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Abstract
In arid regions, water resources are a key forcing factor in ecosystem circulation, and soil

moisture is the critical link that constrains plant and animal life on the soil surface and under-

ground. Simulation of soil moisture in arid ecosystems is inherently difficult due to high vari-

ability. We assessed the applicability of the process-oriented CoupModel for forecasting of

soil water relations in arid regions. We used vertical soil moisture profiling for model calibra-

tion. We determined that model-structural uncertainty constituted the largest error; the

model did not capture the extremes of low soil moisture in the desert-oasis ecotone (DOE),

particularly below 40 cm soil depth. Our results showed that total uncertainty in soil moisture

prediction was improved when input and output data, parameter value array, and structure

errors were characterized explicitly. Bayesian analysis was applied with prior information to

reduce uncertainty. The need to provide independent descriptions of uncertainty analysis

(UA) in the input and output data was demonstrated. Application of soil moisture simulation

in arid regions will be useful for dune-stabilization and revegetation efforts in the DOE.

Introduction
Soil moisture is the single most important variable in studies of hydrology, ecology, and climate
change [1] because it forms intermediate links between runoff and groundwater, and the atmo-
sphere and groundwater. It is critical for the survival of the vegetation, and it controls the dis-
tribution of soil heat fluxes [2]. Soil moisture is a function of precipitation, interception,
evapotranspiration, and runoff [3, 4], and has been a subject of extensive studies in mesic
environments.

Especially at the desert-oasis ecotone (DOE), soil water provides plants with available,
transpirable pool of water critical for the survival of the vegetation. Soil moisture is highly
variable in semiarid and arid regions. Its estimation is imperative for hydrometeorological
studies and water resources management [5, 6]. Soil moisture in these systems is determined
by the interplay of surface and near-surface processes that are dependent on abiotic and biotic
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characteristics of the ecosystem. Therefore, a greater understanding of soil moisture can help
improve the management of scarce water resources in arid systems, and the modeling of the
hydrologic cycle, extreme precipitation events, and vegetation growth. However, simulation
and prediction of soil moisture in arid and semiarid regions has received far less attention
than that in mesic systems.

The advantage of modeling soil moisture is an improved ability to quantify and optimize
this resource in semiarid and arid regions where it is vastly limiting. In addition, accurate
modeling of temporal and spatial variation in soil moisture may be useful in improving the pre-
diction capability of runoff models, and by-passing the need to conduct time-consuming mea-
surements of soil moisture time series [7]. Lastly, it can offer insights into watershed function,
and project future watershed response to management, changing climatic conditions and land
use.

In modeling, uncertainty is an inherent component of the model, and uncertainty analysis
(UA) is a necessary step in model application [8]. Uncertainty and global sensitivity analysis
(GSA) are tools that can be used to evaluate model fitness and quantify uncertainties of input
and output data, and parameter and model structure [9].

Excluding conventional uncertainties, several recent studies explored novel sources and
aspects of uncertainties, such as those related to the various climate scenarios [10], calibration
periods [11], model components containing general circulation models, model structures,
downscaling techniques, and model parameters of climate change [12]. The treatment of
uncertainty in hydrology has also progressed in the last few decades, especially around the
parameter uncertainty [13]. Failure to understand and account for these uncertainties in
hydrological modeling can have serious implications for water resources management perfor-
mance [14, 15].

Aimed at addressing such uncertainties, there has been a growing interest in the develop-
ment of methods for stochastic decision processes that explicitly confirm the uncertainty in a
response of ecosystems [16]. The potential applicability of Bayesian methods in complex
model optimization had been advanced by coupling with the new statistical theory (such as the
Markov chain Monte Carlo algorithms) only a decade ago [17, 18]. In that, particular attention
has been placed on the implementation of Bayesian methods that enable the consideration of
model uncertainty, and the ability to improve or update model predictions [19]. For example,
characterization of uncertainty in the distribution of parameters was based historically on liter-
ature, field observation, and expert judgment [20]. Advancement of Bayesian methods allows
new insights into the covariance structure among parameters, and credible intervals for model
outputs.

The issues of uncertainties in modeling are compounded by high spatial and temporal vari-
ability of soil moisture in arid and semiarid regions. Thus, several challenges are specific to
efforts at simulating ecohydrological processes in these systems. First, ephemeral vegetation
redistributes the water balance after extreme rainfall events. Second, drifting sand can easily
change the texture of the surface sand. In addition, fast changes of soil moisture at the surface
(0–10 cm soil depth), and minimal (about 2–3% cm3cm-3) soil moisture contents in deeper soil
layers defy most of the hydrological process models. In short, in arid and semi-arid systems,
characteristics of the environment itself constitute new sources of uncertainties in the modeling
of soil water.

