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Abstract

Background and Aim

Hypothyroidism (HT) is characterized by thyroid hormone deficiencies, which can lead to

diffuse myocardial interstitium lesions in patients with HT. Myocardial longitudinal relaxation

time (T1) mapping is a potential diagnostic tool for quantifying diffuse myocardial injury.

This study aimed to assess the usefulness of T1 mapping in identifying myocardial involve-

ment in HT, and determine the relationship between T1 values and myocardial function.

Methods

A cross-sectional study was conducted with 30 untreated HT patients alongside 23 age- and

sex-matched healthy controls. All subjects underwent cardiac magnetic resonance (CMR)

with non-contrast (native) T1 mapping using a modified Look-Locker inversion-recovery

(MOLLI) sequence to assess the native T1 values of myocardium and cardiac function.

Results

Native myocardial T1 values were significantly increased in HT patients, especially those with

pericardial effusion (p < 0.05), compared with healthy controls. In addition, significantly reduced

peak filling rate (PFR) and prolonged peak filling time (PFT) were obtained (p < 0.05) in HT

patients compared with controls. Furthermore, stroke volume (SV) and cardiac index (CI) were

significantly lower in HT patients than controls (all p < 0.05). Interestingly, native T1 values were

negatively correlated with free triiodothyronine (FT3), PFR, SV and CI (all p < 0.05).

Conclusion

Diffuse myocardial injuries are common in HT patients, and increased T1 values are corre-

lated with FT3 and cardiac function impairment. These findings indicate that T1 mapping

might be useful in evaluating myocardial injuries in HT patients.
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Introduction
Hypothyroidism (HT) is caused by reduced production or inadequate activity of thyroid hor-
mones. The prevalence of overt HT in the general population varies from 0.1 to 3.7%, with
women having a greater risk than men [1, 2]. The cardiovascular system has long been recog-
nized as one of the most important targets of thyroid hormones [3]. Changes of cardiac struc-
ture and function depend on the degree and duration of thyroid hormone deficiency in HT
patients [4, 5]. A growing body of clinical evidence suggests that HT is associated with
increased cardiovascular risk and mortality [5–7]. Even acute HT was associated with left ven-
tricular dysfunction [8]. Chronic thyroid hormone deficiencies can result in profound changes
in cardiac function regulation and cardiovascular hemodynamics, such as prolonged systolic
and early diastolic times, decreased cardiac preload due to impaired diastolic function as well
as increased cardiac afterload and reduced chronotropic and inotropic functions [9]. Early
detection and assessment of myocardial involvement is crucial for HT patients.

Myocardial interstitium is essential for normal structure integrity and mechanical functions,
which is under the regulatory influence of thyroid hormones [10, 11]. HT is characterized by
diffuse interstitial space expansion with increased extracellular collagen, normally through the
development of fibrosis, and accumulation of mucopolysaccharide substances [12, 13], which
have an important role in the regulation of tissue hydration. Animal and clinical studies have
shown that myocardial fibrosis is associated with abnormal cardiac remodeling, increased ven-
tricular stiffness and worsened ventricular function [14–16]. In recent clinical studies, fibrosis
has also been recognized as an independent predictive factor of adverse cardiac outcome such
as cardiac death, unstable angina, and heart failure [17–19]. The only methodology for myocar-
dial fibrosis evaluation previously available is the histopathological assessment of endomyocar-
dial tissue biopsies, which was limited by its invasive nature and sampling error. More
importantly, biopsy can't provide information on the extent of ventricular involvement [20].
Over the past decades, cardiac magnetic resonance (CMR) using late gadolinium enhancement
(LGE) imaging technique can non-invasively detect the patterns and distribution of regional
(typically replacement) fibrosis and scar. Based on the differences of gadolinium distribution
between healthy and diseased myocardia, the conventional LGE technique has been used to
detect regional fibrosis in this tissue [21]. However, this method is not suitable for diffuse myo-
cardial fibrosis because of the reduced amounts of normal non-fibrotic myocardium available
to compare with affected areas.

