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Abstract
Early afterdepolarizations (EADs) are pathological oscillations in cardiac action potentials

during the repolarization phase and may be caused by drug side effects, ion channel dis-

ease or oxidative stress. The most widely observed EAD pattern is characterized by oscilla-

tions with growing amplitudes. So far, its occurence has been explained in terms of a

supercritical Hopf bifurcation in the fast subsystem of the action potential dynamics from

which stable limit cycles with growing amplitudes emerge. The novel contribution of this arti-

cle is the introduction of two alternative explanations of EAD genesis with growing ampli-

tudes that do not involve stable limit cycles in fast subsystems. In particular, we

demonstrate that EAD patterns with growing amplitudes may alternatively arise due to a

delayed subcritical Hopf bifurcation or an unstable manifold of a saddle focus fixed point in

the full fast-slow system modelling the action potential. Our work extends the list of possible

dynamical EAD mechanisms and may contribute to a classification of drug effects in preclin-

ical cardiotoxicity testing.

Introduction
The term action potential (AP) refers to the characteristic membrane voltage response of excit-
able cells such as cardiomyocytes to a superthreshold electric stimulus, see Fig 1. Cardiac APs
are regulated by a subtle interplay of various ion channels [1] that control the in- and outflow
of ions across the membrane. If this interplay is perturbed by pharmaceutical compounds [2],
oxidative stress [3] or cardiac disease [4], the AP gets impaired and early afterdepolarizations
(EADs) may arise. EADs are pathological voltage oscillations during the AP repolarization (or
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plateau) phase, see Fig 1, that may synchronize and trigger potentially lethal ventricular fibrilla-
tion [5].

At the cellular level, cardiac APs are mathematically described by means of coupled systems
of nonlinear ODEs that consider the cellular membrane as an electrical circuit consisting of a
capacitative current in parallel with several transmembrane ionic currents. Therein, the voltage
equation

C
dV
dt

¼ �
X
ion

Iion

is complemented by additional ODEs for channel gating variables that describe the voltage
dependent activation and deactivation of the ionic currents. Modern cardiac AP models for
animal [6], human adult [7] and human induced pluripotent stem cell derived [8] cardiomyo-
cytes comprise dozens of state variables and hundreds of model parameters.

Using AP models of lower dimension, cardiac arrhythmias have been associated with bifur-
cations [9, 10] in the nonlinear AP dynamics. In particular, the on- and offset of EADs have
been linked in [11, 12] with supercritical Hopf and saddle-homoclinic bifurcations in the fast
subsystem of a four dimensional AP model. This bifurcation scenario features stable limit
cycles with growing amplitudes and currently is considered [13] to be necessary for the occur-
ence of EADs with growing amplitudes (the most widely observed EAD pattern in
experiments).

In this paper we demonstrate that stable limit cycles in the fast subsystem of cardiac AP
models are not the only possible explanation for EAD patterns with growing amplitudes. In
particular we illustrate that this EAD pattern may also result from a delayed subcritical Hopf
bifurcation or an unstable manifold of a saddle focus fixed point in the full AP dynamics- two
scenerios that do not involve stable limit cycles in the fast subsystem. That way, our manuscript
offers two novel hypotheses on the generation of EADs with growing amplitudes.

Fig 1. Cardiac AP and Distortion by EADs.Green curve shows simulation of cardiac action potential with depolarization due to superthreshold stimulation
and normal repolarization back to resting potential. Red curve shows an AP distorted by early afterdepolarizations with growing amplitudes.

doi:10.1371/journal.pone.0151178.g001
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Materials and Methods

Cardiac Action Potential Models
Four Dimensional AP Model. The current bifurcation hypothesis on the generation of

EADs with growing amplitudes featured in [9, 10, 12, 13] was introduced in [11]. Therein, the
authors used the AP model

C
dV
dt

¼ �GCadf ðV � ECaÞ � GKx�xðVÞðV � EKÞ � I0ðVÞ;
dd
dt

¼ d1ðVÞ � d
atdðVÞ

;

df
dt

¼ f1ðVÞ � f
btf ðVÞ

;

dx
dt

¼ x1ðVÞ � x
gtxðVÞ

;

ð1Þ

which is a reduced version of the Luo-Rudy model [14] for mammalian ventricular cells. This
model includes the inward calcium current

ICa ¼ GCadf ðV � ECaÞ

with the calcium channel conductance GCa and the dynamic activation and inactivation vari-
ables d and f as well as the outward potassium current

IK ¼ GKx�xðVÞðV � EKÞ
with the potassium channel conductance GK and the dynamic activation variable x. The voltage
dependent functions of the model include the inactivation variable �x , the background current
I0 as well as the relaxation variables τd, τf, τx and the steady states d1, f1, x1 of channel gating.