The objectives of this study were to investigate sources of uncertainty, and to assess feasibil-
ity of model calibration for an arid region. Specifically, (1) we asked if the current model can
simulate extremely low soil moistures (2–3% cm3cm-3), (2) we analyzed which portion of
uncertainty (input data, output data, parameter, or model structure) were the main factors in
the soil moisture simulation for arid regions.

Uncertainty in Ecohydrological Modeling
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Materials and Methods

Study site
The study area is a DOE in the middle of the Heihe River basin, which is located in the north-
western part of China. The area is adjacent to residual dunes as well as the Gobi Desert [21],
and constitutes a physical transition zone between irrigated farmland and the natural desert
ecosystem, adding to its ecological fragility and climatic sensitivity [22]. According to climatic
statistics from the Linze In-land River integrated station (39°210N, 100°070E), climate in the
region is temperate arid with cold and dry winters and warm summers. The altitude is about
1367 m above sea level, and the mean annual precipitation is 117 mm, with a mean potential
evaporation rate at about 20 times more than the annual precipitation. The mean annual air
temperature is about 7.6°C with a recorded maximum of 39.1°C and a minimum of -27°C. The
frost-free season lasts on average 105 days. The mean annual wind velocity is 3.2 m�s-1 [21].
The study area and the weather station are 2.85 km apart and there is no difference in elevation
(Fig 1).

Field measurements and data preprocessing
Meteorological data. Meteorological measurements were obtained from the Linze station

and included precipitation (mm/day), air temperature (°C), vapor pressure (Pa), global radia-
tion (J/m2�day), surface temperature (°C), and wind speed (m/s); all data used in this study
were converted to daily values. In order to ensure the continuity of data used in the model cali-
bration and validation, two years of observation data were chosen for this study. Thus, we had
397 days in total; the records were fromMay 17 to October 15, 2009, and from February 1 to
September 30, 2013.

Soil moisture and temperature data. Verification data for the model contained soil mois-
ture and soil temperature. First, the soil profile was measured in 8 layers within 100 cm depth,
with a thickness of 10 cm for the first six, and 20 cm of the other two layers. Soil moisture
probes were inserted at: 10, 20, 30, 40, 50, 60, 80 and 100 cm. Probes were inserted in a straight
line vertically to try to imitate the transfer route of soil moisture. Soil temperature probes were
located 5 cm away from the moisture probes at the same soil depths. Soil moisture probes used
Time-Domain Reflectometer (Abbr.: TDR, CS645, manufactured by Campbell Scientific, rod
length of 75 mm). Soil temperature data were acquired with a 109ss temperature sensor probe

Fig 1. Locations of the dune study site, Heihe River, and the Linze National Station.

doi:10.1371/journal.pone.0151283.g001
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which was an ancillary equipment of the meteorological station, operating at half-hour fre-
quencies. This probe had higher precision than capacitance sensors [23], and that was more
suitable for our low soil moisture environment. Data were preprocessed to daily values (mean
of the daily records) to match the meteorological data.

Forest inventory data. Natural vegetation at the site was composed ofHaloxylon ammo-
dendron, growing on top of the dunes, and Nitraria sphaerocarpa, found in the inter-dune low-
land. The integrated meteorological station and TDR were located between the dunes.
Therefore, in this study, we focused on Nitraria sphaerocarpa. The mean age of Nitraria
sphaerocarpa was about 8 years, plant height 0.34 m, and the average root depth 2 times that of
height. The growing season length averaged about 200 days, the distribution was very sparse
random, and the mean cover was about 37% (Table 1).

Soil texture and groundwater. The size (diameter) of soil particles was determined with
Laser Particle Size Analyzer (LDSA) Mastersizer 2000 at the Institute of Soil and Water Con-
servation, CAS &MWR. Particles with a diameter above 2 mm were negligible and therefore
ignored in the study. Sand occupied 85% of the soil components within the 100 cm depth, and
somewhat less in the surface layer alone (about 83.8%); soil texture was disadvantageous to
water storage (Table 2).

Depth of groundwater was derived from a groundwater observation well, which is 2 km
away from the study site at a location with the same landscape pattern. The mean annual depth
of groundwater from 2004 to 2010 was 2.87±0.15 m.

