370.g004

shown in Fig 4. The data suggests that PLA1 discriminates against EPA and DHA, while BSL
shows marginal discrimination against DHA. A significant five-fold higher discrimination of
DHA by PLA1 compared to BSL was observed.

3C NMR studies of the anchovy oil hydrolysis by PLA1 and BSL

>CNMR spectra of complex triglycerides, such as fish oils, can provide positional information
on the various fatty acids in the oil. This information enables a study of the positional specific-
ity of fatty acid hydrolysis by PLA1 and BSL and also to obtain quantitative information on the
extent of hydrolysis of fatty acids at each position. Initially we acquired the positional informa-
tion of various fatty acids in anchovy oil. Table 1 provides the details of positional distribution
of fatty acids in anchovy oil. The ratio of abundance of various fatty acids at sn-1,3 and sn-2
positions was observed to be 1.64 for saturated, 3.06 for monounsaturated, 4.2 for EPA and 0.6
for DHA. A ratio of 2 suggests the fatty acids are equally distributed. A ratio of 0.6 for DHA
indicates it is predominantly present at the sn-2 position. The ratio is high (4.2) for EPA indi-
cating its preferential distribution at sn-1,3 position, compared with the distribution of DHA.
Anchovy oil hydrolysis by PLA1 and BSL was allowed to proceed until 30% of the oil was
hydrolysed and then the unhydrolysed portion of the oil was extracted and >C NMR spectra
were obtained. This process was repeated with unhydrolysed anchovy oil. Fig 5 shows the *C
NMR spectra of hydrolysed and unhydrolysed anchovy oil subjected to PLA1 (Fig 5A) and
BSL (Fig 5B) treatment. The overlay of hydrolysed and unhydrolysed spectra for both PLA1

Table 1. Positional distribution of various fatty acids in anchovy oil.

Fatty acid Distribution (%)

Sn-1,3 Sn-2
Saturated 22.9 14.0
Mono unsaturated 18.7 6.1
Stearidonic acid (STA) 6.2 2.7
EPA 14.9 3.5
DHA 3.9 6.8

doi:10.1371/journal.pone.0151370.t001
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Fig 5. '3C NMR spectra of oils: Spectra of the unhydrolysed oil fraction before (blue) and after (red) 30%
hydrolysis of anchovy oil by PLA1 (A) and BSL (B). Fatty acids and their positions were marked. Sat
(saturated), mono (monounsaturated), STA (stearidonic acid), EPA (eicosapentaenoic acid) and DHA
(docosahexaenoic acid).

doi:10.1371/journal.pone.0151370.g005

and BSL clearly demonstrates that PLA1 preferentially retains EPA and DHA more than BSL.
Fatty acids remaining in the unhydrolysed portion of the oils, indicated as percent accumula-
tion with PLA1 and BSL are shown in Fig 6. Saturated and monounsaturated fatty acids were
preferentially hydrolysed by both the enzymes while w-3 fatty acids were discriminated against.
BSL also preferentially hydrolysed EPA over DHA. The percent accumulation data shown in
Fig 6A indicates that EPA at sn-1 was more efficiently hydrolysed by BSL than by PLA1. BSL
hydrolysed EPA at sn-1 but not DHA at sn-1or at sn-2, while PLA1 had no preference for EPA
over DHA. These results indicate that the discrimination against w-3 fatty acids by PLAl is a
result of the chemical nature of the fatty acid and not its position on the triglyceride. To verify
this observation, we have performed hydrolysis of a structured triglyceride, 1,3-dioleoyl-2-hex-
adecanoic glycerol, using PLA1 and BSL and estimated the fatty acid products by GC (Fig 7). If
PLA1 shows absolute preference for fatty acids at the sn-1,3 position, the hydrolysis of hexade-
canoic acid at sn-2 should be much lower than that of oleic acid. PLA1 and BSL have hydro-
lysed each of the fatty acids almost equally, indicating that PLA1 did not show any specificity

PLOS ONE | DOI:10.1371/journal.pone.0151370 March 15,2016
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Fig 6. Percent accumulation of different fatty acid classes in triglyceride fraction after 30% hydrolysis
of anchovy oil by PLA1 (dark) and BSL (light). A, Percent accumulation of each fatty acid is calculated as
(UHFA-TORIFA)/TPRIFAL) X 100). Each of the fatty acid fractions were calculated based on peak area in the

NMR spectra. B, Percent accumulation data plotted with positional information.

doi:10.1371/journal.pone.0151370.g006

towards the sn-1,3 positions. However, there is a distinct preference against DHA in anchovy
oil, indicating the fatty acid specificity of PLAI.