Myocardial longitudinal relaxation time (T1) mapping of the myocardium is a parametric
reconstructed image, where each pixel’s intensity directly reflects the T1 relaxation time of the
corresponding myocardial voxel. Therefore, the T1 value provides an intrinsic signal from both
the interstitium and myocytes. In addition, T1 mapping is now considered an emerging tech-
nique for assessing diffuse myocardial interstitial fibrosis in the whole heart, truly reflecting the
global myocardial fibrosis burden; furthermore, T1 mapping is highly sensitive to myocardial
water and superior to conventional T2-weighted CMR in detecting myocardial oedema [22,
23], this capability is important for overt HT patient. A previous study showed the high sensi-
tivity and specificity of T1 mapping for differentiating patients with diffuse myocardial fibrosis
and normal volunteers [24]. In addition, increased native T1 values are known to correlate well
with histology in diffuse fibrosis [11].

One of the distinctive factors of HT cardiomyopathy pathology is diffuse interstitial space
expansion, which normally occurs through the development of fibrosis. Overt HT also can lead
to myocardial oedema due to the extensive deposits of acid mucopolysaccharide [25]. T1 map-
ping is a potential useful toll in assessing HT patients with diffuse fibrosis and oedema. In addi-
tion, T1 mapping enables direct quantification (in milliseconds) of myocardial signal on a
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standardized scale [26]. However, the study on global myocardial interstitium injury in HT has
not been reported.

In the present study, we therefore hypothesized that T1 mapping might assess diffuse myo-
cardial interstitium injury quantitatively in HT patients. In addition, we aimed to investigate
that T1 value is a potential index, which is related to myocardial dysfunction of HT patients.

Patients and Methods

Subjects
A total of 30 female patients, with overt HT caused by chronic lymphocytic thyroiditis, free
from concomitant disease and without medical treatment, were assessed in this cross-sectional
study. Inclusion criteria were age between 18 and 49, decreased free thyroxine (FT4) level
(�0.4 ng/dl), increased serum thyroid stimulating hormone (TSH) level (�100 μIU/ml), and posi-
tive anti-thyroid peroxidase antibody. Patients with known heart disease (previous myocarditis,
myocardial infarction, arrhythmia, heart failure and other chronic cardiac condition), diabetes,
hypertension, kidney failure, asthma, chronic obstructive pulmonary disease, neoplastic disease,
pregnancy, claustrophobia and metal implants, were excluded. Patients were compared to 23
healthy age-matched female controls. For all subjects, sex, age, height, body weight, heart rate and
blood pressure were recorded, and body surface area (BSA) was derived as BSA = 0.007184×height
(cm)0.725×weight (kg)0.425. The study was conducted fromMarch to October 2014 at the Depart-
ment of Endocrinology in Beijing Chao-yang Hospital. The protocol was designed according to
Declaration of Helsinki guidelines and approved by the Medical Ethics Committee of Beijing
Chaoyang Hospital. Written informed consent was obtained from all patients.

Measurements
Blood samples were taken in the morning after an overnight fast and collected from the antecu-
bital vein. FT3, FT4, TSH, cardiac troponin I (cTNI) and creatinine levels were measured by
electrochemiluminescence immunoassay (ECLIA), high-sensitivity C-reactive protein (hsCRP)
level was measured by nephelometry immunoassay. All the blood variables were measured
using an Abbott Architect i2000 (Abbott Diagnostics, Abbott Park, IL, USA). Reference inter-
vals for FT3, FT4, TSH, cTNI, hsCRP and creatinine were 1.71–3.71 pg/ml, 0.7–1.48 ng/dl,
0.35–4.94 μIU/ml, 0–0.09ng/ml, 0–3mg/L, and 53.0–115.0 μmol/l respectively.