For biophysical reasons one may argue that the activation of the potassium current is a
much slower process than the activation and deactivation of the calcium current [1]. This moti-
vates the consideration of Eq (1) as a (3, 1) fast-slow system with the fast variables V, d, f and
the slow variable x. Then, the associated fast subsystem is given by

C
dV
dt

¼ �GCadf ðV � ECaÞ � GKx�xðVÞðV � EKÞ � I0ðVÞ;
dd
dt

¼ d1ðVÞ � d
tdðVÞ

;

df
dt

¼ f1ðVÞ � f
tf ðVÞ

:

ð2Þ

Three Dimensional AP Model. An even simpler cardiac AP model is

C
dV
dt

¼ �GCad1ðVÞf ðV � ECaÞ � GKxðV � EKÞ;
df
dt

¼ f1ðVÞ � f
tf

;

dx
dt

¼ x1ðVÞ � x
tx

;

ð3Þ

which was introduced in [15] for the analysis of chaotic AP dynamics. The model (3) was also
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used in [16] to simulate the transient impact of β-adrenergic ion channel stimulators. In com-
parison with Eq (1) the fast variable d is replaced by its steady state d1(V) and the relaxation
variables τf and τx are considered to be constant. Further simplifications are given by �xðVÞ ¼ 1

and I0(V) = 0.
Viewing Eq (3) as a (2, 1) fast-slow system with fast variables V, f and slow variable x yields

the fast subsystem

C
dV
dt

¼ �GCad1ðVÞf ðV � ECaÞ � GKxðV � EKÞ;
df
dt

¼ f1ðVÞ � f
tf

:

ð4Þ

Simulation of Action Potential Models
For the numerical simulation of the action potential models (1) and (3) we used the MATLAB
[17] solver ode15s for stiff ODE systems. Tables 1 and 2 give the respective model parameter
values and initial conditions used.

Bifurcation Analysis of Fast AP Subsystems
For studying the genesis of EADs in the full action potential models (1) and (3), we performed
a numerical bifurcation analysis of the corresponding fast subsystems Eqs (2) and (4) with x as
continuation parameter using the software package Matcont [18]. The model parameter values
used are given Tables 1 and 2.

Results

EADs with Growing Amplitudes via Stable Limit Cycles in the Fast AP
Subsystem
First, we review the current bifurcation hypothesis on EAD genesis advertized in [9–13] and
put it in context to the phenomenon of delayed Hopf bifurcations [19] in dynamical systems
with multiple time scales [20]. The bifurcation analysis [11] of Eq (2) with x as continuation

Table 1. Parameters and initial conditions for the four dimensional APmodel (1).

Parameter A B C

α 0.1 0.1 0.1

β 1.1 1.1 1.1

γ 10 10 10

GCa 0.15 0.195 0.1275

GK 0.282 0.282 0.282

Initial Condition A B C

V0 0 0 0

d0 0.0032 0.0034 0.0032

f0 0.9999 0.9983 0.9918

x0 0.2161 0.3637 0.192

Parameter values of column A are taken from [11]. Model parameters not listed are the same as in [11]. By

V0 = 0, the initial conditions mimic the effect of a stimulating current pulse.

doi:10.1371/journal.pone.0151178.t001
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parameter reveals that Eq (2) may possess a supercritical Hopf bifurcation at the upper branch
of fixed points, see Fig 2A. From that Hopf point a branch of stable limit cycles emerges that
subsequently terminates at a saddle-homoclinic bifurcation [21, 22], i.e., at an orbit that is
homoclinic to one of the saddle points along the middle branch of fixed points.

The bifurcation scenario illustrated in Fig 2A explains the generation of EADs with growing
amplitudes as follows. If the trajectory of the full system Eq (1) is driven into the basin of
attraction of the the branch of stable focus-nodes of the fast subsystem Eq (2), a spiral move-
ment is triggered. As the solution curve of Eq (1) progresses along the branch of fixed point
towards the supercritical Hopf bifurcation, the amplitudes decrease due to the negative real
part of the complex eigenvalues. After the Hopf bifurcation the oscillations start to grow as the
trajectory of Eq (1) is attracted towards the stable limit cycles of Eq (2) until the latter are ter-
minated at the saddle-homoclinic bifurcation. The analysis of [11] has been influenced by [23,
24] in which the combination of a supercritical Hopf bifurcation with a saddle-homoclinic
bifurcation has been identified as a mechanism that underlies bursting oscillations in neuronal
models.