Preprocessing of soil moisture data
The observation period in this study spanned the vegetation growing season from the begin-
ning of April to the end of October. Due to equipment malfunction in 2013, soil moisture data
were not collected for 5 days, and soil temperature at 40 cm depth at all. Missing data were

Table 1. Characteristics of Nitraria sphaerocarpa investigated between 2006 and 2010.

Variable Value Variable Value Variable Value

Age 8±4 Depth of groundwater (m) 3.0±0.5 Start day 100±7

Height (m) 0.34±0.15 Mean annual increment (cm) 5.0±2.3 Optimum day 269±4

Depth of root (m) 0.82±0.21 Mean cover (%) 37.0±12 End day 304±9

Values given are: mean ± std. deviation. ‘Start day’ is the day plant growth initiated since start of year; ‘Optimum day’ is the day of plant optimum growth

and ‘End day’ is the day of plant growth cessation.

doi:10.1371/journal.pone.0151283.t001

Table 2. Particle-size distribution of soil layers, Classification standard from the U. K.–ADAS, and ‘-’
means no record.

Layer (cm) Clay (%) Silt (%) Sand (%) Organic (%)

0–10 0.73±0.05 15.48±1.90 83.79±1.95 0.90±0.04

10–20 0.68±0.00 12.74±0.48 86.57±0.48 0.89±0.13

20–30 0.73±0.06 16.73±0.23 82.54±0.29 -

30–40 0.88±0.01 12.18±0.37 86.95±0.36 -

40–50 0.69±0.03 12.18±1.12 87.13±1.16 -

50–60 0.72±0.03 14.65±1.11 84.63±1.08 -

60–80 0.73±0.03 12.20±1.50 87.07±1.47 -

80–100 0.78±0.06 14.93±1.10 84.29±1.10 -

doi:10.1371/journal.pone.0151283.t002
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interpolated using the Cubic spline function in Matlab; thus, missing soil moisture was simu-
lated from records obtained few days before and after, and soil temperature at 40 cm was simu-
lated from the sequence at 30 and 50 cm depth records (Fig 2).

Parameters, which simulated the real situation in the calibration period, were used in the
validation period. Our thought was that similar climate under the same parameters will gener-
ate better results. Second, a long calibration period is deemed the most robust approach for
model calibration. For our data, we set 2013 as the calibration year, and 2009 as the validation
year for the model.

The CoupModel
We used the CoupModel which describes hydrological processes in the boreal region during
the course of a year [8]. The model is strongly rooted in soil physics, and represents a coupling
between the Richards Eq (1) for water flow and the Fourier Eq (2) for heat flow with an explicit
numerical method in a one-dimensional domain.

Water flow in soil was assumed to be laminar and obey Darcy’s Law as generalised for
unsaturated flow by Richards [24]:

qw ¼ �kw
@c
@z

� 1

� �
� Dv

@cv
@z

þ qbp ð1Þ

Where qw is the total water flow, kw is unsaturated hydraulic conductivity, Dv is the diffusion
coefficient in soil, qbp is bypass flow in the macro-pores, Ψ is water tension, z is depth of soil,
and cv is the concentration of vapor in soil air.

Heat flow in the soil was represented using:

qh ¼ �kh
@T
@z

þ CwTqw þ Lvqv ð2Þ

Fig 2. Soil water content dynamics and the corresponding precipitation processes between 2009 and 2013.Details and data used are described in
the S1 File.

doi:10.1371/journal.pone.0151283.g002
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Where h, v, w are heat, vapor and liquid water, respectively; q is flux, k is conductivity, T is soil
temperature, C is heat capacity, L is latent heat, and z is soil depth.

The empirical thermal conductivity function for non-frozen mineral soil was adapted from
Kersten [25]:

k ¼ 0:143 a1log
y
rS

� �
þ a2

� �
10a3rs ð3Þ

Where a1, a2, a3 are parameters and ρs is dry bulk soil density, and θ / ρs is equivalent to soil
moisture by weight.

Vegetation was described in three ways. First, vegetation was regarded as an explicit big-leaf
model, in which transpiration and soil evaporation were treated as common flow (soil evapora-
tion is not calculated). Second, vegetation was one large leaf, and transpiration and soil evapo-
ration were treated as separate flows; here, potential transpiration and transpiration were
calculated with the Penman-Monteith Eq (4). Third, vegetation was represented as an array of
plants, multiple canopies, and root systems. This was different from the explicit big-leaf model
in that the presence of multiple plants made it possible to incorporate different stand character-
istics in an area.