CMR studies were performed with the patient supine, using clinical 3 T scanners on a Tim
Trio System (Siemens Healthcare, Erlangen, Germany) and a 32-channel phased-array chest
coil used for data acquisition. After location, cine images were acquired by gapless whole heart
coverage of short-axis slices. Then complete stack of short axis images were obtained during a
gentle expiratory breath hold and cardiac gating for TSE-T2-weighted imaging (TSE-T2WI)
with fat suppression [27] and native T1 mapping with Modified Look-Locker inversion-recov-
ery (MOLLI) sequence without contrast administration [28]. LGE imaging was performed
after T2WI and native-MOLLI as previously decribed [29]. LGE imaging was acquired in the
short-axis planes using a T1-weighted phase-sensitive inversion recovery (PSIR) sequence 10
minutes after intravenous administration of the contrast agent (Gadopentetate dimeglumine-
Gd-DTPA, Magnevist, Bayer Healthcare; 0.20 mmol/kg body weight). Slice thichness for cine,
T2-weighted and T1-mapping images was 8 mm. All routine CMR images and maps were ana-
lyzed with Argus (SYNGOMMWPWorkstation, Siemens AG).

Left ventricular (LV) function was determined with the Argus software according to the Soci-
ety for CMR guidelines for reporting CMR examinations [17]. LV endocardial and epicardial
borders were manually contoured at end-systole and end-diastole. LV end-diastolic volume
(LVEDV) and end-systolic volume (LVESV) were determined using the Simpson’s rule. Ejection
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fraction (EF) was derived as EF = (LVEDV-LVESV)/LVEDV. Myocardial mass was calculated
by subtracting the endocardial volume from the epicardial volume, based on known knowledge
of myocardial specific gravity (1.05g/cm3). All volumetric indexes were normalized to BSA.

T1 relaxation maps were analyzed as previously described [28]. Briefly, after T1 maps were
obtained, short axis images were automatically contoured to outline the endocardium and epi-
cardium. Previous studies showed substantial segmental T1 variation, which was greatest in lat-
eral and smallest in septal segments [30, 31]. Considering the analysis of T1 values in four
segments might provide more information on myocardial lesions, so the region of interest
(ROI) was manually drawn in the anterior, septal, inferior, and lateral segments of the left ven-
tricle on the mid-short axial slices to quantify T1 values.

CMR image quality control
Shimming and center frequency adjustments were performed to generate off-resonance artifact
free images. Quantitative image analyzes for T1 mapping were performed by 2 expert CMR
cardiologists. Intraobserver agreement for T1 measurements was assessed by blinded repeat
analysis of images one month after the initial analysis by cardiologist 1.

Statistical analysis
Data analysis was performed with SPSS Statistics, version 21.0 (SPSS, Chicago, Illinois, USA)
and MedCalc 15.10 (MedCalc Software, Mariakerke, Belgium). Normality of data was tested
using the Kolmogorov-Smirnov test. Normally distributed data are mean±standard deviation
(SD); non-parametric data are presented as median with interquartile range (IQR).The differ-
ences between the two groups were analyzed by independent Student’s t-test for unpaired sam-
ples, or the Mann-Whitney U test for non-parametric data; one-way analysis of variance
(ANOVA) followed by Tukey’s post hoc test was used for multiple comparisons of group
means. Intra- and interobserver agreement was assessed by coefficients and Bland-Altman
plots. Spearman or Pearson analysis was used to assess correlations. P<0.05 was considered
statistically significant.

Results

Patients’ baseline characteristics
Baseline characteristics for all patients are summarized in Table 1. No differences in age, sex,
heart rate (HR), BSA and blood pressure (BP) were found between the HT and control groups
(all p>0.05). However, BMI was higher in the HT group compared with controls (26.00±3.70
vs. 22.02±3.28 kg/m2, p = 0.0002). In addition, plasma FT3 levels were significantly lower in
HT individuals compared with the control group [1.65(1.16–2.12) vs. 2.71(2.58–3.13) mmol/l,
p<0.0001), indicating a severe disease state in these patients. The median level of hsCRP in the
HT group was significantly higher than that in the control group [0.64 (0.05–1.46) vs. 0 (0–0)
mg/L, p = 0.0013]. However, there was no significant difference for the median cTNI level
between the two groups. Finally, creatinine levels were higher in HT patients compared with
the control group (76.26±12.21 vs. 60.82±11.69 μmol/l, p<0.0001), but remained within the
normal range for all study subjects.