Fig 2B illustrates this EAD generating mechanism by a projection of the solution curves of
Fig 1 onto the (V, f, x)-space. If the trajectory passes by the basin of attractions of the fast sub-
system Eq (2), no EADs occur such that a normal action potential is generated. The difference
between the two solution curves results from different speeds of the x-activation (γ = 10 vs. γ =
4) which, however, does not impact the fast subsystem Eq (2) and hence the location of its
fixed points and bifurcation points.

In the theory of multiple time scale dynamics [20], a Hopf bifurcation in a fast subsystem of
a fast-slow system in which a slow variable acts as Hopf bifurcation parameter is called a
delayed Hopf bifurcation. The term delay accomodates the fact that the solution curve of the
full system remains close to the repelling branch of unstable fixed points for a substantial time
after the Hopf bifurcation [19]. From that perspective the scenario illustrated in Fig 2C can be
referred to as a delayed supercritical Hopf bifurcation with Tourbillon effect since the small
scale oscillations in vicinity of the Hopf point are visible.

In our study, we found two additional patterns of EAD generation with growing amplitudes
that can be associated with the bifurcation constellation displayed in Fig 1A. In the one case
(generated, e.g., with parameter column B in Table 1), the trajectory passes through the super-
critical Hopf point with a pronounced delay effect. In the other cases (generated, e.g., with
parameter column C in Table 1), the trajectory does not pass through the supercritical Hopf

Table 2. Parameters and initial conditions for the three dimensional APmodel (3).

Parameter A B C D

τf 80 80 18 18

τx 300 300 100 100

GCa 0.025 0.025 0.025 0.025

GK 0.04 0.035 0.04 0.0393

Initial Condition A B C D

V0 0 0 0 0

f0 0.9989 0.9990 0.9986 0.9984

x0 0.0151 0.0491 0.0145 0.0054

Parameter values of column A are taken from [15], parameter values of column C are taken from [16]. Model parameters not listed are the same as in [15].

By V0 = 0, the initial conditions mimic the effect of a stimulating current pulse.

doi:10.1371/journal.pone.0151178.t002
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Fig 2. EADs with Growing Amplitudes via Stable Limit Cycles in the AP Fast Subsystem. (A) Bifurcation diagram for the fast subsystem Eq (2) with
parameter column A of Table 1 and x as continuation parameter. Black solid and dashed curves represent stable and unstable fixed points of Eq (2). At the
supercritical Hopf bifurcation the stable focus-nodes turn into unstable fixed points of the saddle-focus type. Furthermore, a branch of stable limit cycles
arises which terminates at a saddle-homoclinic bifurcation. At the limit point bifurcation the saddle-focus branch collides with a branch of unstable fixed points
of the saddle type. The lower branch of fixed points is formed by stable nodes. (B) Projection of two trajectories of the full system Eq (1) onto the (V,f,x)-space,
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point but is directly attracted towards the stable limit cycles from outside. Details are given in
S1 Appendix.

The common basis of the three cases of EAD generation with growing amplitudes men-
tioned so far is the existence of stable limit cycles with growing amplitudes in the fast subsys-
tem of the AP model. Our subsequent analysis reveals that at least two alternative dynamic
mechanisms for the generation of EADs with growing amplitudes exist that both do not
involve stable limit cycles in the fast AP subsystem. In the two novel hypotheses to be intro-
duced in the following, EADs with growing amplitudes are either generated via a delayed sub-
critical Hopf bifurcation or the unstable manifold of a saddle focus in the AP system.

EADs with Growing Amplitudes via a Delayed Subcritical Hopf
Bifurcation in the AP System
This section illustrates how EAD dynamics with growing amplitudes alternatively may occur
via a delayed subcritical Hopf bifurcation in the AP system, i.e., via passage of the solution
curve through a subcritical Hopf bifurcation in the fast AP subsystem.

