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Abstract
Dryland pastoralism has long attracted considerable attention from researchers in diverse

fields. However, rigorous formal study is made difficult by the high level of mobility of pasto-

ralists as well as by the sizable spatio-temporal variability of their environment. This article

presents a new computational approach for studying mobile pastoralism that overcomes

these issues. Combining multi-temporal satellite images and agent-based modeling allows

a comprehensive examination of pastoral resource access over a realistic dryland land-

scape with unpredictable ecological dynamics. The article demonstrates the analytical

potential of this approach through its application to mobile pastoralism in northeast Nigeria.

Employing more than 100 satellite images of the area, extensive simulations are conducted

under a wide array of circumstances, including different land-use constraints. The simula-

tion results reveal complex dependencies of pastoral resource access on these circum-

stances along with persistent patterns of seasonal land use observed at the macro level.

Introduction
Drylands occupy more than 40% of the earth’s land surface. These enormous areas, mostly
found in Africa and Asia, are home to several hundred million pastoralists, who more or less
rely on raising livestock such as camels, cattle, sheep and goats for their livelihoods [1–3]. In
large areas of these drylands, rainfall patterns are highly unpredictable, rendering rangeland
ecologies spatially heterogeneous and temporally variable [4–6]. In those harsh environments,
the constant access to natural resources—such as pasture and water for the livestock—naturally
constitutes the dominant concern for pastoralists. Anthropologists and ecologists have docu-
mented a wide variety of adaptation strategies that pastoralists have developed for attaining
this difficult objective [7–12]. A high level of mobility can almost always be found in such a list
of strategies. From daily herding around a temporary camping site to seasonal movements
between ecological zones, pastoralists move on a varying degree of spatial and temporal scales.
Despite the increasing trend toward sedentarization [13], many of them still move around
extensive spaces, exploiting spatially and temporally variable resources with their livestock.

PLOSONE | DOI:10.1371/journal.pone.0151157 March 10, 2016 1 / 30

OPEN ACCESS

Citation: Sakamoto T (2016) Computational
Research on Mobile Pastoralism Using Agent-Based
Modeling and Satellite Imagery. PLoS ONE 11(3):
e0151157. doi:10.1371/journal.pone.0151157

Editor: Krishna Prasad Vadrevu, University of
Maryland at College Park, UNITED STATES

Received: October 3, 2015

Accepted: February 24, 2016

Published: March 10, 2016

Copyright: © 2016 Takuto Sakamoto. This is an
open access article distributed under the terms of the
Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All the simulation
outputs described in the article are available from
Dryad Digital Repository (DOI:10.5061/dryad.s4h26).
The source code of the simulation model, which was
used to generate the above data, are available from
GitHub (URL: https://github.com/takutos/nomads).

Funding: Japan Society for the Promotion of Science
(JSPS) provided financial support (JSPS KAKENHI;
URL: http://www.jsps.go.jp/english/index.html; Grant
Numbers: 24243023, 24730139, 26-9525 and
15KT0137) to TS. TS also acknowledges support
provided by the research group of Professor Dirk
Helbing at ETH Zürich, who is funded by the
European Commission through the European

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0151157&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5061/dryad.s4h26
https://github.com/takutos/nomads
http://www.jsps.go.jp/english/index.html


The high level of mobility over constantly changing landscapes turns pastoral societies and
their surroundings into highly interactive and dynamic systems. This circumstance, in turn,
has made it difficult to answer some of the essential questions about pastoral livelihoods in a
rigorously formal manner: how do pastoralists move in a given spatial environment for a
given period of time, and how much in natural resources do they obtain for their livestock by
moving as they do? General and quantitative answers to these questions are mostly lacking in
the otherwise rich and interdisciplinary literature on pastoralism [8,14,15], except for several
studies that analyze pastoral resource access in limited spatial and temporal confines [16,17].
This literature gap has significant practical implications. Pastoralists around the globe have
long been struggling with a variety of potentially disrupting forces, such as consolidation of
the state territorial orders and expansion of agricultural lands, which can seriously constrain
their land use [18, 19]. Without a solid understanding of pastoral mobility and resource
access, an accurate assessment of the impact of such factors on pastoral livelihoods and their
sustainability cannot be achieved.

One promising development in this regard is the recent trend toward quantitative measure-
ment of pastoral movements and land-use patterns. Although these patterns have long been
the object of detailed description among anthropologists and geographers [9,11,20,21], a grow-
ing number of researchers now utilize advanced technologies such as satellite imagery and GPS
to directly measure the movements of pastoralists and their livestock [22–29]. Most of these
studies focus on the movements of a relatively small number of herds at relatively small spatial
and temporal scales. For example, in a recent study from northern Cameroon [26], 21 cattle
tracks were obtained during dairy herding, and these samples showed a mean grazing radius of
4.4 km and a mean temporal duration of approximately 11 hours. Other studies are more
extensive, in both the temporal and spatial dimensions. For example, combining direct tracking
of hundreds of cattle herds with thousands of interviews with Fulani herders in western Niger,
another recent study was able to reproduce some 6500 grazing itineraries across vast territories
over a two-year period [30]. In principle, these methods can be employed in other cases for the
rigorous examination of pastoral mobility on different spatio-temporal scales.

However, these largely data-driven approaches, which are based on direct measurement of
pastoral movements, have their own limitations. From characteristic climate patterns to domi-
nant socio-economic institutions, dryland pastoralists live in quite diverse contexts. Even in
the same place, substantial inter-annual and intra-annual variations in the rainfall, which drive
the ‘non-equilibrium’ ecological dynamics [4–6,31], constantly force adjustments and adapta-
tion on their behavior. These factors show that an enormous amount of tracking data, which is
extensive both in temporal and spatial dimensions, might be necessary to derive any robust
statement about pastoral mobility and resource access. Given the sheer amount of data that is
required, the limited number of grazing itineraries obtained from limited temporal and spatial
confines would be likely to be incomplete, whereas efforts to keep up with those requirements
would be equally likely to be costly and, perhaps, prohibitively costly.