Cardiovascular Magnetic Resonance
Pericardial effusions were detected in 12 HT patients as shown in Table 2, which also summa-
rizes CMR parameters. Similar values were obtained for LV mass, EF and ESV in both groups
(all p>0.05). In addition, no statistically significant differences were obtained in peak ejection
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time (PET, 130.60±29.41 vs. 145.50±31.58 ms, p = 0.087) and peak ejection rate (PER, 3.55±
0.52 vs. 3.45±0.85 EDV/s, p = 0.629), between the control and HT groups. EDV values in HT
patients were slightly lower compared with controls (51.26±11.30 vs. 56.71±10.18, p = 0.075), but
the difference did not reach statistical significance. However, prolonged peak filling time (PFT,
154.80±48.33 vs. 129.8±31.71 ms, p<0.05) and decreased peak filling rate (PFR, 3.59±0.84 vs.
4.27±0.99 EDV/s, p<0.05) were significantly altered in the HT group compared with control val-
ues, indicating an impaired diastolic function in HT patients. In addition, stroke volume (SV,
30.51±7.42 vs. 35.50±5.95 ml/m2) and cardiac index (CI, 2.07±0.54 vs. 2.43±0.33 l/min/m2,
p<0.05) were significantly reduced in the HT group compared with controls, suggesting a poor
cardiac output in HT individuals.

Table 1. Baseline Characteristics of the Control and HypothyroidismGroups. Summary of the clinical characteristics and laboratory results of the
study participants in 23 controls and 30 patients with hypothyroidism. Data were expressed as the mean±SD or median (interquartile range). Abbreviations:
BMI, body mass index; BP, blood pressure; BSA: body surface area; cTNI: cardiac troponin I; FT3, free triiodothyronine; FT4, free thyroxine; HR, heart rate;
hsCRP: high-sensitivity C-reactive protein; TSH, thyroid stimulating hormone.

Controls (n = 23) Hypothyroidism (n = 30) p value

Female (n) 23 30 -

Age (years) 35.43±8.25 36.60±7.87 0.603

SBP (mmHg) 116.7±9.93 119.1±12.65 0.442

DBP (mmHg) 68.39±6.93 71.73±9.03 0.147

BMI (kg/m2) 22.02±3.28 26.00±3.70 0.0002

BSA (m2) 1.66±0.17 1.74±0.14 0.073

HR (beats/min) 69.30±9.18 68.43±9.65 0.741

FT3 (pg/ml) 2.71 (2.58–3.13) 1.65 (1.16–2.12) <0.0001
FT4 (ng/dl) 1.10±0.14 <0.4 -

TSH (μIU/ml) 2.37±1.08 >100 -

hsCRP (mg/L) 0 (0–0) 0.64 (0.05–1.46) 0.0013

cTNI (ng/dl) 0 (0–0) 0 (0–0.025) 0.310

Creatinine (μmol/l) 60.82±11.69 76.26±12.21 <0.0001

doi:10.1371/journal.pone.0151266.t001

Table 2. Cardiovascular Magnetic Resonance Parameters of the Control and Hypothyroidism Groups. Abbreviations: CI, cardiac index; EDV, end
diastolic volume; EF, ejection fraction; ESV, end systolic volume; IVS, interventricular septum; LVAW, left-ventricular anterior wall; LVIW, left-ventricular infe-
rior wall; LVLW, left-ventricular lateral wall. PER, peak ejection rate; PET, peak ejection time; PFR, peak filling rate; PFT, peak filling time; SV, stroke volume.

