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Abstract

The goal of this research is to recognize the nest digging activity of tortoises using a device
mounted atop the tortoise carapace. The device classifies tortoise movements in order to
discriminate between nest digging, and non-digging activity (specifically walking and eat-
ing). Accelerometer data was collected from devices attached to the carapace of a number
of tortoises during their two-month nesting period. Our system uses an accelerometer and
an activity recognition system (ARS) which is modularly structured using an artificial neural
network and an output filter. For the purpose of experiment and comparison, and with the
aim of minimizing the computational cost, the artificial neural network has been modelled
according to three different architectures based on the input delay neural network (IDNN).
We show that the ARS can achieve very high accuracy on segments of data sequences,
with an extremely small neural network that can be embedded in programmable low power
devices. Given that digging is typically a long activity (up to two hours), the application of
ARS on data segments can be repeated over time to set up a reliable and efficient system,
called Tortoise @, for digging activity recognition.

1 Introduction

The impact of the species extinction is of greater devastation than was ever expected [1]. Rep-
tiles and amphibians seem to have been disproportionately affected, showing average popula-
tion decreases of 34% and 97% respectively. The biggest threat to biodiversity historically
comes from a combined impact of habitat loss, degradation, new predators, food, and the mis-
treatment of animals for material assets. This level and type of endangerment was reported in
[2] and [3]. Given this history, the new main factor for population decline is the stark lack of
diversity itself. The decrease in tortoise population is attributable to a combination of infertility
and predation of eggs (at incubation, as well as young tortoises in their first years of life). The
eggs are affected by environmental pollution, which inhibits hatching. The hatchlings are also
easy prey for predators.

In an attempt to limit the tortoises mortality, herpetologists from many organizations have
taken part in protection programs in order to monitor and support female tortoises and their
hatchlings. In the Galapagos Islands, the Darwin Scientific Foundation and the Charles Darwin
Foundation have been committed to protect giant tortoises (Chelonoidis nigra) [4]. In Jumby
Bay, the population of hawksbill tortoises (Eretmochelis imbricata) is monitored by the Jumby
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Bay Hawksbill Project run by the Jumby Bay Company (Eretmochelis imbricata) is monitored
by the Jumby Bay Hawksbill Project run by the Jumby Bay Company [5]. The Turtle Conser-
vancy works to protect the population of gopher tortoises (Gopherus polyphemus) in southern
California, and various species of turtles and tortoises in Madagascar and Mexico [6].

As part of these programs, herpetologists observe the tortoise behaviour in order to identify
the nests and to retrieve the eggs. It is possible to monitor eggs in their natural environment,
however the eggs are often taken to a protection centre. This ensures a lower mortality of the
hatchlings during their most vulnerable period [5]. This is repeated every year during the
reproduction period. Only during these periods is it possible to observe the females digging
activity and to identify the location of the nests. Unfortunately this procedure cannot be
applied on a large scale, as it is dependent on the direct observation of the animals. For large-
scale applications an automatic system is necessary—one which is able to recognize the behav-
iour of the animal, and consequently promptly locate the nests.

In this context, our general objective is to design an automatic system called Tortoise@,
which aims to recognize digging activity and locate the nests. This is done using a combination
of a small device attached to the carapace of wild animals, and an activity recognition system
(ARS) based on machine learning methods. This system is based upon, and claims the benefit
of, Patent Application Number filed MI2011A002337.

The device should be worn comfortably by the animal, and it should be operational during
the entirety of the breeding season (e.g. about two months in Italy for Mediterranean tortoises).
Thus the device should be very light in weight, small in size, and energy efficient (i.e. a low
computational power and a small memory). The device must be energy efficient because it will
need a portable supply of power, i.e. it must be battery powered. In an effort to augment the
operational life of the system, the device must be able to recognize the digging activity autono-
mously. This enables the system to be set up to avoid sending a continuous stream of data, and
instead only send the current geographic coordinate when a nest digging event has been identi-
fied. According to the need of limited computational and memory capabilities, the ARS must
find a good trade-off between accuracy, memory, and computational power.

Another feature of our approach is the use of an accelerometer to detect characteristic
movements of the tortoises. Our observation on data collected during the initial experimental
campaign show that lateral movements registered by the accelerometer during the excavation
of the nest are regular, regardless of the size and species of the tortoise. These characteristics
affect only the amplitude of movement, and not its type. The occurrence of a regular pattern,
and the presence of the typical data noise, reinforce the decision to use a data-driven, robust,
yet simple, pattern recognition approach to automatically identify such patterns.

Keeping in mind these objectives and observations, in summary, our scientific goal is to
assess the possibility of introducing an efficient and effective recognition system for the digging
activities of tortoises by means of accelerometers data and to support it by an experimental val-
idation from real-data.

The use of neural networks, which have a flexible architecture, allows us to investigate
models with low computational and memory requirements. Furthermore, Tortoise@ takes
advantage of modular composition of very small neural network models combined with a fil-
ter of the model output stream to identify the activity of tortoises. In the paper, both the
model and the filter are referred to as an ARS, with name TartaNet. Tortoise@ is part of the
biologging research area because of the environmental purpose, and the technology involve-
ment. The biologging field was introduced in [7-9] and described by Bograd et Al. in [10].
Biologging researchers investigate the behaviour of animals in the wild or in semi-free condi-
tions. Ropert et Al. [11] use hall sensors and a logger to study the feeding behaviour in birds
and koalas. Baranes et al. [12] and Kays et al. [13] apply biologging techniques to classify
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animal behaviour based on oyster catchers (Haematopus ostralegus) and on toucans, respec-
tively. The processing of animal activity accelerometer data, with the machine learning algo-
rithms, has, with time, become a more accepted approach to monitor the animal behaviours.

Several works in literature present the use of machine learning algorithms for animal activi-
ties recognition with different ethological purpose, taking into consideration typically acceler-
ometer data of daily activities, such as feeding, sleeping, and walking, among others. Recently,
for example in [14] machine learning algorithms are proposed for behavioural patterns of farm
animal (cows) to identify daily activities. A similar approach is used in [15] to store, annotate,
and automatically recognize the activity of wild animals. In [16], the machine learning algo-
rithms are proposed as a classification framework for recognizing dog activities. In this con-
cern, the artificial neural networks (ANN) [17] represent a possible approach to provide
recognition capabilities to embedded on devices and it is therefore considered in this paper.
Focusing on ANN for animal activities recognition, it is to note some recent works. Examples
of possible real world applications of this technique are described in [18, 19], and [20], wherein
the ANNS are proposed to classify the daily activity of several species.

2 Materials and Methods

In the following sub-sections we describe the subjects and the device used for this research, and
we present the methods proposed to reach our goal of animal activities recognition.

2.1 Ethics statement

The device was gently attached to the carapace with minimal pressure. We used one hundred
tortoises in this research and observed their behaviour two to three times a day, for at most one
hour. The glue pad used for the tortoises is the one described at the following URL: http://
www.uhu.com/en/products/glue-pads.html. The glue pad remained on the animal for a maxi-
mum of 3 hours. The procedure is non-invasive, does not cause pain or death of animal, and
therefore these studies did not require consultation from the Ethics Committee of the Univer-
sity of Pisa (protocol n. 86/609/CEE). The procedure was carried out in the Protection Centre
for Mediterranean Tortoises, in Massa Marittima, Tuscany, Italy. This is a Centre for conserva-
tion, ex situ of fauna (CESFA). The Museum of Natural History, of The University of Pisa, and
The Unione dei Comuni Montani Colline Metallifere (UCMCM), are authorities responsible for
the centre and for the protection of the inhabiting animals. The owners gave the permission to
conduct the procedure inside the centre. Both the UCMCM and The Museum of Natural His-
tory approved the procedure and the Tortoise@ research conducted by the University of Pisa.
In the additional information added to the manuscript, the authorizations are available as Sup-
porting Information files.