Thus, a complementary and, at the same time, more cost-effective approach is needed along
with the data-driven methods discussed above. This article presents such an approach. The
approach builds on the combined use of two computational methods: agent-based modeling
and satellite image analysis. The former makes it possible to explicitly simulate pastoral move-
ment patterns under different circumstances and to compute the resultant resource access that
pastoralists can achieve under each circumstance. The latter generates a series of empirical spa-
tial data that adds realism to the simulations mentioned above, with monthly spatial distribu-
tions of dryland vegetation over an extended period of time. Thus, the present approach
embraces a higher level of spatial and temporal variability in rangeland ecologies than previous
approaches allow, and, on this basis, enables one to rigorously examine pastoral movements and
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resource access in a wide range of possible situations. The article concretely demonstrates these
advantages by applying the methods to the analysis of mobile pastoralism in northeast Nigeria.

Computational modeling, including the agent-based modeling employed here, has always
had some limited presence in the literature on pastoralism [32–37]. In this methodological tra-
dition, the present study has several distinctive characteristics. First, it has a sharp focus on pas-
toral mobility and land use, which necessarily entails a spatially explicit modeling approach.
Second, among the models that have similar substantive focus and methodological orientation
[38–42], the model presented here achieves a fuller level of integration with empirical spatial
data, especially those derived from satellite imagery. This makes it possible to tap the fruits of a
growing body of research that attempts to derive the patterns and dynamics of dryland ecolo-
gies from different sources of satellite imagery [43–48]. Third, while pursuing the empirical rel-
evance in this way, the model still retains a simple structure and behavioral logic like some of
the formal models that deal with spatial foraging behavior in general [49,50]. This greatly helps
to achieve a clear theoretical understanding of the process that governs pastoral movements
and resource access.

This article is organized as follows. The next section details the suggested approach, describ-
ing the agent-based model of mobile pastoralists and the satellite-derived datasets used as
inputs to the model. Taking northeast Nigeria as a focus area, the section then introduces
multi-temporal data on the vegetation distribution in the area and lays out a plan for simula-
tions that employ these data. The ensuing section reports the main results of these simulations.
Among them is the highly structured spatio-temporal pattern of land use that the model gener-
ates in a wide range of parameter conditions. The section describes this pattern along with
other aspects of the model’s behavior and derives their implications for understanding mobile
pastoralism in northeast Nigeria. Some of the major issues that are threatening the pastoralism
there, including massive cropland expansion, are also examined in this context. Last, the final
section concludes the arguments and suggests a further step to consolidate the approach.

Materials and Methods
The basic idea behind the present approach is as follows: First, we construct simple mobile
agents that exhibit, subject to stochastic perturbations, reasonable adaptive responses to the
surrounding environment and its changes; second, we allow these virtual agents to move
around, interact with each other, and adapt themselves in the spatial environment that is mod-
eled based on the realistic ecological dynamics that are derived from a series of satellite images;
and third, we replicate this process many times and in a wide array of parametric settings to
obtain variation with regard to the movement patterns and resource access of the agents. The
result is a firm basis for the understanding of mobile pastoralism, which can be further consoli-
dated with the complementary use of other existing approaches, including detailed tracking of
actual pastoralists (see the last section).

Model Description
A simple agent-based model describes the adaptive behavior of mobile pastoralists and formal-
izes their interactions among themselves as well as with a dryland environment. The virtual
agents that represent pastoralists are hereafter called NOMADs, while the simulated environ-
ment is called ENV. This model is coded in Python 2.7.5 and is downloadable from GitHub
[51]. The model requires some of the widely used Python extensions for its running: SciPy
(0.15.1), Matplotlib (1.4.3), and the GDAL Python package (2.0.0). Its implementation partially
depends on a Python-coded simulator that was developed in [52], which is also publicly avail-
able online [53].
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In the model, ENV is a two-dimensional grid space that represents a certain tract of dryland.
It has a configuration of grazing resources that is both spatially and temporally variable. The
distribution and dynamics of these resources are derived from empirical data in the way
described in the next sub-section. NOMAD agents move around in this potentially variable,
uncertain environment, seeking grazing resources for their livestock, whose existence is implic-
itly assumed in the model. Actual pastoralists, especially their highly mobile portion, constantly
move over an extensive area of rangeland in response to seasonal and yearly changes in the
availability of pasture and water around their locations [4,9–11,20,21]. To ensure that their
livestock gets the best grazing locations available, these pastoralists closely monitor rangeland
conditions in the surrounding landscape and sometimes even dispatch ‘scouts’ to seek informa-
tion that is further afield [9,11]. Based on the pieces of information that are thereby collected
and stored, the pastoralists adaptively change their movement patterns over time. The behav-
ioral rule of a NOMAD, whose flow is illustrated in Fig 1, concisely captures these most essen-
tial aspects of mobile pastoralism.

The key component of this rule is a ROUTE, which is a planned route of a NOMAD’s
monthly movements over a year. Each movement of each agent takes place while the agent
follows its ROUTE month by month, whereas the adaptation of the agent to changing condi-
tions in ENV occurs through an update of this ROUTE at some intervals of years. Reflecting
the generally closed nature of transhumance paths followed by actual pastoralists, a ROUTE is
formulated as a single cycle (denoted as ρ) that connects a series of two-dimensional integer
coordinates (12 in total): each coordinate denotes the location of a grid cell where the
NOMAD concerned stays each month of the year. A simulation run starts from a somewhat
extreme situation in which each agent is ‘settled’ in a random location in ENV. For example, if
an initially assigned location for a NOMAD is (6, 5), then the initial ROUTE for this agent
becomes a repetition of this set of numbers, (6, 5)!(6, 5)!. . .!(6, 5), from January to
December.

Two sources of information strongly condition the ROUTE updating process: grazing and
scouting. First, a monthly visit to a specific location and the ensuing grazing activities there
give a NOMAD firsthand information about how much resource is available around the area
at a particular time. Specifically, each agent assesses the condition of a visited location during
the month of the visit by computing a mean value of the resources available within some
specified range (GRAZE RANGE) around that location in that month. Second, with a speci-
fied probability per month (SCOUTING FREQUENCY), a NOMAD also scouts the sur-
rounding landscape to collect the information on local resource availability. Then, the
NOMAD randomly selects one site within a specified distance (SCOUTING RANGE) from
its grazing site and assesses the condition of the selected site and its surrounding area largely
in the same way as in the case of grazing.