Discussion

Enrichment of natural fish oils with w-3 fatty acids is important for producing w-3 concen-
trates with assured health benefits. Improving w-3 fatty acid content in fish oils is challenging
since the w-3 fatty acids are asymmetrically distributed on two positions of glycerides (sn-1
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@’PLOS ‘ ONE

Enzymatic Enrichment of Omega-3 Fatty Acids

204

101

Fatty acid released (umoles)

Hexadecanoic acid 9-Octadecenoic acid

Fig 7. Lipase hydrolysis of structured triglyceride: 1,3-dioeoyl-2-myristic triglyceride was subjected
to hydrolysis by PLA1 (Light) and BSL (Dark) and the released fatty acids were quantified by GC
analysis.

doi:10.1371/journal.pone.0151370.g007

and sn-3 are considered equal). Many lipases tested for improving w-3 fatty acid content in
glycerides were only partially successful since lipases during hydrolysis do not show strong
specificity towards either the chemical nature of the fatty acids or to their positions on glycer-
ides. We explored the utility of PLA1, a phospholipase with lipase activity, in enriching w-3
fatty acids. Our study shows, based on '*C NMR position analysis, that PLA1 discriminates w-
3 fatty acids compared to the other fatty acids during hydrolysis.

Phospholipases as TG hydrolases

PLA1 specifically hydrolyses sn-1 acyl esters from phospholipids and releases free fatty acids
and lysophospholipids. PLA1 enzymes normally exhibit very little lysophospholipase and some
lipase activity. PLA1 enzymes are descendants of neutral lipases, and several PLA1 sequences
show substantial sequence similarity to the well characterized pancreatic, hepatic and endothe-
lial lipases [18,34]. Although PLA1 enzymes are found in a wide variety of cells and tissues,
only a small number of PLAI enzymes were cloned and their substrate preferences are not well
documented [18].

Lipase activity of phospholipases and vice versa was studied in few cases. The ratio of lipase
to phospholipase activity of lipases or phospholipases varies widely and the ratio is not only
related to the structure of the lipase/phospholipase but also depends on the reaction system
[23].For example, PLA1 from Thermomyces lanuginosus used in this study shows hydrolytic
activity against both triacylglcyerides and phospholipids and is used to degum oils [22,23].
PLA1, though has lipase activity, shows predominantly phospholipase activity at reaction tem-
peratures above 40°C [23]. Pancreatic phospholipases hydrolyse phospholipids in the aqueous
phase, while lipase from Fusarium oxysporum hydrolyses phospholipids in the oil phase [23].
Comparatively more structural studies were performed on lipases that also show phospholipase
activity. Structural efforts were focused on the architecture of the active site and substrate pref-
erences in lipases. The hydrophobicity and hydrophilicity balance of the 85, B9 loop and the lid
domain of lipases play a selective role in preferring a triglyceride or a phospholipid [20,34,35].

PLOS ONE | DOI:10.1371/journal.pone.0151370 March 15,2016 10/14
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The lid domain of guineapig pancreatic lipase related protein 2(GPLRP2) is reduced in size
and consequent exposure of hydrophilic residues enables the active site to accept phospholipids
and larger galactolipids [20]. Human pancreatic lipase that does not show phospholipase activ-
ity was not able to accommodate the phospholipid molecule. Sequence alignment of porcine
pancreatic lipases indicates that Val260 is critical for interaction with lipids [36]. These studies
suggest that volumes of the active sites in these enzymes play a critical role in substrate, i.e.,
glyceride or phospholipid, selection.