2.2 Subjects

Our subjects were healthy adult female tortoises from the Protection Centre for Mediterranean
Tortoises. In the centre, the tortoises occupied fenced areas divided according to either species
or populations of Mediterranean tortoises (Testudo hermanni, Testudo graeca, Testudo mar-
ginata in semi-free conditions). The fenced areas of adult tortoises ranged from 180m* to
6.25m”, depending on the number and size of the tortoises. The terrain was hilly and grassy
with Mediterranean shrubs. An extensive campaign of data collection was conducted in the
field in the June and July of 2012. For our behavioural study, each subject was kept under sur-
veillance throughout the experiments in order to identify its activities.
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2.3 Hardware equipment and selection of sensors

For data gathering purposes, we used a system comprising two MicaZ devices [21] and a
standard PC. A MicaZ is a low-power programmable device with a communication board
(with a 2.4 GHz radio subsystem), a MPR2400 antenna, and a radio. The MicaZ radio is
based on the IEEE 802.15.4 standard, which guarantees low energy consumption and long-
lasting operations [22]. The MicaZ device used as tag attached on the animals is augmented
with the MTS310 sensor board which, in turn, has a temperature, a light sensors, and a two-
axis accelerometer (the ADXL202). The light and temperature sensors are intended to pro-
vide context information, describing the individual’s surroundings. However, these sensors
alone cannot provide sufficient information on the tortoise activities. The light and tempera-
ture sensors are intended to provide context to primary information, describing the individu-
al’s surroundings, while the accelerometers are used to capture the movements of the
animals [20, 23], and [24].

In our experiments we used the following setting for the data collection: one MicaZ (the dis-
patcher), attached to the animal, was used to record and transmit data concerning the environ-
ment, as well as on the movements of the tortoises. The second MicaZ (the collector), which
was connected to the PC via USB cable, received the data transmitted by the other MicaZ and
provided aggregated data to the PC for storage and oft-line analysis. The transmitted data was
used to identify the different activities. The dispatchers recorded light levels, temperature, and
the accelerometer signals at a frequency of 4Hz (every 250 ms) and stored them in the internal
memory of the MicaZ. In fact, this frequency proved afterwards to be excessive, and the sam-
pling could be reduced without impacting the behaviour of the system.

The accelerometer signal was +2g, and described the movements of the carapace along the x
and y axes of the sensor. As shown in Fig 1, the x described the movements of carapace along
the short side, and the y axis described the inclination along the long side of carapace.

For practical use in the wild, the prototype will require a further engineering step to reduce
its size and be more comfortable for the animals. The engineered system would need to be
unobtrusive and follow the design of the carapace of the tortoises as proposed in the patent and
shown in Fig 2.

2.4 Data collection protocol

Experiments were performed, with the tortoises, in a semi natural habitat. This environment
enabled us to identify the characteristics of the main activities of interest for female tortoises.
The data collection protocol was supervised by a human operator who observed the behaviour
of the tortoises. Data collection was initiated at the behest of the supervisor, subsequent to the
identification of one of three main activities: eating, walking, and digging.

The collection procedure consisted of three phases: placement, monitoring, and storage.
Throughout these phases, the supervisor recorded and stored each sequence of sensor data in a
dataset. Each sequence was labelled with the corresponding activity tag.

This dataset was used in the off-line analysis for training and validating the ARS.

o Placement: The supervisor attached the device with a non-toxic and re-usable glue pad onto
the carapace between the second and third vertebral plate, without interrupting the activity
observed. The location chosen for the device was non-invasive and non-restrictive. The posi-
tion required consistency in order to guarantee a reasonable homogeneity of the collected
data. The device used during the data collection is illustrated in Fig 1.

 Monitoring: In this phase, the MicaZ recorded accelerometer data with the given sampling
frequency, and stored it in its flash memory. The operator recorded the specific activity being
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Fig 1. Accelerometer axis. The device is positioned on the carapace with a great care by the supervisor at the beginning of each data collection procedure.
doi:10.1371/journal.pone.0151168.9001

performed by the animal in the tortoise activity diary in order to associate this activity with
the sampled data.

o Storage: At the end of the activity, the supervisor retrieved the sensor from the carapace, for
another recording, and downloaded the signal stored in the flash memory of the mote onto
the computer.

Note that it was not possible to establish the duration of each activity in advance. For this
reason, a specific time slot was not used during the recording phase for the storyboard of the
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MicaZ device

Fig 2. Final device. Detail of the position of device on the tortoise carapace.

doi:10.1371/journal.pone.0151168.9002

actions, and the length of each recorded signal was based on the duration of each individual
activity, with an upper limit of two hours.

2.5 Data Analysis

In the data collection campaign, sequences of sensor data (accelerometers, light and tempera-
ture) were collected. Each sequence refers to one nest excavation, walking, or eating activity
performed by an individual. The dataset obtained with this dataset is composed by a temporal
series of accelerometer raw data.

2.5.1 Pre-processing methods. Pre-processing techniques were used to reduce the noise
of the signal and to normalize the values in a uniform range. We also down-sampled the
sequences in order to experiment with different sampling rates, for the sake of memory
parsimony.

o Filtering: in order to filter out noise, we applied a moving average filter, which is effective in
the case of non-uniform noise [25]. The moving average filter is a type of Finite Impulse
Response (FIR) [26]. This filter operates by averaging on an interval of five points from the
original sequence to produce each point in the filtered sequence.

o Normalization: the integer values produced by the accelerometers were scaled down by the
average of all the observed values—note that this is not a proper normalization. The reason
for using this scheme, rather than a more conventional normalization, was to obtain an input
stream for the neural network in the form of integer values (instead of float values). This
helps a substantial saving in memory, and enables the implementation of the system on
memory constrained devices.

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016 6/27
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Fig 3. Sequence of a walk phase from the accelerometer. Walking activity, as represented by the blue signal (x axis), is characterized by chaotic
oscillation of values, representative of the oscillation of the carapace. A similar behaviour is observed in the green signal (y axis).

doi:10.1371/journal.pone.0151168.g003

o Down-sampling: Down-sampling involves reducing the sampling rate of a sequence of data.
For our purposes, we adopted the simple mechanism of excluding samples at a given rate
from the original sequence. As mentioned before, we used this filter to test the system with
different sampling rates, by reducing the number of inputs of the system. The down-sam-
pling is applied on the sequences filtered with the moving average filter.

2.5.2 Input of the neural network. Since the accelerometer has two axes, an accelerometer
sequence is in the form of paired sequences: one for each axis.

Fig 3 shows an example of a walking sequence. In this case the accelerometer sequence is
chaotic and hardly predictable. Fig 4 shows a sequence recorded during eating, which is charac-
terized by the complete absence of movement. Fig 5 shows a sample of the digging sequence.