ET ¼
DðRn � GÞ þ racp

es�ea
ra

Dþ g 1þ rs
ra

� � ð4Þ

Where Rn is net radiation, G is the soil heat flux, ρa is mean air density at constant pressure, cp
is the specific heat of air, es−ea represents vapour pressure deficit of air, Δ represents the slope
of the saturation vapour pressure temperature relationship, γ is the psychrometric constant,
and ra, rs are the aerodynamic resistances and surface.

Soil water balance model for water fluxes
The water balance in the model was expressed by Eq (5).

Std ¼ Ia þ P þ Pad � Eag � Ta � Eai � Ras � Da ð5Þ

The values for irrigation (Ia), deep percolation (Pad), surface runoff (Ras), drainage (Da),
ground evaporation (Eag), transpiration (Ta), and interception evaporation (Eai), all accumu-
lated over the study period, were set to 0, as appropriate for arid regions, and the equation was
simplified to:

Std ¼ P � Est � Eai ð6Þ

Where: Std was total difference storage, P precipitation, and Est soil evapotranspiration.

Bayesian likelihood function and uncertainty estimation
The Bayesian likelihood function is based on a more robust function than the traditional
Gaussian [8], and it is one of the routine calibration methods in the CoupModel. Instead of
finding the best parameter values by comparing the output to observation data, the Bayesian
method determines a probability distribution in the form of a mean vector and a variance
matrix for parameters. The parameter ranges will be adjusted repeatedly until the distributions
for all parameters are approximately normal (Fig 3).

Uncertainty in Ecohydrological Modeling
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Model experimental design
Parametrization and model structural uncertainty stemming from parameter and measure-
ment uncertainty are significant challenges for the application of a physical-process-oriented
model [8]. Therefore, we calibrated the model before we simulated a forecast. We used a Bayes-
ian algorithm to determine the ability of model parameters to contain prior information in the
calibration processes [26]. The prior probability distribution of the parameters was based on
our observations and literature (details can be found in S2 File).

Eight layers of soil moisture and temperature observations, and 101 parameters were
selected for model calibration (details in S2 File). In theory, processes and modules in the
model are linked to each other and all parameters should be calibrated together [8]; however,
to be more efficient, we pre-classified the parameters into two categories before model calibra-
tion: global parameters (parameter value that affects all the soil profiles), and layered parame-
ters (parameter value that only affects the specific soil profile). In the calibration, global
parameters were calibrated before the layered ones. Number of global parameter and layered
parameters were 11 and 64 for the soil moisture and 10 and 16 for the soil temperature. Com-
monly in model construction, the relationship between climate factors and soil temperature is
much simpler than that of soil water content. Consequently, soil temperature was calibrated
before soil moisture calibration.

Model evaluation
Objective functions of model evaluation can take any shape [27], and in this study, we calcu-
lated the 95% prediction uncertainty (95PPU) of Bayesian calibration distribution. Calibration
and validation of the model were analyzed with the Pearson’s correlation coefficient (R)
between simulated values and the observed data, and statistics were analyzed with SPSS (Ver-
sion 19.0 for windows, SPSS Inc., USA). R is a robust indicator of the correlation between

Fig 3. Flow chart of the evolving array of the parameters in Bayesian uncertainty estimation.

doi:10.1371/journal.pone.0151283.g003
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predicted and observed values, and it is insensitive to deviation. Because we were concerned
only with the change between the pre-uncertainty and post-uncertainty analysis, we viewed R
as an appropriate indicator.

Results

Initial model performance
The four upper soil layers exhibited satisfactory performance in the calibration of soil moisture,
while the lower soil layers did not (Table 3). Soil temperature exhibited coefficients bigger than
0.75, representing a strong correlation between the simulation and observation.

Pearson correlation coefficients of validation were approximately 0.0 for soil depths 0.5 to
0.8 m, indicating that observation and simulated data had no similarity in the trend of time
series. A strong relationship was exhibited for the calibration of other soil layers, and for valida-
tion of soil temperature for all the layers.

Consequently, the model represented the upper soil layers less ideally than we had expected.
The sources of uncertainty are explicitly analyzed in the following section.

Uncertainties of input and output data
Input data evaluation. Uncertainties in input variables may be due to errors of sampling,

measurement, or artificial in-filling of missing values. These errors can be evaluated prior to
the calibration by analyzing acquisition instruments and procedures. Precipitation is the essen-
tial forcing input in the model set up; in our study, precipitation errors are represented using
precipitation multipliers sampled from an uncorrelated lognormal distribution Renard,
Kavetski [28] and standard deviation of each measurement is set to be 30% of the mean value
treating errors in an additive manner [29].