In either case, if the agent has visited or scouted the same site in the same month before, the
gathered information is integrated with that of the preceding visit, and the recorded resource
availability becomes the time-mean value. Moreover, there can be an overlap of grazing areas
between two or more NOMADs. In this case, the calculation of resource access for each of the
agents concerned is adjusted in such a way that the resources in the overlapped area are equally
shared among them. For example, if three agents graze one site with a resource value of 0.6 in
the same month, then the amount of resources that are available to each of the agents in that
month is computed to be 0.2. On the other hand, too many agents can degrade ENV itself.
Each site in ENV can host a certain number of NOMADs over a year (CARRYING CAPAC-
ITY). If the accumulated number of NOMADs that have visited a site exceeds this capacity,
then the available resources there become zero in the remaining months of the year concerned.
These simple rules exhaust the possible direct interactions among NOMADs and ENV.
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Next, the ROUTE update process proceeds as follows. At specified intervals of years
(INTERVALS OF ROUTE UPDATE), a NOMAD selects its next ROUTE among the specified
number of alternative yearly paths (NUMBER OF ALTERNATIVE ROUTES). The alternatives
include the existing ROUTE that the agent has followed thus far; otherwise, they are generated
through a random combination of the sites that the agent already visited or scouted. Each of
these alternatives is then assessed through the calculation of its potential. Formally, the poten-
tialH(ρi) for the i-th alternative path ρi is a linear combination of the (negative) expected avail-
ability of grazing resources and the costs incurred during the agent’s movement along the path,

Fig 1. The flow of the NOMAD behavior.

doi:10.1371/journal.pone.0151157.g001
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as the following equation represents:

HðriÞ ¼ að�
X12

m¼1

RmðriðmÞÞ þ
X12

m¼1

CðriðmÞ; riðmþ 1ÞÞÞ þ b ð1Þ

In Eq 1, ρi(m) denotes a site that ρi dictates the agent to visit in the m-th month, assuming
ρi(13) = ρi(1). The function Rm returns the time-mean of the grazing resources that are avail-
able around that site in the m-th month, which is directly derived from the information that
the agent has gathered in the way mentioned above. The function C, on the other hand, com-
putes the movement cost that is incurred while the agent moves between two adjacent sites
along ρi. C is formulated here in the simplest possible way: if the distance between the two adja-
cent sites exceeds a certain mobility threshold (MOVE RANGE), then the agent suffers a very
large ‘penalty’ (PENALTY TOMOVEMENT BEYOND RANGE). The overall movement cost
along ρi is the sum of these penalties, which effectively discourages physically unrealistic
ROUTEs. Last, α and β are scaling parameters. In the following simulations, they are fixed at
2.0 and 1.0, respectively.

The selection of a new ROUTE takes place stochastically using the following probability dis-
tribution P(ρi):

PðriÞ ¼
expð�HðriÞ=EðHðr1ÞÞÞ

XN

j¼1

expð�HðrjÞ=EðHðr1ÞÞÞ
ð2Þ

Function (2) gives the probability that among all of the alternatives considered (N in total),
the agent will adopt a path ρi as its next ROUTE. E controls the amount of random perturba-
tion (STOCHASTIC NOISE) that is applied to this ROUTE selection. It depends on the poten-
tial of the current ROUTE (denoted as ρ1), which allows dynamic and flexible adaptation.
Here, a crude form of an ‘annealing’ process is assumed for the adaptation of each agent: the
noise E takes a minimum value (1.0-6 in the following simulations) whenever the potential H
(ρ1) becomes sufficiently small (0.0), while E takes a maximum value (1.0-2) whenever H(ρ1)
reaches a certain high value (1.0). The dependence is linear between these two extremes.

The NOMAD rule described so far represents the micro-behavior of actual pastoralists in a
highly abstract fashion. The rich ethnological literature on pastoralism reveals the latter’s sub-
stantial diversity and complexity [9,11,12,14,15,20,21,54]. Thus, various alternative specifica-
tions of the model are naturally conceivable. For example, there are few empirical reasons to
believe that actual pastoralists compute costs incurred during their movements in the way that
the assumed functional form of C implies; other forms such as linear dependence on the dis-
tance moved are at least equally plausible. Similarly, the assumption that the agents automati-
cally share grazing resources whenever they stay on the same site might sound somewhat
unrealistic given the prevalence of intense resource competitions among pastoral communities
in some places including East Africa [55,56,57]. Therefore, the model’s rule needs to be con-
stantly adjusted against the specific context to which it is applied. It would also be helpful to
actually implement and test alternative specifications of the model to examine the effects of
their differences on the model’s macro-behavior. Some preliminary results of such an investi-
gation are reported in Supporting Information (S1 Table).

Input Data Description
Empirical distributions of grazing resources can be measured by different vegetation indices,
which are computed from multi-spectral reflectance measurements that are derived from
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remote-sensing data. Among these indices, the following Normalized Difference Vegetation
Index (NDVI) is the most widely used [48, 58]:

NDVI ¼ NIR� R
NIRþ R

;

where NIR and R stand for the spectral reflectance in the near-infrared and visible red bands,
respectively. NDVI varies between -1.0 and +1.0 and measures the ‘greenness’ of the vegetation
that is found in a given pixel of a remotely sensed image. This surprisingly simple formula has
been shown to have strong correlations with various quantitative aspects of vegetation
resources on the ground, including photosynthetic capacity, herbaceous biomass and vegeta-
tion cover, which have extensive applications to dryland ecologies [23,44,45,59–63]. As vegeta-
tion growth in these ecologies is known to closely follow rainfall amount [6,64], NDVI can also
be employed as a useful surrogate for the availability of water resources, especially at relatively
large spatial and temporal scales [65].