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016
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Fig 4. Sequence of a eating phase from the accelerometer. In this phase, the carapace moves only to let the tortoise to reach food outside the reach of its
head. Both x and y axes show relatively insignificant variation.

doi:10.1371/journal.pone.0151168.g004

The x axis sequence obtained during a digging sequence approximates a periodic square wave.
This periodicity is due to the turnover of posterior paws during the excavation.

The accelerometer sequence on the y axis provides negligible information for the discrimi-
native aim, therefore the rest of the paper, is focussed on the analysis of the x axis data, which
contributes to reduce the system load for data storage and processing. The database of this
study consists of a set of 83 labelled accelerometer sequences. The set is divided into 15 walk
sequences, 6 eating sequences, and 62 digging sequences, of which 13 terminated with an egg
deposition. The other 49 excavation sequences which were not terminated with a deposition is
a result of normal tortoise behaviour in captivity.

The sequences of the accelerometer data are indexed over the time dimension by describing
the tortoise activity as a set of successive samples. Each sample corresponds to a quarter of a
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Fig 5. Sequence of a digging phase from the accelerometer. The blue signal (x axis) shows a periodic movement of the carapace along the x axis that
resembles a square wave. Each square wave observed on the signal of the x axis corresponds to a peak of the signal of the y axis (the green signal).

doi:10.1371/journal.pone.0151168.9005

second related to the frequency of sampling (4 Hz). As mentioned in Section 2.3, to reduce the
size of the sequence, we down-sampled it to 1 Hz, with a one second interval (a time step).

Each time step is classified by an ARS, which is fed with a window of n previous steps (here
after, the input window). At each time step, we shift the input window by one interval of a quar-
ter of window and obtain a new output value. This particular use of the input windows can be
allowed by a neural network model, known as the Input Delay Neural Network (IDNN). This
approach is popular in the literature of activity recognition as described in [27].

Given the main role of the input window, we identified a characteristic pattern of the exca-
vation phase that can be recognized by the neural network. The pattern occurs in a window
containing a repetition of the squared wave, as shown in Fig 6, and plays a key role in training
the ARS. The period of time chosen for the pattern is the mean duration of two squared waves

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016
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Fig 6. The characteristic pattern extracted from the x axis accelerometer data of a digging sequence. This pattern shows the characteristic periodic
movement performed by the tortoise in the digging activities. It is composed of two squared waves which distinguish the excavation sequences. The signal of
characteristic pattern is shown in figure with a frequency of 4Hz. The time interval shown in the histogram corresponds to approximately 90 seconds.

doi:10.1371/journal.pone.0151168.g006

in the excavation sequences. This corresponds to approximately 90 time steps (90 seconds) in
the real data at hand for Mediterranean tortoises. We therefore set the input window to have
the same dimension—90 time steps. The dimension of this pattern may vary, depending on the
specific species of tortoise under study. In those cases, the size of the window should be
changed accordingly in order to include a minimum of two repetitions of squared waves. Note
that the variance of frequency was one of the main factors in choosing the pattern dimensions.
In our case, to guarantee a generalization of characteristic pattern for Mediterranean tortoises,
we took into consideration samples collected by 3 different families of Testudo. The great dif-
ference between these species allows us to analyse various frequencies of the same type of
movement, and then to deal with these variations automatically, through learning, over the dif-
ferent sampled cases in the gathered data set.

The ARS is trained to identify the characteristic pattern and can be utilised to recognize it in
long sequences. To find a trade-off between the ARS responsiveness, the memory overhead,
and the need for providing enough information to identify the digging activity, we introduce
the concept of a sub-sequence extracted by the long sequences, named segment of sequence in
the rest of the paper. Taking into account this trade-off, the size of the segment is 5 minutes
(300 intervals). Given the initial delay due to the input window (of 90 time steps) and the time
interval chosen for the shifting window (one quarter, that is 22 time steps), the neural network
provides an output stream of 10 classification values for each segment. Table 1 summarizes the
length of the input window, pattern, segment of sequence, and output stream.

The basic idea beyond this setting is to use these patterns rather than sequences in the train-
ing of the neural network to keep a low memory overhead and to improve the performance of
the classification prediction by focusing the activity recognition algorithm on the most specific
information available about the digging phase.

According to the characteristic pattern, the neural network is trained with samples of 90 sec-
onds labeled with positive and negative classifications. The samples with positive classification

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016 10/27
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Table 1. Lengths and descriptions of the input window, pattern, segment of sequence, and output
stream.

Input window (buffer) 90 values input to the NN
Pattern 90 time steps sub-sequence used to train the neural network
Segment of sequence 300 time steps accelerometer sequence used for the classification
Qutput stream 10 values output values of neural network over the course of a segment

doi:10.1371/journal.pone.0151168.t001

are patterns extracted from nest excavation sequences. The samples with negative classification
are obtained with patterns sampled by eating and walking sequences.

2.6 TartaNet activity recognition system(TartaNet)

The TartaNet activity recognition system (TartaNet: TARTAruga, which means tortoise in Ital-
ian, and neural NETwork) integrates a machine learning (ML) model (which is fed with the
input windows), and a filter of the model output stream. The machine learning model identi-
fies, within each segment, the windows similar to the characteristic pattern. The TartaNet filter
classifies the output stream of machine learning model as a digging or non-digging activity.

2.6.1 Machine learning model of TartaNet. To build the ML model of TartaNet, we focus
on the Artificial Neural Network (ANN) in the form of the well-known feedforward ANNs/
Multi-Layer Perceptron (MLP) architecture [17]. The robustness and the ability for universal
approximation of this method provides the basis for the flexibility of the approach for the
approximation of arbitrary classification functions from experimental data, despite not having
a theory of the pattern characteristics.

The MLP is a network of computational units organized into one input layer, one or more
hidden layers, and an output layer. The possibility to set up different numbers of units allows
us to easily investigate different configurations to find a good tradeoff between model complex-
ity and accuracy of the results, which is particularly demanding for this application, as dis-
cussed in the previous sections regarding efficiency constraints.

The MLP supervised learning algorithm allows adapting free parameters used to weight the
connections of the model, in order to obtain the best approximation of the desired outputs (tar-
gets). This is typically realized in terms of minimization of an error (or loss) function on the
training dataset. In particular, in the classical least-mean-square approach, the error is com-
puted as the square of the difference between the output of the neural network (computed by a
Sigmoid Tanh function in our setting) and the target values over all the training samples. For
MLP, the backpropagation technique [28] is the most popular among the supervised training
algorithms. The backpropagation learning algorithm is based on a gradient descent of the loss
function through the weight space in order to reduce the error, allowing tuning the model free-
parameters for the training data. Variants including regularization approaches are considered
(see Section 3.1). The gradient descent is repeated until the improvement of the error is no lon-
ger significant. Once the model is trained, we evaluate the prediction on new sequences of
activities.

In order to deal with sequence (of sensor) data by MLP, we focus on the shifting window
models. In particular, we consider the Time Delay Neural Network models developed for
sequential data (e.g. in [17, 29, 30], and [31]), models which are based on a MLP architecture,
and specifically on two models: an Input Delay Neural Network (IDNN) [17], and IDNNs
inspired by characteristics of the Convolutional Neural Network (CNN) [32].