The error model used by Huard et al. [30] portrayed hourly rainfall errors with a normal
distribution σ2δr.

sdr ¼ 0:15r þ 0:2 ð7Þ

Where r denotes precipitation (mm), the fixed component is confirmed by the resolution of rain

Table 3. Statistical results of soil moisture and temperature simulated for different soil layers (before uncertainty analysis).

Layer 2013 2009

Water Content Soil Temperature Water Content Soil Temperature

Pearson Coef. Sig. (2-tailed) Pearson Coef. Sig. (2-tailed) Pearson Coef. Sig. (2-tailed) Pearson Coef. Sig. (2-tailed)

Layer_10 0.585** 0.000 0.961** 0.000 0.648** 0.000 0.818** 0.000

Layer_20 0.837** 0.000 0.981** 0.000 0.863** 0.000 0.920** 0.000

Layer_30 0.974** 0.000 0.986** 0.000 0.873** 0.000 0.910** 0.000

Layer_40 0.924** 0.000 N 0.000 0.659** 0.000 0.913** 0.000

Layer_50 0.664** 0.000 0.986** 0.000 -0.043 0.597 0.916** 0.000

Layer_60 0.307** 0.000 0.986** 0.000 -0.085 0.300 0.890** 0.000

Layer_80 -0.191* 0.012 0.987** 0.000 0.056 0.499 0.914** 0.000

Layer_100 -0.221** 0.003 0.986** 0.000 0.625** 0.000 0.912** 0.000

**: Correlation is significant at the 0.01 level (2-tailed).

*: Correlation is significant at the 0.05 level (2-tailed).

N: missing temperature data at 40 cm depth. Sig.: significant for two-tailed. Details and data used are described in the S3 File.

doi:10.1371/journal.pone.0151283.t003
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gauges; 0.254 mm was used in our experiment after Habib et al. [31] and Huard et al. [30]. The

standard variation of the daily default volume bucket gauges is estimated by
ffiffiffiffiffi
24

p � 0:254 � 1:2

mm; the proportional component (15%) denotes commensurability and measurements errors
such as wind-induced, and rainfall and evaporation losses. Once aggregated to daily values, the
proportional component is about 3% [30]. Normal distribution assigned non-zero probability
value to negative rainfall, hence, we used a truncated normal distribution N:

Pð~rjrÞ ¼ Nð~r j0:97 � r; 0:03 � r þ 1:2mm; 0;1Þ ð8Þ

Where Pð~r jrÞ is a statistical distribution that is the probability of measuring an input series ~r
(input error model: Pin) knowing the true input series r. N is the probability density function
which can be described by:

N ¼ ðxjm; s; a; bÞ ¼ φ x�m
s

� �
F b�m

s

� �� F a�m
s

� � ð9Þ

Where x is a normal distribution bounded by the interval [a, b],F and φ are the cumulative
probability density function and the probability density function of standard normal
distribution.

An abundance of null values prevented us from representing the error probability distribu-
tion, therefore standard deviation was used to show the deviation between the precipitation
records and true values (Fig 4). The maximum standard deviation (sd.) was ± 0.67 mm and the
mean sd. was ± 0.07 mm (details in S4 File).

Fig 4. Corrected results of precipitation data. Blue bars denote inferred true precipitation (mm), and the red error bars indicate standard deviation between
the records and corrected precipitation. Details and data used can be found in S1 File.

doi:10.1371/journal.pone.0151283.g004
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Output data evaluation. The major output variable that we concentrated on was soil
moisture content. According to experiments of Topp et. al. [32], accuracy of TDR probes with
a length of more than 0.1 m falls within sd. of ± 0.02 m3m-3 in the field, and with a length of
0.05 m, within sd. of ± 0.037 m3m-3. Therefore, we assumed that our soil moisture probe was
accurate between ± 0.02 m3m-3 and ± 0.037 m3m-3. Hence, before recalibration, we evaluated
error of the measured records from gravimetric sampling (Fig 5). We calculated the reference
volumetric soil moisture using dry bulk density and in-situ weighted vertical soil water content.
The probe records and reference data showed a high positive linear correlation (R2 = 0.976),
with intercept of -0.039 m3/m3. Measured data and reference data had a good rectifiable
correlation.