Controls (n = 23) Hypothyroid (n = 30) p value

EF (%) 63.01±6.09 59.59±8.95 0.122

PET (ms) 130.6±29.41 145.5±31.58 0.087

PFT (ms) 129.8±31.71 154.80±48.33 0.040
EDV (ml/m2) 56.71±10.18 51.26±11.30 0.075

ESV (ml/m2) 21.25±5.93 20.80±6.58 0.798

SV (ml/m2) 35.50±5.95 30.51±7.42 0.011

CI (l/min/m2) 2.43±0.33 2.07±0.54 0.007
Mass (g/ m2) 50.18±10.59 52.42±14.34 0.533

PER (EDV/S) 3.55±0.52 3.45±0.85 0.629

PFR (EDV/s) 4.27±0.99 3.59±0.84 0.010

T1-LVAW (ms) 1083±51.28 1220±75.85 <0.001
T1-IVS (ms) 1048±66.29 1175±81.87 <0.001

T1-LVIW (ms) 1062±56.56 1179±80.21 <0.001
T1-LVLW (ms) 1066±47.69 1185±81.79 <0.001

Pericardial effusion (n) 0 12 -

doi:10.1371/journal.pone.0151266.t002
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T2-weighted CMR, native myocardial T1 and LGE imaging
On conventional T2WI, HT patients had a homogenous intensity within the LV and overt peri-
cardial effusion (Fig 1). Native MOLLI (Table 2 and Figs 1 and 2A) showed significantly
higher native myocardial T1 values in HT patients compared with healthy controls. Interest-
ingly, T1 values within interventricular septum were even higher in the severe HT subgroup
with pericardial effusion (1216±74.97 ms) compared with HT individuals without pericardial
effusion (1148±76.77 ms) (Fig 2B). On LGE, myocardial also had a homogenous intensity in
HT patients which was similar to intensity in normal controls (Fig 1).

T1 mapping reproducibility
There was excellent intra- and inter-observer correlation for native T1 values within LVAW,
IVS, LVIW and LVLW (intra-observer coefficients: r = 0.94, 0.92, 0.89 and 0.91, respectively;
inter-observer coefficients: r = 0.93, 0.90, 0.85 and 0.88, respectively). In addition, intra- and
inter-observer Bland-Altman plots for native T1 values within LVAW, IVS, LVIW and LVLW
showed good agreement (Fig 3).

Fig 1. Representative cardiac magnetic resonance images from a 42-year-old patient with overt hypothyroidism (Hypo) and normal control
(Normal). (Left) T2WI showed a homogenous intensity within the left ventricular and overt pericardial effusion in Hypo. (Middle) color T1 maps based on a
native modified Look-Locker inversion. Note the markedly elevated myocardial T1 time in the Hypo (T1 = 1301 ms, orange range of the color scale)
compared with the Normal control (T1 = 1040 ms, purple range of the scale). (Right) on LGE, myocardial had a homogenous intensity in Hypo which was
similar to intensity in Normal control.

doi:10.1371/journal.pone.0151266.g001
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Correlation between myocardial native T1 value and parameters of LV
diastolic and systolic function
We next assessed whether myocardial damage, as reflected by increased T1 values within IVS,
is related to LV diastolic or systolic function. Interestingly, a significant negative correlation
was obtained between the myocardial native T1 value and plasma FT3 levels (Spearman corre-
lation, r = -0.55, p<0.0001) (Fig 4A). In addition, the native T1 value was inversely correlated
with PFR (r = -0.38, p = 0.006) (Fig 4B), SV (r = -0.397, p = 0.004) (Fig 4C) and CI (r = -0.396,
p = 0.004) (Fig 4D). These findings suggest that diffuse myocardial lesions are associated with
impaired LV diastolic and cardiac output. Therefore, T1 mapping can be considered a novel
noninvasive tool for evaluating myocardial lesions and cardiac function in patients with HT.