A bifurcation analysis of the fast subsystem Eq (4) with x as continuation parameter and the
model parameter values from column B of Table 2 yields the bifurcation diagram displayed in
Fig 3A. As in the scenario displayed in Fig 2A, the upper branch of stable fixed points termi-
nates at a Hopf bifurcation, but this time the latter is of the subcritical type. In particular, the
limit cycles, that emerge from the Hopf point and continue in opposite direction until their dis-
truction at a saddle-homoclinic bifurcation, now are unstable. Still, this bifurcation constella-
tion admits the emergence of EADs with growing amplitudes, see Fig 3B for a corresponding
solution curve of the full system Eq (3) and Fig 3C for its projection onto the bifurcation dia-
gram. First, the trajectory spirals around the branch of stable foci of Eq (4). After passage
through the subcritical Hopf point the trajectory is subject to a delay effect which for some
time allows the continuation of the spirals but with increasing amplitudes due to a now positive
real part of the pair of complex eigenvalues. Finally, the trajectory is repelled and driven
towards the lower branch of stable nodes. Note that the saddle-homoclinic bifurcation is no
longer involved in the termination of the EADs which is another significant difference to the
cases illustrated in Fig 2 and S1 Appendix.

The EAD mechanism shown in Fig 3 can be understood by studying the (2, 1)-fast-slow sys-
tem

dy1
dt

¼ xy1 � y2 þ y1ðy21 þ y22Þ2;
dy2
dt

¼ y1 þ xy2 þ y2ðy21 þ y22Þ2;
dx
dt

¼ ε;

ð5Þ

where the fast subsystem obtained with ε = 0 corresponds to the normal form of a subcritical
Hopf bifurcation [22] at the origin (y1, y2, x) = (0, 0, 0). The linearization of the fast subsystem

obtained with parameter column A of Table 1 for the red curve and the substitution γ = 4 for the green curve. If the solution curve of Eq (1) passes by the
basins of attraction of the fast subsystem, no EADs occur, see green line. EADs with growing amplitudes are generated if the trajectory passes through the
supercritical Hopf point of Eq (2) before being pulled towards stable limit cycles with increasing amplitudes, see red line. From the perspective of multiple time
scales theory, the situation corresponds to a Tourbillon effect. (C) Zoom into the neighborhood of the supercritical Hopf bifurcation with passage of the EAD
carrying trajectory.

doi:10.1371/journal.pone.0151178.g002
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around (0, 0) yields

d~y1

dt
¼ x~y1 � ~y2;

d~y2

dt
¼ ~y1 þ x~y2;

dx
dt

¼ ε

with

~y1ðtÞ ¼ y1;0e
xt cos ðtÞ � y2;0e

xt sin ðtÞ;
~y2ðtÞ ¼ y1;0e

xt sin ðtÞ þ y2;0e
xt cos ðtÞ;

xðtÞ ¼ εt þ x0:

Hence, for the neighborhood with x> 0 the amplitudes of the oscillatory solution always grow
exponentially before the trajectory of Eq (5) is repelled from the branch of unstable fixed
points. It depends on the initial conditions and the speed ε at which the continuation parame-
ter x crosses the subcritical Hopf point, if those oscillations become actually visible, see Fig 4
for an illustration.

Fig 3. EADs with Growing Amplitudes via a Delayed Subcritical Hopf Bifurcation. (A) Bifurcation diagram for the fast subsystem Eq (4) with x as
continuation parameter and parameter column B of Table 2. Black solid and dashed curves represent stable and unstable fixed points of Eq (4). At the
subcritical Hopf bifurcation the stable foci turn into unstable foci. Furthermore, a branch of unstable limit cycles arises which terminates at a saddle-
homoclinic bifurcation. At the limit point bifurcation the unstable focus branch collides with a branch of unstable fixed points of the saddle type. At the second
limit point bifurcation, the saddle branch collides with the lower branch of stable nodes. (B) Solution of Eq (3) with parameter column B of Table 2 that carries
EADs with growing amplitudes caused by the delayed subcritical Hopf bifurcation. (C) Projection of the trajectory onto the (V,f,x)-space. The spiraling
movement persists after the subcritical Hopf point for some time during which the amplitudes grow exponentially. (D) Zoom into the neighborhood of the
subcritical Hopf bifurcation with passage of the EAD carrying trajectory.

doi:10.1371/journal.pone.0151178.g003
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EADs with Growing Amplitudes via the Unstable Manifold of a Saddle
Focus in the AP System
In this section, we finally demonstrate that EADs with growing amplitude may also occur with-
out the existence of delayed Hopf bifurcations in the AP system. Then, the EAD generating
mechanism rather is the unstable manifold a saddle-focus fixed point (V�, f�, x�) of the AP sys-
tem that coincides with the location of the limit point bifurcation of the fast AP subsystem.