In the simulations below, the NDVI dataset derived fromMODIS (Moderate Resolution
Imaging Spectroradiometer) satellite imagery is employed to form resource distributions in
ENV. MODIS, a multispectral sensor aboard the Terra and Aqua satellites, captures each area
on the earth at a relatively high frequency (a maximum of four times per day), making it an
ideal data source for temporally fine-grained simulations such as those conducted here. NASA
(National Aeronautics and Space Administration) provides a wide range of spatial datasets that
are processed fromMODIS imagery, including vegetation index products [66]. These datasets
are publicly available at USGS (United States Geological Survey)’s EarthExplorer portal [67].
The specific dataset used is Vegetation Indices Monthly L3 Global 1 km (MYD13A3) [68]. This
dataset contains a series of composite NDVI data with a spatial resolution of 1 km x 1 km per
pixel and a temporal resolution of one month. The monthly composite data were selected over
temporally more resolute data products because the former effectively removes the distorting
effects of clouds that the original images might contain. Furthermore, the map projection is
sinusoidal. These data properties remain unchanged in the following simulations, whereas the
original format of the MODIS products, HDF-EOS, is converted to the GeoTIFF format using
multispectral image analysis freeware called MultiSpec 3.5 [69]. The same software is employed
for processing the GeoTIFF outputs that are derived from the simulation runs.

Although MYD13A3 is a highly processed, generally reliable dataset on the vegetation con-
ditions on earth, some adjustments are needed for its use as an input to the agent-based model
of mobile pastoralism. NDVI mostly measures quantitative aspects of vegetation resources
such as biomass. Pastoralists and their livestock, on the other hand, have specific preferences
for these resources, which cannot easily be captured by the quantitative aspects alone. For
example, cattle herders most of the time prefer grasslands to woodlands, even though the latter
generally show higher NDVI values than the former. To address this consideration and other
types of discrepancies, two additional steps of processing are applied to the NDVI data.

First, negative values of NDVI are set to 0.0. These values typically indicate residual ele-
ments of cloud cover. Otherwise, given the spatial resolution of the data, they denote relatively
large areas of water or snow surface, which are either inaccessible or irrelevant to mobile pasto-
ralists. In any case, as far as the present study is concerned, the corresponding sites remain a
quite tiny portion of the total pixels (0.1–0.2%). Second, NDVI values are allowed to be
adjusted depending on the land cover type of the site that is concerned. More specifically,
NDVI values at the sites whose land types are not preferred by pastoralists are discounted by
some specified factor. Here, another MODIS data product is utilized: Land Cover Type Yearly
L3 Global 500 m SIN Grid (MCD12Q1), which classifies each pixel (at a resolution of 500 m)
over a one-year composite of MODIS images according to major land classification criteria
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[70]. Among the five different classification schemes that are covered in this dataset, the Uni-
versity of Maryland (UMD) scheme (Land Cover Type 2) provides a sufficiently detailed and
relevant land cover classification. In the simulations described below, the NDVI values are uni-
formly reduced by 50% unless the sites concerned are classified as ‘grasslands’, ‘savannas’, or
‘woody savannas’ in the UMD scheme (see S1 Table for other specifications). The procedure
for these adjustments is fully integrated with the simulation model and is provided with various
control options.

Simulation Examples
Given the near-global coverage of the MODIS data products, the simulation model can be run
in almost any geographical setting. In the following, the area focus is on a part of northeastern
Nigeria: the 300 km x 300 km area that is indicated in the map in Fig 2. This mostly semiarid
area, which spans the Sudano-Sahelian and Sudanian ecological zones from the north to the
south, has long been home to Fulani pastoralists. In fact, it contains one of the study areas in
which British anthropologist Stenning conducted his classical work on Fulani transhumance
more than 60 years ago [21,71]. Other researchers also wrote extensively about Fulani

Fig 2. The area of study. The shaded square indicates the study area. The reference map of Nigeria was
taken from the CIA’s World Factbook (https://www.cia.gov/library/publications/the-world-factbook/geos/ni.
html).

doi:10.1371/journal.pone.0151157.g002
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pastoralists in different places at different times [20,22,72–74]. These studies can be brought
together to evaluate the general plausibility of the model’s behavior.

Many of the MODIS data products are available for the period from 2000 to the present.
The NDVI data (MYD13A3) that covered all of the months from January 2005 to December
2014 (120 months in total) were obtained for the area concerned (panel ID: h19v07). Fig 3 dis-
plays the successive monthly distributions of the NDVI values in the area in the year 2014. The
temporal coverage of 10 years, which is the typical cycle of severe (often successive) droughts
in the Sahel [45], actually includes the two years that saw major regional droughts (2010 and
2012). This coverage with the resolution of one month ensures that sizable inter-annual and
intra-annual variations are incorporated into ENV’s ecological dynamics. These data on vege-
tation conditions were then processed and adjusted in the way that was explained in the previ-
ous sub-section. The land cover classification data (MCD12Q1) for the year 2010, the mid-
point of the 10-year period, was referenced in this process. The resulting series of 120 monthly
data wholly describes the spatial patterns and the temporal dynamics of the resource distribu-
tion in ENV (see S1 Table for other specifications). In simulation, this data stream is repeatedly
fed into the model, returning to the first data (January 2005) after reaching the last data
(December 2014). These input data are packaged with the model implementation files.

In the realistic, highly variable environment thus created, the model was repeatedly run
while extensively changing the relevant parameters. The main outputs here are the movement
patterns of the NOMADs and the resultant resource access for these agents. With respect to
the movement patterns, particular attention was paid to the spatio-temporal distributions of
land-use intensity, which emerged from long-time adaptation of the agents through their
ROUTE updates. The latter was directly measured by the mean amount of grazing resources
that the NOMADs obtained by following their ROUTEs. In each combination of parameters,

Fig 3. Monthly vegetation changes in 2014. These maps were generated from the MODIS NDVI dataset (MYD13A3). The greener pixels indicate the sites
that have more abundant vegetation, while the browner pixels correspond to those that have sparser vegetation.

doi:10.1371/journal.pone.0151157.g003
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these outputs were sampled and then aggregated over 20 runs, each of which consisted of
20,000 years (240,000 months) of interactions seeded with a different series of pseudo-random
numbers. The choice of 20,000 years, or 2,000 iterations of the 10-year cycle of vegetation
dynamics, ensures the NOMADs sufficient opportunities to adapt themselves to the 10-year
stream of NDVI distributions. This in turn helps one to obtain reliable estimates of the model’s
underlying dynamics in a diverse array of settings; it does not imply an unrealistic assumption
that the agents, much less actual pastoralists, need exactly this amount of time to evolve their
characteristic behavioral traits. Actual speed of adaptation can vary considerably depending on
the parameter values. For example, in the baseline simulations detailed below, the main outputs
of the model such as the mean amount of resources typically began to show some regularity
within the first thousand years.