Input Delay Neural Network: The dynamic nature of the accelerometer sequences needs a
model that can recognize a movement pattern, irrespective of the precise location in time. Thus
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Fig 7. Input delay neural network (IDNN) with an input sequence. An input window of the signal sequence is used to feed each hidden unit. The input
window is shifted on the input sequence in order to analyze the entire sequence.

doi:10.1371/journal.pone.0151168.9007

the neural network needs to represent the relationship between events in time, without a partic-
ular temporal alignment, and the Input Delay Neural Network (IDNN) model satisfies this
requirement. Fig 7 shows the IDNN model. This model exploits a MLP architecture (all con-
nections are feedforward) with sequential inputs. In particular, in the IDNN model, the inputs
to hidden units consist of the outputs of the input units not only during the current time step,
but also during previous time steps. As shown in Fig 7, this is implemented using the input
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window which is shifted on the segment of sequence, which equivalently corresponds to a
delay in the units reading the history on the inputs.

The shifting window is highlighted over the segment of sequence, and it feeds the hidden
units of the IDNN. Different weights are used for each hidden unit, which in turn feeds the out-
put unit.

The window takes into account the temporal structure of the pattern defined in Section 2.5.2
to train the IDNN. Once trained, the IDNN is used to read the segments of sequences, over time,
using the same trained model. In this way the model implements the property of translation
invariance [33], identifying the characteristic pattern regardless of its position in the sequence.

Typically, due to the use of different weights for each hidden unit, the IDNN network
requires memory occupation for the storage of the weights that can easily exceed the memory
available in low-power devices (see details in Section 3.3). This prevents us from using the
IDNN with the original architecture in the Tortoise@ application. For this reason we also con-
sider IDNN inspired by the CNN, as discussed in the next section.

Local receptive fields in input window and weights sharing: The CNN is a biologically-
inspired trainable architecture that learns invariant features from data [32]. The model is intro-
duced in [34, 35] and explained in [36, 37]. Partially inspired by the CNN, we propose to mod-
ify the IDNN as described below.

The first variation is to exploit the local receptive fields (LRF) concept from CNN and
applying it inside the input window of the IDNN approach. The main idea of LRF is to connect
units in a layer to receive input from a set of units in a small neighbourhood of the previous
layer. Each hidden neuron scans the input using their local receptive field. A unit with local
receptive field obtains an inventory of features to represent the characteristics of the sub-win-
dow (as described by Lang et al. in [30]), without being burdened by an excessive number of
free parameters and reducing the memory space [17, 38]. Specifically, we identify four input
sub-patterns in the characteristic pattern (shown in Fig 6). Two of these sub-patterns identify
the ascent phases of the squared waves and the other two identify the descent phases, as shown
in Fig 8.

According to the split of the characteristic pattern, the sub-patterns are then mapped on the
input window of the neural network. We then divide the input window into four sub-windows
(each sub-windows is formed by 22 inputs). As a result of this specialization (namely IDNN
LRF), the hidden layer is composed of four hidden units, each of which is connected to a sub-
window by independent weights, and consequently is focused on a specific phase of the charac-
teristic pattern. As a result, each hidden unit takes 22 inputs and therefore the model requires
the storage of 22 weights for each of the four hidden units. This reduces the memory occupa-
tion for the weights of the classical IDNN, which require 90 weights for each hidden unit.

The second idea inspired by CNN is weight sharing (WS) among LRF hidden units, which
constrains the weight vectors of some hidden units to be equal. This further reduces the num-
ber of free parameters from the large amount of units sharing the same weight vector and
obtains a certain level of shift invariance (the detection of features regardless of their position).
We implement weight sharing between the sub-windows that make up the characteristic pat-
tern, i.e. two sub-windows of ascent and two sub windows of descent. This reshapes the IDNN
structure by reducing it to two hidden units: one for each phase, as shown in Fig 9.

In this way the memory occupation accounts for 22 weights of two hidden units each (half
of the memory occupation obtained with the sole LRF method). Table 2 shows the reduction of
input weight vector introducing sub-windows.

2.6.2 TartaNet filter for neural network output stream. The models described in the pre-
vious section classify each input window that makes up a segment of sequence. Hence, for each
segment, each model provides an output stream made up of classification values defined in the
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Table 2. The column # subwindow lists the sub-division of the input window related to the different
models. The column # weights per hidden unit lists the number of weights necessary for each hidden unit
(including one more for the bias) related to the different models according the dimension of their input field.

Model # sub-windows # weights per hidden unit
IDNN no sub-window 91
IDNN LRF 4 23
IDNN LRF + WS 2 23

doi:10.1371/journal.pone.0151168.t002

range [—1,+1], where a positive output value corresponds to an input window similar to the
characteristic pattern.

Fig 10a shows an example of output stream of IDNN LRF obtained with a segment of dig-
ging sequence. In this case many output values are in the range [0,+1]. Fig 10b shows the out-
put stream of the same neural network with a segment of walking sequence. In this case, most
of the output values are negative since the input windows do not correspond to the characteris-
tic pattern.

According to the description above, we use an output filter to classify the output stream of
the neural network as positive or negative over a segment. The TartaNet filter exploits three
features computed on the ANN output stream:

o NP(Number Positive): Number of positive values.

o MP(Mean Positive): Mean value of all positive values compared to all the output values: sum
of positive values / output stream length.

o MPT(Mean Positive Threshold): Mean value of the positive values above a threshold com-
pared to all the output: sum of the positive values above T/ output stream length.

Where:

o The threshold T was computed as mean of output positive values obtained with a validation
set. The value obtained for the cases discussed in Fig 10 is 0.2.

o The TartaNet filter evaluates each feature individually against a feature bound, to assess it as
a positive or negative response through a threshold.

The bounds of MP and MPT are useful to distinguish the output stream of one digging
sequence from one obtained with a walking sequence. The bounds of MP and MPT are identi-
fied by observing the results on a separate dataset, the validation set used in the model selec-
tion, explicated in Section 3.1. These results are shown in the histograms in Figs 11 and 12. The
histograms show the MP and MPT values obtained during the validation phase using fifteen
negative segments (non digging sequences) and fifteen positive segments (digging sequences).
Note in Fig 11 that the MP values of the output streams have a gap between the higher MP
value obtained with the negative segments and the lower MP value obtained with the positive
segments, that is between values for segments 15 and 16 in this case. Taking this gap into
account, we set the threshold for the the MP using the mean value between the two bounds.
Using the same approach, we found the bounds for MPT in Fig 12.

The value of NP identifies how many positive values are identified in the output stream.
The use of NP in the filter enables us to also identify output streams with a few positive
responses (which may have a low score over the average values used by MP and MPT) i.e. even
cases in which the segment include few neat positive patterns can be recognized as digging
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activity. We observed that, with the digging sequences, at least a quarter of values are positive
and above the selected 7, suggesting a threshold of 2 positive values. The filter then classifies
the segment of sequence as positive if and only if at least two features are positive (i.e. above
their threshold).

The TartaNet filter provides the classification of the neural network outputs, obtaining a
final result to classify the accelerometer data. It is worth noting that the reason for using a mod-
ular design combining an NN and an output filter applied to a segment of the sequences lies in
the requirement for efficiency, which underlies the aim of our approach. In particular, it allows
us to simplify the model and reduce the memory request for the ARS. Specifically, the use of
the output filter allows the reduction of the complexity of the NN model (up to only 2/4 hidden
units), and to avoid the need of a complex output layer by moving part of the recognition pro-
cess to the filter. Furthermore, the introduction of the segment of sequence (Section 2.5) allows
us to reduce the ARS memory overhead.