Uncertainties of the simulation
In this section, we demonstrate the applicability of the Bayesian approach to the identification
and estimation of model performance and associated uncertainty bounds. Even with a

Fig 5. Correlation between probe and weighted values derived frommeasured probe and in situ weightingmethod.Details and data used are
described in S4 File.

doi:10.1371/journal.pone.0151283.g005
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reasonable model structure and sufficient observation data, we still could not ensure an optimal
simulation. We calculated 95PPU at the 2.5% and 97.5% levels of the cumulative distribution
of the output variable to look for a reasonable range of parameters; we did this through the
Markov-chain Monte Carlo (MCMC) sampling, disallowing for 5% of the poor simulations
(gray areas in Figs 6 and 7).

In this section, all the uncertainty in soil moisture and temperature prediction was attrib-
uted to parameter estimation. As described earlier, 75 parameters were selected for soil mois-
ture and 26 for soil temperature calibration. The distributions were generated using 5,000
samples of 25 Bayesian random seeds; here a sample denotes a one-time random sampling of
the parameter, and a seed means a one-time sampling of all parameters selected (one-seed,
one-dimension). We learned that, first, 95PPU prediction uncertainty bounds for the surface
and sub-surface soil moisture captured most of the observations (56% for soil moisture and
82.86% for soil temperature); this indicated that parameters have been given a sound value of
prior distribution. Second, 95PPU uncertainty bounds for the lower three soil layers barely cap-
tured any observations (9.14%, 1.14%, and 0.00%, respectively). This was an indication of

Fig 6. Soil moisture prediction results for Bayesian and 95% confidence interval (lighter gray) for 2013.OWC = observed soil moisture,
SWC = simulated soil moisture. Details and data used are described in S4 File.

doi:10.1371/journal.pone.0151283.g006
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uncertainty in the structure of the model, in the forcing of data used in the model, or in both
[33].

Uncertainties of parameters
Bayes’ framework offers a straight-forward method for updating of likelihood distribution of
parameters. When the model was calibrated for the first time, we derived the prior probability
distributions of the parameters from the literature or field observation. However, after the cali-
bration, posterior probability distributions of the parameters can be, and were used as the prior
in the next calibration round. The natural Bayesian mechanism provides a sequential “train-
ing” of the model; the order of the data is irrelevant, and the posterior is the same as long as in
the prior round have been processed [29].

We used the posterior probability distribution of the 12 parameters which had an irregular
distribution in the model calibration to identify the uncertainty of parameter values. Sampling
distributions of the parameters were highly concentrated at one point and covered a very small
range of a predefined parameter range (Fig 8); this revealed that the parameter had only a few
degrees of freedom. Air entry pressure at 10 and at 80 cm soil depths, wilting point at 50 cm,

Fig 7. Soil temperature prediction results for Bayesian and 95% confidence interval (lighter gray) for 2013.OST = observed soil temperature,
SST = simulated soil temperature. Details and data used are described in S4 File.

doi:10.1371/journal.pone.0151283.g007
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Fig 8. Frequency posterior probability distributions of partial parameters generated with the Bayesian approach, using 5,000 samples. Note:
Lambda(8)was pore size distribution index at 100 cm soil depth. Air Entry(1) and Air Entry(7)were the air entry pressure at 10 and at 80 cm soil depth,
respectively.MinimumCondValuewas the minimum hydraulic conductivity in the hydraulic conductivity function; Saturation(1) and Saturation(2) denoted
water content at saturation in the 10 and 20 cm soil layer, respectively.Wilting Point(3) andWilting Point(5)meant water content at wilting point in the 30 and
in the 50 cm soil layer, respectively. Total Conductivity(1) and Total Conductivity(2) implied water content at saturation in the 10 and 20 cm soil layers,
respectively. Residual Water(5) and Residual Water(7)were residual soil moisture at 50, and 70 cm soil depth, respectively. Details and data used are
described in S4 File.

doi:10.1371/journal.pone.0151283.g008
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water content at saturation at 10 cm, and residual soil moisture at 70 cm soil depth exhibited a
one-sided posterior distribution; this may indicate either a structural uncertainty of the model,
or other sources of model uncertainty which were not studied here [33]. In addition, the mini-
mum hydraulic conductivity in the hydraulic conductivity function and wilting point at 30 cm
soil depth were close to the upper boundary of the observed/reported of probable parameter
range [28]. Water content at saturation at 10 and 20 cm soil depths, and total conductivity at
20 cm appeared opposite of each other; this revealed that we were able to readjust the range of
these parameters.

Results after considering uncertainty of model calibration
We evaluated model performance to demonstrate uncertainties discussed above after in-filling
of the missing soil temperature records, correcting the original precipitation and soil moisture,
setting the first month of the simulation as the “warm-up” period, and considering parameter-
bound deviation.