Table 1 lists the main parameters of the model along with their values used in the simula-
tions. The underlined numbers denote a combination of the baseline values, for which the mod-
el’s behavior was closely observed and analyzed. Many of the parameters were also extensively
manipulated to examine their effects on the output variables. More specifically, each of these
parameters was changed to one of the alternative values listed in the second column of the table
while the other parameters were held constant at their baseline values. This piecemeal check of
the effects of the parameters, while being far from exhaustive as a sensitivity analysis, neverthe-
less allows a careful examination of causal mechanisms involved in the behavior of the agents
and their interactions. Moreover, as is shown below, such an analysis can still establish some
broad patterns regarding the model’s macro-behavior that are observed over a fairly wide range
of possible circumstances. These patterns, if consistent with the available empirical observations,
will offer solid arguments about pastoral mobility and resource access in the area concerned.

In addition to changing the basic parameters of the model, the study also examined the
effects of two large model extensions: the disruption caused by tsetse flies, which are major
livestock disease vectors in tropical Africa, and the land-use pressure coming from agricul-
tural land expansion. These are highly visible constraints on pastoral mobility in contempo-
rary West Africa [73–76]. The model allows one to rigorously assess their effects on pastoral
livelihoods as well as draw some practical implications for enhancing the sustainability of
pastoralism.

Table 1. The main parameters of the model.

Parameters Valuesa

NOMAD POPULATION {1, 2, 5, 10, 20, 50}

MOVE RANGE (km per month) {30, 50, 80, 100, 130, 150}

GRAZE RANGE (km) {0, 1, 2, 3, 4, 5, 10}

SCOUTING FREQUENCY (per month) 0.2

SCOUTING RANGE (km) 100

CARRYING CAPACITY (agents per year) {1, 4, 7, 10, 13}

INTERVALS OF ROUTE UPDATE (years) 1

NUMBER OF ALTERNATIVE ROUTES {2, 10, 50, 100, 200}

PENALTY TO MOVEMENT BEYOND MOVE RANGE 100

STOCHASTIC NOISE (Minimum) 10-6

STOCHASTIC NOISE (Maximum) {0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 1.0}

a Each of the listed values was tested in the simulations reported below. The underlined numbers are

baseline values.

doi:10.1371/journal.pone.0151157.t001

Computational Research on Mobile Pastoralism

PLOSONE | DOI:10.1371/journal.pone.0151157 March 10, 2016 10 / 30



Regarding tsetse flies, the Food and Agricultural Organization (FAO)’s Programme Against
African Trypanosomosis (PAAT) provides a publicly available geo-spatial dataset on their dis-
tribution in Africa [77]. This dataset, which incorporates diverse sources of information gath-
ered in different countries in different periods, essentially consists of probability maps showing
the presence of various species of tsetse flies at a somewhat crude spatial resolution of 5 km x 5
km [78]. Here, the predicted distribution of the so-called ‘savanna flies’ (SubgenusMorsitans),
which includes five different tsetse species such as Glossina austeni and Glossina morsitans,
was employed as an additional input to the simulation. Using a freeware QGIS 2.8 [79], the
projection and resolution of the original data were made to be compatible with the MODIS
datasets. Specifically, in the rescaling of the spatial resolution from 5 km x 5 km to 1 km x 1
km, the predicted probability of tsetse presence on each site in the original data was up-sam-
pled so that the per-area probability remained the same between the site and each of its corre-
sponding rescaled sites. The resulting map, which is depicted in Fig 4, assigns to each site in
ENV the probability that a NOMAD encounters tsetse flies whenever the agent grazes or scouts
the site. The experienced frequency of these encounters now constitutes another component of
the information that is of concern on the site, along with resource availability. The weight of
this added component in an agent’s assessment of ROUTEs is represented by DISRUPTION
EFFECT, which is another parameter that appears in the expanded version of the potential
function H(ρ).

Last, land-use constraints can be imposed on NOMADs by denying them access to vegeta-
tion resources on a specific type of site in ENV. In the simulations reported below, NOMADs
were deprived of access to ‘croplands’ in the UMD classification scheme, again using the
MODIS land classification data (MCD12Q1) for the year 2010. Among the 104,976 sites that
constitute ENV, the corresponding sites occupy more than 53% (55,728 sites): a vast expanse,
as Fig 5 confirms. Moreover, the denial of resources can be made to be time dependent, which
enables temporal control of land use. For example, as is occasionally observed in West Africa
[14,74], NOMADs can be allowed into ‘fallow’ lands during several months in the dry season
while being denied access to the same lands during the other months.

Results and Discussion

Baseline Runs
Fig 6 illustrates the typical behavior of the model, which was derived from the baseline runs
that were conducted under the combination of parameter values underlined in Table 1. The fig-
ure depicts monthly changes in the spatial distribution of land-use intensity as measured by
the average number of NOMADs per year that grazed a given site in a given month during the
20,000 years of interactions. Each of the 12 maps is a composite map that averages the results
that were obtained from 20 runs. This aggregation is justified because the land-use patterns
that were observed in individual runs are mostly consistent with one another. In these maps, it
is fairly easy to recognize the broad configuration of land-use intensity that is characterized by
two separate, contrasting geographical clusters: the smaller, somewhat diffusive cluster in the
northeast (C1) and the more distinct, more extensive cluster in the south (C2).

Fig 6 also indicates the sizable seasonality that is contained in the land-use pattern of the
NOMADs. Fig 7 concisely captures this seasonality. This figure was derived from the preceding
figure by the following two-step procedure: computing the dry season (which consists here of
January, February and March) and rainy season (July, August and September) distributions of
land-use intensity by averaging the corresponding monthly distributions and, then, generating
a composite image of the two seasonal distributions by assigning the red band and green band
in the RGB channels to the dry season and rainy season parts, respectively. Thus, the red sites
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indicate the area that was predominantly visited and grazed in the dry season, while the green
sites indicate the area that was predominantly exploited in the rainy season. The yellow area,
on the other hand, saw almost equal intensity of seasonal land use, while the black area was
mostly unexploited by the agents in the first place.