Finally, this design makes it possible to produce a result for each input segment (every 300
seconds), thus giving the opportunity to repeat the classification process several times on dis-
jointed segments (the entire digging sequence may last up to 2 hours). As a result we can reach
high global classification accuracies without requiring the learning over entire sequences and
therefore without additional memory costs in the implementation of the model. In other
words, the reliability of the classification (that can be confirmed over disjointed segments) is
not, in this way, at the cost of the dimension of the model architecture.

3 Results and Discussion

We performed the evaluation of the proposed models, IDNN, IDNN LRF, and IDNN LRF WS,
for TartaNet with the aim to find a good trade-off between their performance and applicability.

3.1 Model validation

For models training, validation and evaluation, we split the segment dataset into four parts:

o ANN training set: these segments are used to generate the positive and negative patterns to
train the neural networks. The resultant training set is composed of 134 balanced input pat-
terns of 90 seconds each (67 positive and 67 negative).

« ANN validation set: these segments are used to generate the validation set of patterns to con-
figure the neural networks (in our case 10 positive and 10 negative patterns of 90 seconds).

o Output filter validation set: these segments are applied to configure the thresholds of the out-
put filters. This dataset is composed of 30 segments of five minutes (15 positive and 15 nega-
tive), which are disjoint from the training and validation sets described above.

o Test set: the segments of this external dataset are used to check the overall performance of
the final TartaNet system on a set disjoint from the training and the validation sets. This final
evaluation is useful to estimate future behvaiour of the whole system. The test set is com-
posed of 56 segments of five minutes each (28 positive and 28 negative).

Each model is trained with the ANN training set, composed in equal parts of positive and
negative patterns. The ANN validation set is used to select the best configuaration (model
selection) on the basis of the classification accuracy with the distinct patterns. Then the output
filter is configured on its validation set to evaluate its behavior for the entire period of the seg-
ments. After the validation phases, we evaluate the performance of the selected models with
the test set (using new data, unseen in the training and validation phase).
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Table 3. Classification accuracy of the models.

Model Training(ANN) (standard deviation) Test (standard deviation)
IDNN 92.59% (+ 0.003) 96.24% (+ 1.68)
IDNN LRF 90.74% (+ 0.015) 95.51% (+ 0.68)
IDNN LRF WS 90.74% (£ 0.006) 94.34% (+ 0.84)

doi:10.1371/journal.pone.0151168.t003

Note that the corpus of ANN training and validation sets accounts for approximately 30%
of the entire data set, while the rest of the data is used for output filter validaton and test set
(the latter is approximately 42% of the data).

For the ANN training phase, we assume two different initialisation ranges for the initial
weights. The weights connections between the input layer and hidden layer are initialized
within the range of [-0.00001,0.00001]. The weights connections between the hidden layer and
the output layer are initialized within the range of [-0.01,0.01]. The number of units for the
input layer is fixed to 90, according to the dimension of the pattern, for all the ANN models.

The validation phases of the ANN allow us to configure the hyperparameters values, specifi-
cally the number of hidden units, learning rate, momentum, and a parameter of weight decay
[17]. The number of hidden units determines the size of the neural network and its learning
capability. This is a hyperparameter for the IDNN model, whereas for the other two models
there is a fixed structure related to sub-windows. For IDNN we considered values in the range
[1, 10]. In particular, we assessed IDNN as 5 units, which is the best trade-off for this model.
The learning rate controls the size of the change of weights during the iterations of the learning
phase. The momentum is used to stabilize the network convergence. We explored the learning
rate and the momentum in range of [0.0001,0.1] and [0,0.1], respectively. To include regulari-
zation in the ANN learning, which is useful to control the complexity of the model and hence
to improve the generalization capability of models, we use a weight decay approach. This corre-
sponds to the addition of a penalty term for complexity (based on the weight vector space
norm) to the square error in the loss function used in the model training phase [17] [39]. In
particular, this penalty term controls the weights magnitude, specifically the weight matrix
squared L2 norm, i.e. the sum of squares of weights values, penalizing models with extreme
parameter values. We explored the weight-decay hyperparameter in the range [0,0.001].

3.2 Performance analysis

The performance analysis asseses the classification accuracy measuered in terms of percentages
related to the size of the sets and the relative confusion matrix for each model.

The performance measurements of the three models take into account the averages of errors
computed on five different initializations of their weights for the ANN.

The accuracy obtained with each model is shown in Table 3. For the sake of completeness,
the table reports the statistics on the configuration phase on ANN training of patterns (column
labeled Training ANN), showing that all the models achieved more than 90% accuracy. Test
results correspond to the evaluation on external data for the whole of TartaNet. The table does
not report the validation accuracy of the output filter as it was 100% for each model, as per the
results from Subsection 2.6.2.

The IDNN model achieves an accuracy of 96% (with a standard deviation of approximately
1.7 among different model initilizations) in the test phase with 4% of error due to misclassified
segments showing as false positives, as shown in the confusion matrix Table 4.

With the IDNN LRF model we experience slightly inferior performance (95.5%), but it is
worth mentioning that the memory requirements are less than IDNN model (as we show in
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Table 4. Confusion matrix of IDNN on the test set.

Real / Predicted Digging Non-digging
Digging 28 0
Non-digging 2 26

doi:10.1371/journal.pone.0151168.t004

the section below). The analysis of errors shown in the confusion matrix (Table 5) shows 2
false positives, and 1 false negative.

The IDNN LRF WS model has a different behavior due to the high specialization of the hid-
den units. The 7% of failed classifications are mainly false positivies as in the other two models
(as shown in Table 6). The IDNN LRF WS accuracy (94%) is slightly below the other models.

As explained in Section 2.6, the classification on segments (300 seconds) can be repeated
several times (as digging needs a long period of continuous activity, up to a couple of hours).
Because of this we can increase the accuracy of the global Tortoise@ system in recognizing the
digging activity and virtually completely avoid the few false positives observed in the results.
The few false positive classifications (i.e. false digging) shown in the confusion matrices in all
the proposed models are obtained with walking sequences. Considering the IDNN LRF model
and the two false positives in Table 6 (segments T01 and T03 in the provided data set), we
tested the repetition of the classification after 10 minutes (two times the length of a segment)
that resulted in a non-digging outcome (segments T04 and T05 from the same walking
sequence that are classified as negative by the model) allowing us to avoid a Tortoise@ false
identification of the nesting phase. The confusion matrix in (Table 5) also shows a false nega-
tive in one segment: T098. This misclassification of a single segment does not avoid the possi-
bility of the recognition of the sequence as a digging sequence. Indeed, the rest of the sequences
are composed of positive patterns which can activate in any other instance over the course of
nesting the Tortoise@ identification of the nesting phase.

3.3 Applicability analysis

In this section we evaluate the three models according to their applicability in low-power
devices such as the one used in our data collection. The following discussion holds true for
more general cases, including the use of different devices, as it is related to efficiency, which is a
central aim for this study, as explained in the introduction. The main concern is the memory

Table 5. Confusion matrix of IDNN LRF on the test set.