Discussion
In this study, we demonstrated that native myocardial T1 values were significantly increased in
HT patients, especially those with pericardial effusion, compared with healthy controls. How-
ever, T2WI and LGE were limited to detect the diffuse myocardial injury in HT. Furthermore,
reduced PFR and prolonged PFT were obtained in HT patients compared with controls. How-
ever, SV and CI were significantly lower in HT patients than in controls. Interestingly, native
T1 values were negatively correlated with FT3, PFR, SV and CI, which may contribute to car-
diac dysfunction in HT patients. These results indicated that CMR, particularly T1 mapping,
can be used for the detection and quantitative assessment of myocardial involvement in HT
patients.

As shown above, HT patients had significantly increased native T1 values, especially those
with pericardial effusion. In the absence of other causes of interstitium damage such as

Fig 2. Native T1 values in controls and HT patients with or without pericardial effusion. A:Native T1
values within four segments of the left ventricle comparing the euthyroid control to overt hypothyroidism
group.B: Native T1 values within ventricular septum comparing the euthyroid control to overt hypothyroidism
groups with (HT-B) or without (HT-A) pericardial effusion.

doi:10.1371/journal.pone.0151266.g002
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Fig 3. The intra-observer and inter-observer Bland-Altman plot for native T1 values within the LVAW, IVS, LVIW and LVLW. Bland-Altman plots
demonstrating the intra-observer (LVAW0 and LVAW1, IVS0 and IVS1, LVIW0 and LVIW1, LVLW0 and LVLW1) and inter-observer (LVAW0 and LVAW2,
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myocardial infarction, myocarditis or amyloid, increased T1 values are regarded as non-inva-
sive surrogate of diffuse myocardial fibrosis and oedema induced by HT. LGE-CMR relies on
the delivery of intravenous gadolinium chelate to the myocardium, which is a biologically inert
tracer that freely distributes in extracellular space but does not cross the intact cell membrane.
So LGE can be used to detect the regional increase of extracellular volume caused by fibrosis.
Contrast relies on signal intensity differences between normal myocardium and fibrosis [32].
However, as shown in our study, no apparent areas of LGE were found in HT patients on LGE
MRI, it may be impossible to define an area of clearly unaffected myocardium as a “nulled” ref-
erence. Similarly, T2WI is sensitive to regional as well as global increases in myocardial water
content. Identification of oedema depends on the signal differences between affected myocar-
dium and remote normal myocardium or should be verified by calculating the ratio between
myocardium and skeletal muscle [33]. However, in cases of overt HT, the skeletal muscle was
also affected [34], and T2WI showed a homogenous intensity within the left ventricular. Thus,
T1 mapping is a potential additional quantitative tool for detection of cardiac involvement in

IVS0 and IVS2, LVIW0 and LVIW2, LVLW0 and LVLW2) agreement for T1 measurements. Horizontal solid lines represent mean differences, and dashed
lines 95% limits of agreement. IVS: interventricular septum; LVAW: left-ventricular anterior wall; LVIW: left-ventricular inferior wall; LVLW: left-ventricular
lateral wall; SD: standard deviation.

doi:10.1371/journal.pone.0151266.g003

Fig 4. Bivariate analysis of the correlation between T1 value within interventricular septum and FT3, Peak Filling Rate, Stroke Volume and Cardiac
Index in controls and patients with HT. Spearman or Pearson analysis was used to assess the correlation between T1 value and FT3 (A), Peak Filling
Rate (B), Stroke Volume (C) and Cardiac Index (D). The central line represents the regression line. Black dot: HT patients; Gray dot: Controls.

doi:10.1371/journal.pone.0151266.g004
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HT patients. As both fibrosis and oedema, which likely coexist in HT patients [25], would
increase native T1 values, it may be challenging to distinguish these two pathological changes
based on imaging alone.

The T1 mapping sequence used in this study was the MOLLI sequence [28], which provides
high-resolution native T1 maps of human myocardium within a single breath-hold. Mean-
while, MOLLI allows a highly reproducible T1 map with high levels of inter and intra-observer
agreement [35]. Thanks to these advantages, the MOLLI technique overcomes the limitations
of prolonged acquisition time and motion. In addition, native T1 mapping does not require the
use of an exogenous contrast agent, an additional advantage for subjects with significant renal
impairment, as found in some HT patients, due to marked reduction in renal flow.