A bifurcation analysis of the fast subsystem Eq (4) with x as continuation parameter and the
model parameter values from column D of Table 2 yields the bifurcation diagram displayed in
Fig 5A. The upper branch of fixed points only consists of stable foci that terminate at a limit
point bifurcation of Eq (4) such that no Hopf bifurcation exists. Still, the full system Eq (3)
may admit EAD trajectories with growing amplitudes, see Fig 5B for a corresponding solution
curve and Fig 5C for its projection onto the bifurcation diagram. First, the trajectory spirals
around the branch of stable foci of Eq (4) and approaches with decreasing amplitudes the limit
point bifurcation located at (V�, f�, x�).

Further analysis of the full system Eq (3) reveals that (V�, f�, x�) coincides with a saddle
focus fixed point of the latter that is associated with a one-dimensional stable and a two-dimen-
sional unstable manifold. This manifold is spanned by the pair of complex conjugate eigenvec-
tors of the Jacobian J of Eq (3) evaluated at (V�, f�, x�), illustrated as yellow surface in Fig 5C.
In vicinity of (V�, f�, x�) the trajectory of Eq (3) is diverted into the unstable manifold which
triggers oscillations with growing amplitudes. Finally, the trajectory is repelled resulting in
another turn around the stable foci of Eq (4) before crossing the separatrix and being attracted
by the lower branch of stable nodes.

Fig 4. Emergence of Oscillations with Growing Amplitudes due to a Delay Effect Associated with a Subcritical Hopf Bifurcation. Before the
trajectory of Eq (5) is repelled from the unstable fixed points of the fast subsystem, it spirals around them with growing amplitudes. Visibility of this effect
depends on initial conditions as well as speed of passage and is given, e.g., with (y1,0, y2,0, x) = (0.05,0.05,−0.1) and ε = 0.005.

doi:10.1371/journal.pone.0151178.g004
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The EADmechanism illustrated in Fig 5 can be understood by studying the linear system

d
dt

y1

y2

x

0
B@

1
CA ¼

0:0043 �0:0285 0

0:0285 0:0043 0

0 0 �0:0304

0
B@

1
CA �

y1

y2

x

0
B@

1
CA ð6Þ

which has a saddle focus at (0,0,0). The eigenvalues of the system matrix of Eq (6) are λ1,2 =
0.0043 ± 0.0285�i, λ3 = −0.0304 and coincide with those of J(V�, f�, x�) for Eq (3) with parame-
ter column D of Table 2. The stable manifold is given by the x-axis while the unstable manifold
coincides with the (y1, y2)-plane. Fig 6 displays the behaviour of the trajectory z(t) = eAt z0 for
z0 = (y1,0, y2,0, x0) = (0.01, 0.01, −0.1) and illustrates how oscillations with growing amplitudes
arise on the unstable manifold of the saddle focus.

Discussion
EADs are pathological voltage oscillations during the repolarization phase of cardiac APs. The
most widely observed EAD pattern is characterized by growing amplitudes and has been previ-
ously linked [11–13] with a supercritical Hopf bifurcation in the fast subsystem of AP models.
Using the parsimonious AP model (3) we in this paper have associated EADs with growing
amplitudes with two alternative dynamical mechanisms, namely a delayed subcritical Hopf
bifurcation and an unstable manifold of a saddle focus fixed point in the AP system. As illus-
trated by Fig 7, the identified EAD mechanisms are not specific to the AP model used for their
explanation. Random sampling of the parameter space using multivariate normal distributions

Fig 5. EADs with Growing Amplitudes via the Unstable Manifold of a Saddle Focus. (A) Bifurcation diagram for the fast subsystem Eq (4) with x as
continuation parameter and model parameters from column D of Table 2. Black solid and dashed curves represent stable and unstable fixed points of Eq (4).
The upper branch consists of stable foci which—as opposed to Fig 3A—only terminates at a limit point bifurcation with coordinates (V*, f*, x*) where it turns
into a branch of saddles. At the second limit point bifurcation, the saddle branch collides with the lower branch of stable nodes. (B) Solution of Eq (3) with
parameter column D of Table 2 that carries EADs with growing amplitudes. They are caused by a saddle focus fixed point of the full system Eq (3) that
coincides with the location (V*, f*, x*) of the limit point bifurcation of the fast subsystem Eq (4). (C) Projection of the trajectory onto the (V,f,x)-space. The
spiraling movement of the trajectory is caused by the unstable manifold (yellow surface) spanned by the complex conjugate eigenvectors of the Jacobian J at
(V*, f*, x*). (D) Zoom into the neighborhood of (V*, f*, x*).