Real / Predicted Digging Non-digging
Digging 27 1
Non-digging 2 26

doi:10.1371/journal.pone.0151168.t005

Table 6. Confusion matrix of IDNN LRF WS on the test set.

Real / Predicted Digging Non-digging
Digging 27 1
Non-digging 3 25

doi:10.1371/journal.pone.0151168.t006
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Table 7. Memory footprint. Each row in table relates bytes needed to memorize the input weight vectors of
hidden units and output units.

Model Memory footprint
IDNN 1844 byte
IDNN LRF 388 byte
IDNN LRF + WS 196 byte

doi:10.1371/journal.pone.0151168.t007

occupation of each model, since these devices have a small memory (typically a few kilobytes).
We evaluate the memory occupation of the neural network by considering the integer repre-
sentation of the inputs and the float representation of the weights.

Each of the three models need 90 integer values for the representation of the input window.
For the IDNN model, 90 float weights are needed for each hidden unit, and five float weights
for the output unit (including one more per each unit for the bias). The IDNN LRF and IDNN
LRF WS models, which use sub windows, need 22 float weights for each hidden unit. Note that
IDNN LRF has four hidden units, whereas IDNN LRF WS has two hidden units, and the
weights for the output unit are four and two, respectively. Table 7 shows the memory footprint
of the three models. IDNN has the highest memory footprint. IDNN LRF WS has a very low
memory footprint which, however, penalizes its classification performance, while IDNN LRF
has a slightly larger memory footprint than IDNN LRF WS, but it offers the best compromise
between memory footprint and classification performance.

4 The Tortoise@ System

TartaNet is part of Tortoise@, which is an autonomous system for large scale applications
aimed at identifying tortoise nests and rescuing eggs. Tortoise@ is a biologging system prelimi-
nary presented in [40] and [41], which enables an autonomous and assistive observation of tor-
toise digging behavior. It is a custom-made system based on sensors used to monitor
movement, and to locate nests. The system is organized into four steps:

o Environment monitoring: monitors the environment (light and temperature) to identify the
suitable conditions for the deposit eggs. This provides useful contextual information [42].

o Movement monitoring: data acquired by the accelerometer sensor are analyzed in order to
recognize the digging movements.

o Extended movement monitoring: at regular intervals and for a defined short period of time,
this phase is repeated to confirm the detection of digging activities, and thus to improve the
overall accuracy of Tortoise@, allowing us to set up a reliable system for digging recognition.

o Data communication: sends geographic coordinates to a remote user through a base station.

The steps of Movement monitoring and Extended movement monitoring are implemented
by the TartaNet activity recognition system. The four steps and the transition rules between
steps are described in Fig 13. All these steps are implemented within a single device, using local
processing for Tartnet to limit communications with the remote user only to the notification of
the position of the identified nests. Note that this design meets the requirement of energy effi-
ciency. The analysis of environmental conditions performed in step 1 limits the activation of
the neural network implemented in step 2 only to the cases in which the environmental condi-
tions are suitable for nesting. This also limits the recording of the acceleration data stream,
which occurs only when step 2 is active and lasts for 5 minutes. When step 2 identifies a digging
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Fig 13. A scheme of the Tortoise @ system. The three input signals (light, temperature and accelerometer),
the four steps (in the circular boxes) and the transitions between steps (labelled lines).

doi:10.1371/journal.pone.0151168.9013

activity, it then activates step 3 to extend the recognition of the activity in successive time slots
(see Section 2.6).

This helps improve the overall reliability of the classifier. If the digging activity is confirmed
by step 3 then the system promptly sends the information about the position of the nest to a
remote user in step 4. This local processing avoids the burden of having a continuous transmis-
sion of data for remote processing, thus granting a longer operational lifetime to the device.

In terms of ethological research the Tortoise@ system provides the opportunity to make
automatic an important procedure to assist tortoise populations. The high level of accuracy of
the Tortoise@ system makes it particularly suitable for protection programs. The collection of
eggs from the wild, the raising of hatchlings in captivity and the return of them to the wild
when they are big enough to have a high probability of surviving, is an experimental methodol-
ogy in conservation management. Examples of this methodology applied to birds and tortoises
are reported in [43-46].

The system also identifies information on suitable environmental conditions for nesting
and the behavioral characteristics of tortoises during the digging phase. It represents a new pos-
sibility for herpetologists to monitor and assist endangered tortoise populations.

Conclusions

This work was inspired by a concrete applicative problem concerning the protection of tor-
toises, and, in particular, by the need of biologging devices that may localize tortoises during
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the escavation of their nest to enable protection programs aiming at retrieving the eggs before
the hatching and at protecting the hatchlings in their first year of life.

Although simple in principle, the strong applicative constraints concerning the small size of
the device and of its batteries, and the long operational time (the nesting period may last a few
months), require innovative and very efficient activity recognition mechanisms that may fit a
class of low-power and low-memory devices.

With this requirement in mind, we addressed the scientific goal of finding efficient solutions
for the recognition of the digging activities of tortoises, leveraging on data produced by simple
sensors like accelerometers.

Our findings, based on real-data gathered in an experimental data collection campaign,
show that one dimensional accelerometer (appropriately oriented) is sufficient to catch the
characteristic pattern of movement executed by the tortoises during digging, that this pattern is
quite short (fits well in 90 samples of accelerometer for the species of tortoises of interest in
this study) and that this pattern can be recognized with high accuracy by relying only on few
neurons ANN based on the IDNN with Local Receptive Fields model.

This result exploits the modular organization of the proposed activity recognition method
(called TartaNet), which combines a very small ANN and a simple output filter. In particular,
this design finds a tradeoff between the accuracy and size of the ANN, while the output filter
leverages on a few repetitions of the pattern recognition process to achieve a very high overall
accuracy of the method.

The assessment of the scientific goal was achieved in a constructive way providing an effec-
tive and efficient model specialized for the digging recognition and supported by the experi-
mental results on real-data for the Mediterranean tortoises.

The promising results obtained with TartaNet will enable us to develop a low cost prototype
with reduced size, weight and battery pack that can be used on wild tortoises in a natural envi-
ronment with negligible invasiveness and on large-scale.

In terms of models development, in our future work we will investigate the use of the convo-
lutional neural network model by including further hidden (sub-sampling) layers in the neural
network. In this way, the classification procedure and the recognition algorithm would be inte-
grated together. At the cost of increasing of memory occupation, we would expect to further
reduce the sensitivity of the output to shifts and distortions trough the sub-sampling of such
approach and to achieve a full automatic tuning of the classification procedure.

Future interesting endeavors regard the possible comparison with alternative approaches
such as those based on Fourier transform.

Supporting Information

S1 File. Italian law about the use of animals for experimentation.
(PDF)

S2 File. Authorization of the museum of natural history.
(PDF)

S3 File. Authorization of Regional office.
(PDF)

$4 File. Authorization of UCMCM.
(PDF)

S1 Dataset. Dataset used for experimentation.
(Z1P)

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016 24 /27


http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151168.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151168.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151168.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151168.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0151168.s005

@’PLOS ‘ ONE

Localizing Tortoise Nests by Neural Networks

Author Contributions

Conceived and designed the experiments: AM RP RB SC. Performed the experiments: RP AM.
Analyzed the data: RP AM. Contributed reagents/materials/analysis tools: SC. Wrote the
paper: RB SC AM RP.

References

1.

10.

11.