This visual representation can be enhanced with a quantitative scheme for more explicit
land-use categorization. One such scheme takes the following form: If the mean frequency of
NOMAD visits to a site in the dry (wet) season exceeds that in the wet (dry) season by more
than some threshold amount, then the concerned site will be categorized as ‘dry (wet)-season
dominant’; otherwise, if the mean frequency of visit exceeds another threshold irrespective of
seasons, then the site will be categorized as ‘not seasonal’; otherwise, the site will be classified as
‘not exploited’. The second threshold is held constant at 0.001. Then, several specifications
(0.001, 0.01 and 0.1) of the first threshold, which is hereafter called the ‘land-use threshold’,

Fig 4. Predicted distribution of tsetse flies (Morsitans group). This map was generated from FAO’s GIS dataset on tsetse fly distributions. Darker red
pixels correspond to the areas that have a higher probability of tsetse presence.

doi:10.1371/journal.pone.0151157.g004
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Fig 5. Distribution of croplands in 2010. This map was generated from the MODIS land classification dataset (MCD12Q1). The yellow pixels correspond to
the sites that are classified as ‘croplands’ according to the UMD classification scheme. The green pixels indicate the other land classes, such as ‘grasslands’
and ‘savannas’.

doi:10.1371/journal.pone.0151157.g005
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generate different versions of seasonal land-use classification as summarized in Table 2. This
information will later be used to quantitatively assess the similarity of land-use patterns among
different sets of simulation runs.

Turning back to Fig 7, C1 in the northeast shows a rather clear seasonal north-south dis-
placement. Rainy season land use extends toward the north, while dry season use extends
toward the south. C2, for its part, consists of dozens of concentrations of intensive land use
that are spread over the southern half of ENV. Many of these concentrations are seasonal in
their use. Those that scatter in the north central part of C2 attract NOMADs in the rainy sea-
son, whereas in the dry season, the main concentrations are found in the southeastern part or
the southwestern part of the cluster. The latter parts also contain the sites that provide a fairly
stable supply of grazing resources across the seasons. Whether seasonal or not, these ‘key’
resource sites and their exploitation by NOMADs largely condition the spatio-temporal
dynamics of the land use in ENV.

At the level of individual agents, NOMADs have evolved distinctive types of ROUTEs in the
overall macro pattern of the land use just described. These are depicted in Fig 8, which was
derived from another set of simulations. Here, the NOMAD POPULATION was set to be 1 for
the purpose of illustration; otherwise, the parameters were identical with the baseline. Each of
the snapshots, which were taken after 20,000 years of interactions, plots the successive locations
of monthly ‘camping sites’ specified in a NOMAD’s ROUTE, and each circled number denotes
the corresponding staying month.

Among the four snapshots in the figure, the two in the top row are the most typical. Each of
these ROUTEs exploits the characteristic seasonal variation within either of the land-use clus-
ters: by moving along the north-south gradient of resource availability in C1 in the case of the

Fig 6. Monthly distribution of land-use intensity (baseline). These 12 maps were derived from 20 baseline runs. The parameters were given the values
that are underlined in Table 1. In each of the maps, the whiter pixels indicate the sites that have a larger presence of NOMADs in the corresponding month. In
this example, the maximum number of agents per pixel per year is approximately 0.798, which was recorded in June.

doi:10.1371/journal.pone.0151157.g006
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top left ROUTE and by connecting several major resource sites in C2 in the top right case. The
other two ROUTEs in the bottom row, which rely on a much higher level of mobility, cross the
boundaries between C1 and C2, taking advantage of the seasonal differences in resource avail-
ability found across the clusters. Thus, depending on several parameters such as MOVE
RANGE (see below), some degree of freedom was observed in the direction of adaptation that
an individual NOMAD could take, even though the broad pattern of land use that emerged at
the macro level was mostly stable.

With regard to the resource availability, a NOMAD agent acquired the mean amount of
0.345 units of resources, as measured by adjusted NDVI, per agent per month per run in the 20
runs in the baseline setting. The inter-annual standard deviation from the mean was 0.011 per

Fig 7. Seasonal differences in land-use intensity (baseline). This map is a composite image of the dry
season (January, February and March) and rainy season (July, August and September) distributions of land-
use intensity. The red pixels indicate the dominance of the dry season land use. The green pixels, in contrast,
indicate the rainy season dominance. The yellow pixels denote the land use in which there is no clear
seasonal difference in the intensity.

doi:10.1371/journal.pone.0151157.g007

Table 2. Seasonal land-use classification in the baseline condition.

Threshold Dry Season Wet Season Not Seasonal Not Exploited Total

0.001 15819 (15.07%) 7992 (7.61%) 3927 (3.74%) 77238 (73.58%) 104976

0.01 5263 (5.01%) 4191 (3.99%) 18284 (17.42%) 77238 (73.58%) 104976

0.1 157 (0.15%) 406 (0.39%) 27175 (25.89%) 77238 (73.58%) 104976

doi:10.1371/journal.pone.0151157.t002
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run, while the standard deviation among the 20 runs was 0.008. These values as well as other
similar outputs that appear below were computed using the samples that were obtained in the
period from the year 1,001 to 20,000 because of the generally unsettled nature of the model’s
behavior in the first few hundred years. The average amount of obtained resources, 0.345, is
quite large given what would have been available if the agents could not adapt themselves. For
example, an agent with a randomly generated ROUTE that was constrained only by the

Fig 8. Evolved ROUTEs. Each of the four snapshots was taken at the end of a simulation run; these runs were conducted under identical conditions.
NOMAD POPULATION was set to 1 for the purpose of illustration.

doi:10.1371/journal.pone.0151157.g008
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mobility limit defined by MOVE RANGE (100 km) could access only 0.219 units of resources
per month on average. In this additional simulation, each of 20,000 such agents followed its
own random ROUTE for one year in turn without any interactions and any adaptation. The
standard deviation of the obtained resources among these 20,000 agents was 0.023, which sug-
gests that there is a very large gap in performance between adaptive and not-adaptive agents.