As expected, the results of soil moisture content simulation provided better performance
either in calibration year 2013 or validation year 2009, particularly at profile depth of 60 to 100
cm (Table 4). However, validation of soil moisture at the same soil depth did not perform as
well as the conventional criteria for model use had indicated. Assuming that data used in the
model and value ranges of the parameters used were hypothetical, then the sole probability of
uncertainty is the model structure. Soil temperature also exhibited an improvement both in the
calibration and the validation year. The final results can be used in field situations.

Discussion
In this study, we try to investigate the components of uncertainties in ecohydrology modeling
in arid regions. Implications of this finding apply to data quality and modeling as discussed
below.

Sun and wind increase evapotranspiration, therefore soil moisture at 10 cm soil depth in
our study was less than that at deeper layers; it also responded to rainfall fastest. However, soil
water at 20 to 40 cm soil depth is critical to the physiological processes and the survival of the
shallower plants in arid and semiarid areas [34, 35]. Soil moisture between 50 and 100 cm

Table 4. Statistical results of model calibration and validation after uncertainties analyzing.

Layer 2013 2009

Water Content Soil Temperature Water Content Soil Temperature

Pearson Coef. Sig. (2-tailed) Pearson Coef. Sig. (2-tailed) Pearson Coef. Sig. (2-tailed) Pearson Coef. Sig. (2-tailed)

Layer_10 0.660** 0.000 0.961** 0.000 0.650** 0.000 0.853** 0.000

Layer_20 0.837** 0.000 0.987** 0.000 0.897** 0.000 0.943** 0.000

Layer_30 0.963** 0.000 0.987** 0.000 0.976** 0.000 0.950** 0.000

Layer_40 0.907** 0.000 0.988** 0.000 0.792** 0.000 0.941** 0.000

Layer_50 0.669** 0.012 0.988** 0.000 0.098 0.290 0.928** 0.000

Layer_60 0.642** 0.000 0.988** 0.000 0.182* 0.047 0.923** 0.000

Layer_80 0.593** 0.012 0.989** 0.000 0.237** 0.010 0.888** 0.000

Layer_100 0.571** 0.003 0.990** 0.000 0.575** 0.000 0.906** 0.000

**: Correlation is significant at the 0.01 level (2-tailed);

*: Correlation is significant at the 0.05 level (2-tailed); 2013 model calibration day number: 212, 2009 model validation day number: 152

Details and data used are described in S3 File.

doi:10.1371/journal.pone.0151283.t004
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depth remained about constant in the course of the study because it is barely affected by plant
roots and climatic conditions this far from the ground surface. Our results also indicated that
the most difficult soil portion in which to simulate was the deepest studied (from 50 to 100
cm). As we supposed, soil water content in these layers can hardly be influenced by precipita-
tion (because maximum precipitation event could not reach this depth of the soil profile), and
soil moisture was too low (about 2% cm3cm-3) to be captured by previous ecosystem models.

Validation results performed somewhat poorly in soil moisture modeling; before model val-
idation, the parameter set was consistent with the initial environmental condition of the cali-
bration period [36, 37], and initial environmental parameters should be recalibrated when they
are used for model validation [38]. In practical application, however, no more adjustments
were done before model validation, therefore, the results of validation were less than desired.

Implications for data quality
To deal with missing observations (precipitation with non-wind interference) in input data,
methods can be adopted such as probability algorithm, random multiplier, and an estimation
function [28, 30, 33]. An estimation function of precipitation was used in this study, with an
apparent effect especially in heavily rainfall events (increased by 0.95 mm for 2013 and 0.72
mm for 2009). We concluded that modification of measuring data is an important factor in
uncertainty of the simulation.

The accuracy of TDR was an issue in model simulation. Although the precision of the
equipment is satisfactory (with sd. of about 2–3% cm3cm-3) to most soil moisture measure-
ments (value is about 10–30% cm3cm-3), measurements in environments where soil moisture
is about 2–3% acquire a deviation (about 2% volumetric soil moisture) that is an important
component of error.

Implications for modeling
First month of calibration for soil temperature was an indicator for model “warm-up” stage
(Fig 7). This procedure allows finding a reasonable initial value range. Our results indicated
that a “warm-up” period of the model was imperative for soil water and soil temperature cali-
bration. Hence, a “warm-up” period should be established and confirmed by the modeler in
model calibration. Sufficiently-long sequence of the observation data is critical for the use of
the model, and the length should be synchronous with the time-step of the model.