12

13.

14.

15.

16.

17.
18.

Milligan H, Deinet S, McRae L, Freeman R Protecting Species: Status and Trends of the Earth’s Pro-
tected Areas. Preliminary Report. Zoological Society of London, UK. 2014. Available from: www.zs|.
org/sites/default/files/media/2014—11/protected_species_final_20141112.pdf

Zylstra ER, Steidl RJ, Jones CA, Averill-Murray RC. Spatial and temporal variation in survival of a rare
reptile: a 22-year study of Sonoran desert tortoises. Oecologia. 2013. pii: 173(1):107-116 doi: 10.
1007/s00442-012-2464-z PMID: 23011852

Gibbon JW, Scott DE, Ryan TJ, Buhimann KA, Tuberville TD, Metts BS, et al. The Global Decline of
Reptiles, Dj Vu Amphibians. BioScience. 2000. pii: 50(8):653—-666 doi: 10.1641/0006-3568(2000)
050%5B0653: TGDORD%5D2.0.CO;2

Thornton IWB. Darwin’s islands: a natural history of the Galpagos. American Museum of Natural His-
tory; 1971

Levasseur K, Tilley D, Hein R. Monitoring Eretmochelys imbricata: Tagging and Nesting Research on
the Hawksbill Turtle on Long Island, Antigua, West Indies. Wider Caribbean Sea Turtle Conservation
Network; 2011. Available from: http://www.jbhp.org/wp-content/uploads/2011/02/JBHP-2011-Annual-
Report.pdf

Conservancy T. Project Report: Ploughshare Tortoise, conservation efforts. Durrell Wildfire Conserva-
tion Trust and Madagascar National Parks and Turtle Conservancy and Andrew Sabin Family Founda-
tion and united states fish wildlife service; 2013. Available from: http://www.turtleconservancy.org/
projects/ploughshare-tortoise-report-web.pdf

Rutz C, Hays GC. New frontiers in biologging science. Biology letters. 2009. pii: 5:289-292 doi: 10.
1098/rsbl.2009.0089 PMID: 19324624

Kooyman GL. Genesis and evolution of bio-logging devices: 1963-2002. Mem Natl Inst Polar Res.
2004. pii: 58:15-22.

Ropert-Coudert Y, Beaulieu M, Hanuise N, Kato A. Diving into the world of biologging. Endangered
Species Research. 2009. pii: 10:21-27. doi: 10.3354/esr00188

Bograd SJ, Block BA, Costa DP, Godley BJ. Biologging technologies: new tools for conservation. Intro-
duction. Endangered Species Research. 2010. pii: 10:1-7. doi: 10.3354/esr00269

Ropert-Coudert A'Y and Kato, Grmillet D, Crenner F. Bio-logging: recording the ecophysiology and
behaviour of animals moving freely in their environment. Sensors for Ecology: Towards Integrated
Knowledge of Ecosystems. 2012. pii: 17—-41.

Shamoun-Baranes J, Bom R, van Loon EE, Ens BJ, Oosterbeek K, Bouten W. From Sensor Data to
Animal Behaviour: An Oystercatcher Example. PLoS ONE. 2012. pii: 7(5):€37997. doi: 10.1371/
journal.pone.0037997 PMID: 22693586

Kays R, Jansen PA, Knecht EMH, Vohwinkel R, Wikelski M. The effect of feeding time on dispersal of
Virola seeds by toucans determined from GPS tracking and accelerometers. Acta Oecologica. 2011.
pii: 37(6):625—-631. doi: 10.1016/j.actao.2011.06.007

Martiskainen P, Jrvinen M, Skn JP, Tiirikainen J, Kolehmainen M, Mononen J. Cow behaviour pattern
recognition using a three-dimensional accelerometer and support vector machines. Applied Animal
Behaviour Science. 2009. pii: 119(1):32-38. doi: 10.1016/j.applanim.2009.03.005

Gao L, Campbell HA, Bidder OR, Hunter J. A Web-based semantic tagging and activity recognition sys-
tem for species’ accelerometry data. Ecological Informatics. 2013. pii: 13:47-56. doi: 10.1016/j.ecoinf.
2012.09.003

Ladha C, Hammerla N, Hughes E, Olivier P, Pltz T. Dog’s life: wearable activity recognition for dogs. In:
Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing.
ACM; 2013. pii: 415-418.

Haykin S. Neural networks: a comprehensive foundation. 3th edition. Prentice Hall PTR; 2009.

Bidder OR, Campbell HA, Gmez-Laich A, Urg P, Walker J, Cai Y, et al. Love thy neighbour: automatic
animal behavioural classification of acceleration data using the k-nearest neighbour algorithm. PloS
one. 2014. pii: 9(2):e88609. doi: 10.1371/journal.pone.0088609 PMID: 24586354

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016 25/27


http://www.zsl.org/sites/default/files/media/2014&minus;�11/protected_species_final_20141112.pdf
http://www.zsl.org/sites/default/files/media/2014&minus;�11/protected_species_final_20141112.pdf
http://dx.doi.org/10.1007/s00442-012-2464-z
http://dx.doi.org/10.1007/s00442-012-2464-z
http://www.ncbi.nlm.nih.gov/pubmed/23011852
http://dx.doi.org/10.1641/0006-3568(2000)050%5B0653:TGDORD%5D2.0.CO;2
http://dx.doi.org/10.1641/0006-3568(2000)050%5B0653:TGDORD%5D2.0.CO;2
http://www.jbhp.org/wp-content/uploads/2011/02/JBHP-2011-Annual-Report.pdf
http://www.jbhp.org/wp-content/uploads/2011/02/JBHP-2011-Annual-Report.pdf
http://www.turtleconservancy.org/projects/ploughshare-tortoise-report-web.pdf
http://www.turtleconservancy.org/projects/ploughshare-tortoise-report-web.pdf
http://dx.doi.org/10.1098/rsbl.2009.0089
http://dx.doi.org/10.1098/rsbl.2009.0089
http://www.ncbi.nlm.nih.gov/pubmed/19324624
http://dx.doi.org/10.3354/esr00188
http://dx.doi.org/10.3354/esr00269
http://dx.doi.org/10.1371/journal.pone.0037997
http://dx.doi.org/10.1371/journal.pone.0037997
http://www.ncbi.nlm.nih.gov/pubmed/22693586
http://dx.doi.org/10.1016/j.actao.2011.06.007
http://dx.doi.org/10.1016/j.applanim.2009.03.005
http://dx.doi.org/10.1016/j.ecoinf.2012.09.003
http://dx.doi.org/10.1016/j.ecoinf.2012.09.003
http://dx.doi.org/10.1371/journal.pone.0088609
http://www.ncbi.nlm.nih.gov/pubmed/24586354

@’PLOS ‘ ONE

Localizing Tortoise Nests by Neural Networks

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Oczak M, Viazzi S, Ismayilova G, Sonoda LT, Roulston N, Fels M, et al. Classification of aggressive
behaviour in pigs by activity index and multilayer feed forward neural network. Biosystems Engineering.
2014. pii: 119:89-97. PLOS 20/23 doi: 10.1016/j.biosystemseng.2014.01.005

Nathan R, Spiegel O, Fortmann-Roe S, Harel R, Wikelski M, Getz WM. Using tri-axial acceleration data
to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon
vultures. The Journal of experimental biology. 2012. pii: 215(6):986—996. doi: 10.1242/jeb.058602
PMID: 22357592