The reported aspects of the model’s behavior, especially those related to pastoral mobility
and land use, are largely consistent with what has been observed about actual mobile pastoral-
ists. At the most general level, the model showed the macro pattern of land use that was orga-
nized around the spatio-temporal distribution of ‘key’ resource sites in ENV. The importance
of these sites for pastoral mobility and livelihoods has repeatedly been emphasized [9,45,80].

The model also captures some of the defining aspects of Fulani pastoralists in West Africa.
In many areas in the region, Fulani herders typically stay in the north in the rainy season and
then move extensively toward the south as the dry season progresses [20,21,72,73]. This pattern
is most closely approximated by the unsettled movement paths along the north-south direction
within C1 (e.g., the top-left panel in Fig 8). C1 largely belongs to the arid Sudano-Sahelian eco-
logical zone, which is a traditional niche for Fulani pastoralists. More extensive transhumant
routes, such as those documented by Stenning in northern Nigeria, which often stretched over
200 km [21], can also be represented by the comparable ROUTEs that extend across C1 and
C2 (e.g., the bottom-left panel in Fig 8).

Moreover, the model also generated the movement trajectories that do not easily fit with the
typical north-south transhumance of Fulani pastoralists. Several researchers have noted these
discrepancies [20,74]. In this respect, the emergence and persistence of diverse ROUTEs over
C2 (e.g., the top-right panel in Fig 8) are especially instructive because they can offer some
explanation for the relatively recent tendency of Fulani herders to ‘drift’ to the more humid
southern ecological zones [21,73]. To fully understand this aspect of Fulani movement, how-
ever, other potentially disrupting factors in these zones should also be accounted for. The most
prominent among these factors is the wide presence of tsetse flies and the rapid expansion of
cropland, both of which will be discussed below.

Effects of Parameter Changes
The movement of each individual NOMAD and the resultant resource access to the agent can
be affected considerably by changes in the model parameters shown in Table 1. On the other
hand, the overall macro pattern of land use that emerges in ENV turns out to be persistent. To
detail these trends, the discussion below focuses on four of the parameters: NOMAD POPU-
LATION, CARRYING CAPACITY, MOVE RANGE and GRAZE RANGE. More complete
results are given in Supporting Information (S1 Table) and are also briefly discussed later.

The persistency of the land-use pattern can be seen in Fig 9. Each of the composite maps in
the figure displays seasonal differences in land-use intensity over ENV obtained under a condi-
tion in which one of the parameters is altered from its baseline value. A quick comparison with
Fig 7 reveals that the major properties of the land-use pattern in ENV, including the geographi-
cal configuration of land-use clusters and seasonal variations in their exploitation, are more or
less retained over a wide range of parameter conditions.

More rigorous assessment can be done by employing the seasonal land-use categorization
introduced above (see Table 2). The idea is to compute a confusion matrix and its kappa statis-
tic (Cohen’s kappa) from two different land-use patterns obtained under two different sets of
simulations [81]. Table 3 shows an example of a confusion matrix. This table cross-tabulates
the sites in ENV according to how their resources could be seasonally exploited under two dif-
ferent circumstances: the baseline condition (rows, CARRYING CAPACITY = 4) and the case
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Fig 9. Comparison of distributions of land-use intensity (different parameter conditions). As in Fig 7,
each of the maps shown is a composite image of the dry season (January, February and March) and rainy
season (July, August and September) distributions of land-use intensity. These maps were derived from
simulation runs that were conducted under conditions in which one of the following parameters was changed
from the baseline value: NOMAD POPULATION (top row), CARRYING CAPACITY (second row), MOVE
RANGE (third row), and GRAZE RANGE (bottom).

doi:10.1371/journal.pone.0151157.g009
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of CARRYING CAPACITY = 13 (columns). The land-use threshold, which separates seasonal
from non-seasonal land use, is set to 0.01. A kappa statistic quantifies a degree of similarity
between two land-use patterns from the information contained in a confusion matrix. Its
value, which is derived from Table 3, is 0.823 (against the maximum of 1.0), which indicates a
very high level of agreement between the land-use patterns obtained under these two condi-
tions. Similar calculations lead to the results illustrated in Fig 10, which plots the kappa statis-
tics that are computed against the baseline land-use pattern with different combinations of
thresholds and parameters. The figure shows that these statistics are highly robust against the
choice of a threshold value for the land-use classification. In contrast, the kappa statistics more
or less monotonically deviate from the baseline value (1.0) as each of the model parameters
changes. Nonetheless, except for outlying cases, especially in GRAZE RANGE, an observed
land-use pattern displays at least moderate similarity (kappa> 0.4) to the baseline pattern.
These observations indicate a certain degree of constraints that the ecological patterns and
dynamics of ENV impose on the spatial behavior of NOMADs.

Under these constraints, individual agents were affected differently by the change in each of
the parameters. Figs 11 and 12 illustrate these effects (see S1 Table for further details). These
figures show the dependence of two summary variables, the mean range of their ROUTEs (Fig
11) and the mean amount of resources acquired by the agents (Fig 12), when each of the four
parameters examined was changed. The range of a ROUTE is defined as the distance between
the two sites along that ROUTE that are the farthest apart from one another. The error bars
indicate the standard deviations of these variables among 20 runs.

According to the top left graphs in these figures, increasing NOMAD POPULATION gener-
ally enlarges the ranges of ROUTEs (but not necessarily in a statistically significant way; see S1
Table) and monotonically reduces the amount of grazing resources that NOMADs can obtain.
Because of the heightened population pressures, especially around the key resource sites, the
agents now must search a larger area for grazing resources, which necessitates the exploitation
of less endowed sites. This trend is also reflected in the somewhat diffusive land-use pattern
shown in the top right map (NOMAD POPULATION = 50) in Fig 9. Similar effects can be
obtained by decreasing the CARRYING CAPACITY, which raises the agent population pres-
sure (see the top right graphs in Figs 11 and 12).