T4 is not transported into the heart, so the cardiac phenotype is extremely sensitive to
changes in serum T3. As shown above, a negative correlation between T1 values and FT3 was
demonstrated. These data indicated that decreased thyroid hormone concentrations in the
blood might be related to the myocardial interstitium lesions, in line with previous findings
[36]. In addition, myocardial interstitium lesions were correlated with the extent of thyroid
hormone deficiency.

Interestingly, BMI in HT patients was significantly higher than control values. This has lim-
ited importance, however, as all cardiac volume data were normalized to BSA. Severe HT
patients exhibited significantly reduced PFR and prolonged PFT in this study, reflecting an
overt effect of thyroid hormone deficiency on the heart [5]. These findings strongly suggested
impaired diastolic filling and reduced myocardial relaxation in patients with severe HT. Finally,
cardiac preload was reduced due to the impaired diastolic function and decreased blood vol-
ume. During this process, myocardial interstitium damage may not be ignored [37]. In addi-
tion, cardiac output in HT patients was abnormal in our study, with significantly lower SV and
CI values, corroborating a previous study [38]. Because there was no difference in HR between
the HT and control groups, the decreased SV and CI were partially driven by the decreased pre-
load and increased afterload [39]. Early hypothyroidism myocardial lesions can induce abnor-
mal diastolic function accompanied with progressive systolic dysfunction [38, 40]. Patients' EF
values were normal, and EDV in patients with hypothyroidism more pronouncedly decreased
compared with ESV in the present study, indicating no overt systolic dysfunction; decreased
SV and CI were mainly related to abnormal diastolic dysfunction.

In the present study, T1 value was shown to correlate with cardiac dysfunction. To our
knowledge, this is the first study describing the association of myocardial damage and LV func-
tion in HT patients. It was previously demonstrated that myocardial fibrosis significantly con-
tributes to the pathogenesis of myocardial relaxation abnormalities [41]. Our findings support
the hypothesis that diffuse myocardial interstitium injury may lead to impaired myocardial
function.

Some limitations of this study should be mentioned. It had a cross-sectional design, and
confounding factors, such as unknown comorbidities, may not be evenly distributed in both
groups. In addition, the study was carried out in a single center with a relatively low sample
size. Given that previous reports revealed elevated hs-CRP and cTNI levels in patients with
hypothyroidism [42–44], while myocarditis or myocardial necrosis can also lead to increased
T1 values [45], we hypothesized that there may be correlations between T1 values and hsCRP
and cTNI levels. However, we found no significant association of T1 value with hsCRP or cTNI
level (data not shown). These results might be due to the small sample size in this study, and
further studies are needed to verify these findings. Furthermore, the correlation between FT3
and T1 value is not significant in HT group, which might be related the small size of patients.
Finally, native myocardial T1 reflects a composite signal from both the intracellular and the
extracellular compartment. Extracellular volume fraction (ECV) measures the extracellular
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space, in the absence of myocardial oedema, expansion of the myocardial collagen volume frac-
tion is responsible for most of the extracellular matrix expansion [46], but myocardial oedema
can be induced by HT. Therefore, further studies (including after correction of HT) are war-
ranted to confirm our findings.

In conclusion, myocardial involvement is common in patients with overt HT, as measured
by native T1 mapping. This new CMR sequence is capable of identifying diffuse myocardial
injury not readily recognized by T2WI and LGE. In the cases of HT, increased T1 value can be
regarded as an index of diffuse myocardial injury most likely caused by fibrosis and oedema,
correlating with serum FT3 level as well as diastolic function impairment and reduced cardiac
output. T1 mapping furthers our understanding of the changes to the ECM, which plays an
important role in the pathogenesis of HT. Finally, CMR, particularly T1 quantification, is an
optimal tool for detection of myocardial involvement for clinical use in HT patients.
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