Technology C. MICAz: wireless measurement system. Crossbow; 2007. Available from: http://www.
openautomation.net/uploadsproductos/micaz-datasheet.pdf

Baronti P, Pillai P, Chook VW, Chessa S, Gotta A, Hu YF. Wireless sensor networks: A survey on the
state of the art and the 802.15. 4 and ZigBee standards. Computer communications. 2007. pii: 30
(7):1655-1695. doi: 10.1016/j.comcom.2006.12.020

Soltis J, Wilson RP, Douglas-Hamilton I, Vollrath F, King LE, Savage A. Accelerometers in collars iden-
tify behavioral states in captive African elephants Loxodonta africana. Endangered Species Research.
2012. pii: 18(3):255-263. doi: 10.3354/esr00452

Grnewlder S, Broekhuis F, Macdonald DW, Wilson AM, McNutt JW, Shawe-Taylor J, et al. Movement
activity based classification of animal behaviour with an application to data from cheetah (Acinonyx
jubatus). PLoS ONE. 2012. pii: 7(11):e49120. doi: 10.1371/journal.pone.0049120

Rogoza V, Sergeev A. The Comparison of the Stochastic Algorithms for the Filter Parameters Calcula-
tion. In: Advances in Systems Science. Springer. 2014. pii: 241-250.

Smith SW. The Scientist Engineer’s Guide to Digital Signal Processing. California Technical Publish-
ing. 1997.

Lara OD, Labrador MA. A Survey on Human Activity Recognition using Wearable Sensors. Communi-
cations Surveys Tutorials. 2013. pii: 15(3):1192-1209. doi: 10.1109/SURV.2012.110112.00192

Rumelhart DE, Hinton GE, Williams RJ. Learning Internal Representations by Error Propagation. Pro-
ceedings of the IEEE. 1985. pii: 1:318-362.

Waibel A, Hanazawa T, Hinton G, Shikano K, Lang KJ. Phoneme recognition using time-delay neural
networksn. Acoustics, Speech and Signal Processing. 1989. pii: 37(3):328-339. doi: 10.1109/29.
21701

Lang KJ, Waibel AH, Hinton GE. A time-delay neural network architecture for isolated word recognition.
Neural Networks. 1990. pii: 3(1):23—43. doi: 10.1016/0893-6080(90)90044-L.

Sejnowski TJ, Rosenberg CR. Parallel networks that learn to pronounce English text. Complex sys-
tems. 1987. pii: 1(1):145-168.

LeCunY, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE. 1998. pii: 86(11):2278-2324. doi: 10.1109/5.726791

Waibel A. Modular construction of time-delay neural networks for speech recognition. Neural computa-
tion. 1989. pii: 1(1):39-46. doi: 10.1162/neco.1989.1.1.39

LeCun'Y, Bengio Y. Convolutional networks forimages, speech, and time series. The handbook of
brain theory and neural networks. 1995. pii: 3361:255-258.

LeCun'Y, Jackel LD, Bottou L, Brunot A, Cortes C, Denker JS, et al. Learning algorithms for classifica-
tion: A comparison on handwritten digit recognition. International conference on artificial neural net-
works. 1995. pii: 60:261-276. PLOS 21/23

Sermanet P, Chintala S, LeCun Y. Convolutional neural networks applied to house numbers digit clas-
sification. 21st International Conference on Pattern Recognition (ICPR). 2012. pii: 3288-3291.

LeCunY, Kavukcuoglu K, Farabet C. Convolutional networks and applications in vision. International
Symposium on Circuits and Systems (ISCAS). 2010. pii: 253-256.

Lpez-Risueo G, Grajal J, Haykin S, Daz-Oliver R. Convolutional neural networks for radar detection. In:
Artificial Neural Networks. Springer. 2002. pii: 1150—1155.

Hastie T, Tibshirani R, Friedman J, Hastie T, Friedman J, Tibshirani R. The elements of statistical learn-
ing. vol. 2. Springer. 2009.

Barbuti R, Chessa S, Micheli A, Pallini D, Pucci R, Anastasi G. Tortoise @: a system for localizing tor-
toises during the eggs deposition phase. Atti Societa Toscana Scienze Naturali, memorie B. 2012. pii:
119:89-95. Available from: www.stsn.it/Atti2012/Barbuti.pdf

Barbuti R, Chessa S, Micheli A, Pucci R. Identification of nesting phase in tortoise populations by neural
networks. Extended Abstract. The 50th Anniversary Convention of the AISB, selected papers. 2014.
pii: 62—65.

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016 26/27


http://dx.doi.org/10.1016/j.biosystemseng.2014.01.005
http://dx.doi.org/10.1242/jeb.058602
http://www.ncbi.nlm.nih.gov/pubmed/22357592
http://www.openautomation.net/uploadsproductos/micaz-datasheet.pdf
http://www.openautomation.net/uploadsproductos/micaz-datasheet.pdf
http://dx.doi.org/10.1016/j.comcom.2006.12.020
http://dx.doi.org/10.3354/esr00452
http://dx.doi.org/10.1371/journal.pone.0049120
http://dx.doi.org/10.1109/SURV.2012.110112.00192
http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1109/29.21701
http://dx.doi.org/10.1016/0893-6080(90)90044-L
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.1989.1.1.39
http://www.stsn.it/Atti2012/Barbuti.pdf

@’PLOS ‘ ONE

Localizing Tortoise Nests by Neural Networks

42,

43.

44.

45.

46.

Bettini C, Brdiczka O, Henricksen K, Indulska J, Nicklas D, Ranganathan A, et al. A survey of context
modelling and reasoning techniques. Pervasive and Mobile Computing. 2010. pii: 6(2):161—180. doi:
10.1016/j.pmcj.2009.06.002

Kuehler C, Lieberman A, Oesterle P, Powers T, Kuhn M, Kuhn J, et al. Development of restoration tech-
niques for Hawaiian thrushes: collection of wild eggs, artificial incubation, hand-rearing, captive-breed-
ing, and re-introduction to the wild. Zoo Biology. 2000. pii: 19(4):263-277. doi: 10.1002/1098-2361
(2000)19:4%3C263::AID-Z004%3E3.0.CO;2-G

Colbourne R, Bassett S, Billing T, McCormick H, McLennan J, Nelson A, et al. The development of
Operation Nest Egg as a tool in the conservation management of kiwi. Science and Technical Pub.
Department of Conservation. 2005.

Mitrus S. Headstarting in European pond turtles (Emys orbicularis): Does it work? Amphibia-Reptilia.
2005. pii: 26(3):333-341. doi: 10.1163/156853805774408504

Aguilera WT, Mlaga J, Gibbs JP. Giant tortoises hatch on Galapagos island. strategies. 2013. pii:
497:306-308.

PLOS ONE | DOI:10.1371/journal.pone.0151168 March 17,2016 27/27


http://dx.doi.org/10.1016/j.pmcj.2009.06.002
http://dx.doi.org/10.1002/1098-2361(2000)19:4%3C263::AID-ZOO4%3E3.0.CO;2-G
http://dx.doi.org/10.1002/1098-2361(2000)19:4%3C263::AID-ZOO4%3E3.0.CO;2-G
http://dx.doi.org/10.1163/156853805774408504