PLA1 from Thermomyces lanuginosus, used in this study, discriminated against DHA and
partly against EPA when hydrolysing anchovy oil. In similar experiments using a lipase from
Bacillus subtilis similar selectivity against EPA and DHA was not observed. Anchovy oil has
DHA preferentially located at the sn-2 position (60%), compared to the sn-1,3 positions (40%).
If PLA1 preferentially hydrolysed at the sn-1,3 position in oils then more DHA than EPA
should be present in the unhydrolysed fraction. This was observed in our experiments (Fig 4).
From analysis of fatty acid preference during hydrolysis by PLA1 it is apparent that PLA1
poorly hydrolysed DHA. However, we did not observe such positional or chemical specificity
in BSL mediated hydrolysis. Conformationally w-3 fatty acids show limited states due to the
presence of multiple double bonds compared to saturated or monounsaturated fatty acids. This
aspect may strongly influence their binding to the active sites of enzymes.

The position specific hydrolysis of anchovy oil by PLA1 and BSL (Fig 6B) suggests that w -3
fatty acids were discriminated against and saturated and monounsaturated fatty acids were
preferentially hydrolysed. The position at which these fatty acids were present did not influence
their hydrolysis. To confirm the positional specificity of these hydrolases we have employed a
structured glyceride with fixed positional distribution of fatty acids. Using1,3-dioleoyl-2-hexa-
decanoic glycerol, a structured TG, neither PLA1 nor BSL exhibited any position specific
hydrolysis under our reaction conditions, with both fatty acids being equally hydrolysed. In a
previous study, five lipases were tested for their specificity by using fish oil and methyl esters of
EPA, DHA and palmitic acid. All lipases discriminated against EPA and DHA when presented
as methyl esters. However, lipase from Thermomyces sp. has shown discrimination against
DHA, particularly in the early stage of the hydrolysis reaction, while lipase from Candida
rugosa was most efficient in the enrichment of DHA in the glyceride fraction [6]. In another
study lipase from Candida rugosa discriminated w-3 fatty acids from other fatty acids during
hydrolysis of sardine oil [37]. These studies also suggest the specificity in hydrolysis of natural
oils by lipases or phospholipases is dependent on the temperature and duration of reaction.
Absence of positional information on fatty acids can confound interpretations on selectivity by
these enzymes.

Our study and similar studies with lipase from Thermomyces lanuginosus suggests that
hydrolysis is due to fatty acid selectivity more than regioselectivity [8]. Several reports on fatty
acid specificity of lipases and phospholipases, listed above and including our study, and also
structural information on these enzymes suggests that the active site requirements of SFA/
MUFA vs. polyunsaturated fatty acids are significantly different. Observed linear channels near
the active sites of lipases for binding of fatty acids are probably less suited to bind polyunsatu-
rated fatty acids, such as w-3 fatty acids. A related previous study showed that substrate binding
was dependent on the relative volume of the substrate to the volume of the active site [38].
Thirty eight lipases were investigated in silico, for their affinity to structured TGs with different
chemical and positional compositions. This study indicated that binding affinity differences
between various substrates with lipases is complex, but helped to identify active site positions
that are critical to binding. This information could be useful for designing site saturated muta-
genesis to identify amino acid substitutions that would enhance hydrolysis of specific fatty
acids. Few studies have successfully identified amino acid positions that are important in
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binding triglycerides and phospholipids [20]. Further studies are required to enable the design
of enzymes that can enrich w-3 fatty acids.

Conclusion

The fatty acid position selective hydrolysis of PLA1 was tested for the hydrolysis of anchovy
oil. Fatty acid chain length selectivity of PLA1 was investigated using pNP esters of chain length
C2 to C22, including the long chain PUFAs, EPA and DHA. For anchovy oil hydrolysis SFAs
and MUFAs were preferentially hydrolysed by PLA1 and w-3 fatty acids were discriminated
against. Of the w-3 fatty acids, EPA was more preferentially hydrolysed than was DHA. Lipase
from Bacillus subtilis did not show discrimination of fatty acids to the same extent as PLA1.
Hydrolysis of the structured triglyceride, 1,3-dioleoyl-2-hexadecanoic glycerol, supported that
the discrimination property of PLA1 was primarily due to the chemical nature of the fatty
acids rather than its position in the triglyceride. Our study suggests that PLA1 is a potential cat-
alyst for selective enrichment of w-3 fatty acids in triacylglycerides.
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