doi:10.1371/journal.pone.0151178.g005
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(with the parameter columns A of Tables 1 and 2 taken as mean vectors) shows that both mod-
els (3) and (1) feature all the bifurcation scenarios outlined in the paper (delayed supercritical
Hopf bifurcation, delayed subcritical Hopf bifurcation and saddle focus fixed point in the full
AP system). The bifurcation analysis of the more complex state-of-the-art AP models for ani-
mal [6], human adult [7] and human induced pluripotent stem cell derived [8] is the subject of
future work in which we expect to find an even richer repertoire of possible EAD mechanisms.
Furthermore, as the EAD hypothesis of [11] based on the combination of a supercritical Hopf
bifurcation with a saddle-homoclinic bifurcation has a counterpart in the context of bursting
oscillations in neuronal models [23, 24], the two alternative EAD hypotheses introduced in this
paper might also motivate novel contributions in the field of mathematical neuroscience.

Given several in-silico dynamical mechanisms for EAD generation, another future challenge
is to determine if and how they can be validated experimentally. One idea is to associate the fre-
quency spectrum of recorded voltage traces that carry EAD patterns with the different period-
icities of the stable and unstable oscillatory orbits of the mathematical models. If successful,
this might lead to a first bifurcation theory based classification of experimentally obtained
EADs.

Knowledge of the actual dynamic EAD mechanism might also serve as a basis for the devel-
opment of antiarrhythmic drugs for the prevention of cardiac arrhythmias. Given an unfavour-
able bifurcation scenario one then needs to identify model components that both can be
targeted by drugs and, if correspondingly altered, reduce or even eliminate the risk of EAD gen-
eration. One possible mathematical approach is to use inverse bifurcation analysis [25, 26]
which, however, needs to be extended to, e.g., subcritical Hopf bifurcations or limit point bifur-
cations that coincide with saddle focus fixed points.

Fig 6. Emergence of Oscillations with Growing Amplitudes due to the Unstable Manifold of a Saddle Focus. The spiraling part of the trajectory lies on
the unstable manifold (yellow surface) which is spanned by the pair of complex conjugate eigenvectors of the systemmatrix, illustrated by means of the linear
system Eq (6) with initial conditions (y1,0, y2,0, x0) = (0.01, 0.01, −0.1).

doi:10.1371/journal.pone.0151178.g006

Dynamical Mechanisms of Early Afterdepolarizations

PLOS ONE | DOI:10.1371/journal.pone.0151178 March 15, 2016 11 / 14



Finally, an understanding of the dynamic EAD mechanisms might also contribute to an
improvement of preclinical drug cardiotoxicity testing. While cardiac AP models are currently
used to simulate the impact of drugs on the AP trajectory [27], it might be more illuminative to
directly study the drug impact on the bifurcation properties. Then, the latter may be used to
define novel classifications of the proarrhythmic risk of candidate drugs.

Fig 7. Ubiquity of EADGenerating Mechanisms. The dynamic repertoire of both AP models (3) and (1) comprises all three mechanisms for the generation
of EADs with growing amplitudes. (A) The figure displays the location of the corresponding bifurcation points (supercritical Hopf, subcritical Hopf and limit
point) of Eq (4) in the (V, f, x)-space obtained by random variation of parameter column A of Table 1. (B) Distribution of EAD generating bifurcation points of
Eq (2) as a result of a random variation of parameter column A of Table 2.

doi:10.1371/journal.pone.0151178.g007
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For the sake of completeness we mention that cardiac AP models may also produce EAD
patterns with decreasing amplitudes which, however, are less observed in practice, see S2
Appendix for details.

Supporting Information
S1 Appendix. Two More EAD Patterns with Growing Amplitudes via Stable Limit Cycles
in the AP Fast Subsystem.
(PDF)

S2 Appendix. Comments on EADs with Decreasing Amplitudes.
(PDF)
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