Ajami, et al. [33] suggested that ignoring either input driving error or model structural
uncertainty will lead to unreasonable uncertainty intervals and unrealistic model simulations.
Each ecohydrological model has its own precision and theoretical minimum of soil moisture.
In this application, we could not verify whether the CoupModel has the ability to predict soil
moisture for extremely low soil moisture conditions of arid or semiarid regions. Our results
demonstrated that the CoupModel can provide a satisfactory simulation of soil moisture above
and below 40 cm depth even if it cannot capture the true situation.

Ephemeral vegetation is another vital factor in the balance of soil moisture in arid regions.
For example, shortly after an extreme rainfall event many ephemeral plants appear on the
ground surface. Therefore, equilibrium in soil moisture changes easily in arid regions; with a
new equilibrium state, simulation of surface soil moisture in arid regions is more difficult than
in other regions. Furthermore, surface sand is easily removed by wind in this sparsely vegetated
area, changing soil texture readily. Therefore, vegetation and soil texture database from arid
regions may be variable between different years, resulting in a new uncommon source of model
uncertainty in arid regions.
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We evaluated the simulation after considering all probability factors together rather than
one-at-a-time as was done in previous work [30], this can exclude interplay which could be
generated among the different error sources of the ecohydrology model. However, this
approach did not allow us to attribute the predictive uncertainty to individual sources.

An understanding of ecohydrological processes is one of the critical factors in model build-
ing, and different ecosystems need different module combinations. As discussed above, the
modeler needs to consider ephemeral vegetation and drifting sand in surface-soil moisture
modeling in an arid region after an extreme rainfall. A profound understanding of the relation-
ship between the ecosystem and the model can reduce the uncertainties of model structure.

Conclusions
Modeling of soil hydrological processes is critical to ecohydrological simulation in arid regions.
We demonstrated uncertainties from input and output data, parameter value array, and model
structure. We concluded that the performance of the CoupModel was satisfactory for moisture
simulation at soil depths between 0 and 40 cm, and excellent for soil temperature at< 1 m
depth; however, simulations for soil mean deeper than 40 cm were not adequate. Therefore,
the CoupModel can be effectively utilized for ecohydrological modeling for surface soils in arid
regions.

Parameter uncertainty dominated the principal uncertainty for modeling of the top 40 cm
soil moisture, and structure uncertainty was the governing factor at soil depth above 40 cm.
Moreover, ephemeral vegetation and drifting sand were potential impact factors on model sta-
bility. Analysis of model uncertainty helps us detect problems in the simulation, and promotes
model applicability to new areas. Consequently, UA is a necessary step in the utilization of
models.

In arid regions of China, numerous DOEs have been vegetated since the year 2000 with
sand-stabilizing plants to stop desertification. These efforts can be made more successful and
efficient by understanding soil moisture relationships. Simulation of soil moisture in arid
regions is a foundation for decision-making about the type of vegetation that can be used for
sand stabilization, and prediction of the area of cultivation in the DOE. Simulation of soil mois-
ture can serve as preparation for the estimation of soil water carrying capacity in arid and semi-
arid regions.

Supporting Information
S1 File. Dataset of the forcing data and the validation data in the model set up.
(XLSX)

S2 File. Dataset of the parameters used in the model calibration and uncertainty analysis.
(DOCX)

S3 File. Dataset of the Tables 3 and 4. ��: Correlation is significant at the 0.01 level (2-tailed).
�: Correlation is significant at the 0.05 level (2-tailed). N: missing temperature data at 40 cm
depth. Sig.: significant for two-tailed.
(XLSX)

S4 File. Dataset of the Figs 2 and 4 to 8.OWC = observed soil moisture, SWC = simulated
soil moisture; OST = observed soil temperature, SST = simulated soil temperature; Lambda(8)
was pore size distribution index at 100 cm soil depth. Air Entry(1) and Air Entry(7) were the
air entry pressure at 10 and at 80 cm soil depth, respectively. MinimumCondValue was the
minimum hydraulic conductivity in the hydraulic conductivity function; Saturation(1) and
Saturation(2) denoted water content at saturation in the 10 and 20 cm soil layer, respectively.
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Wilting Point(3) and Wilting Point(5) meant water content at wilting point in the 30 and in
the 50 cm soil layer, respectively. Total Conductivity(1) and Total Conductivity(2) implied
water content at saturation in the 10 and 20 cm soil layers, respectively. Residual Water(5) and
Residual Water(7) were residual soil moisture at 50, and 70 cm soil depth, respectively.
(XLSX)
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