The bottom left graph in Fig 11 shows that an increased MOVE RANGE implies an
increased range of a ROUTE. This relationship appears to be obvious, but it should be noted
that, as the corresponding panels in Figs 9 and 10 show, the resulting land-use pattern at large
was not changed much. This observation suggests that there is some redundancy in that an
increased level of mobility does not necessarily lead to better resource access. In effect, as the
bottom left graph in Fig 12 shows, the mean amount of acquired resource increases as MOVE
RANGE increases, but not very markedly.

Table 3. Example of a confusionmatrix.

Dry Season (CC = 13) Wet Season (CC = 13) Not Seasonal (CC = 13) Not Exploited (CC = 13) Total

Dry Season (CC = 4) 4617 33 613 0 5263

Wet Season (CC = 4) 34 3554 587 16 4191

Not Seasonal (CC = 4) 587 352 12734 4611 18284

Not Exploited (CC = 4) 0 0 628 76610 77238

Total 5238 3939 14562 81237 104976

CC: CARRYING CAPACITY; CC = 4 is the baseline setting. The land-use threshold is set to 0.01.

doi:10.1371/journal.pone.0151157.t003
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Finally, raising GRAZE RANGE causes a noticeable decrease in the mean amount of
resources available to the NOMADs (see the bottom right graph in Fig 12). This finding is due
to the averaging effects of increasing the number of sites included in the calculation rather than
any profound change in the behavior of the agents. In fact, as the bottom right graph in Fig 11
tells, the effects of this parameter on NOMADmovement are ambiguous, except for the some-
what extreme case of GRAZE RANGE = 0.0.

Similar analyses can be extended to other aspects of the model. S1 Table displays the main
simulation outputs obtained in much broader parametric settings along with their statistical
differences from the baseline result. The table also shows the possible effects of alternative spec-
ifications of the input data and the behavioral rule, changes that are more extensive than the

Fig 10. Comparison of kappa statistics. Each of the line graphs shows the dependence of kappa statistics on changes in the following parameters:
NOMAD POPULATION (top left), CARRYING CAPACITY (top right), MOVE RANGE (bottom left), and GRAZE RANGE (bottom right). These statistics
quantify the similarity of the land-use pattern observed in a given parameter setting to the baseline pattern. These were computed using three different
values, 0.001 (red), 0.01 (blue) and 0.1 (yellow), for the land-use threshold.

doi:10.1371/journal.pone.0151157.g010
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mere parameter manipulation covered in Table 1. One notable result in this regard is the mod-
el’s robustness to the temporal duration of the NDVI data stream. Except for the settings that
incorporate just one or two years of vegetation changes, different combinations of NDVI data
spanning different periods of time lead the model to highly similar macro-behavior, not only
in terms of the emergent land-use pattern (as measured by kappa statistics), but also in rela-
tively sensitive aspects such as the mean amount of obtained resources. This indicates the ‘rep-
resentative’ nature of the 10-year data stream employed above among possible ecological
dynamics that the available MODIS NDVI dataset can generate. Overall, these additional simu-
lations again confirm the ecological constraints of ENV on the seasonal land use of NOMADs.
Note also that, in a broad array of settings, the level of resource access that the agents can attain
remain much higher than what could be achieved without adaptation, even though specific
numbers often deviate significantly from the baseline result.

Fig 11. Effects of parameter changes onmovement. Each of the line graphs shows the dependence of the mean ROUTE range on changes in the
following parameters: NOMAD POPULATION (top left), CARRYING CAPACITY (top right), MOVE RANGE (bottom left), and GRAZE RANGE (bottom right).

doi:10.1371/journal.pone.0151157.g011
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Disruptions and Constraints
Fig 13 illustrates the effects of the tsetse fly disruption on the overall behavior of the model.
Here, simulations were run in the baseline condition with the additional effects of tsetse fly
presence, which were controlled by DISRUPTION EFFECT. The composite maps of land-use
intensity in the top row clearly show that even a relatively small amount of the agent sensitivity
to the tsetse presence can cause noticeable alteration in the land-use pattern in ENV, especially
in C2 in the south. Although the corresponding kappa statistics still indicate a moderate level
of agreement with the baseline land-use pattern at the macro level, the notable feature in this
case is the spatially concentrated nature of the discrepancies. Specifically, the hitherto stable
sources of grazing resources, which were mainly concentrated in the southwestern part of C2,
had now become effectively inaccessible because of the overlap with the distribution ofMorsi-
tans. The loss of these key sites significantly disturbed the dry season resource access in C2,

Fig 12. Effects of parameter changes on resource access. Each of the line graphs shows the dependence of the mean obtained resources on changes in
the following parameters: NOMAD POPULATION (top left), CARRYING CAPACITY (top right), MOVE RANGE (bottom left), and GRAZE RANGE (bottom
right).

doi:10.1371/journal.pone.0151157.g012
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which even led to a slight increase in the dry season land use in C1. Although the impact of this
disturbance on the movement patterns of individual NOMADs is not clear from the bottom
left graph in Fig 13, the right graph unambiguously demonstrates its negative effects on the
amount of resources that each agent can obtain.

These results make clear how disease vectors such as tsetse flies can worsen pastoral liveli-
hoods over a wide area through the disruption of the underlying land-use pattern in the area
concerned. Historically, the wide presence of tsetse flies actually posed a major obstacle to the
southern advancement of Fulani herders into more humid ecological zones such as Sudanian
and Sudano-Guinean zones. That advancement eventually took place, but only after adaptive
measures such as crossbreeding were taken on the part of the herders [20,73]. Fulani pastoral-
ists now widely crossbreed their original zebu cattle with more tsetse-resistant taurin breeds

Fig 13. Effects of tsetse flies on the model. The seasonal land-use maps with the corresponding kappa statistics (top row), the means of the ROUTE
ranges (bottom left), and the means of the resources available to NOMADs (bottom right) are displayed. The kappa statistics were calculated by setting the
land-use threshold to 0.01. These graphs, which are similar to Figs 9 and 11, were derived from simulations that were conducted with different values of
DISRUPTION EFFECT; otherwise, the settings were identical to the baseline condition.

doi:10.1371/journal.pone.0151157.g013
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from humid areas. In the context of the model, such a measure can significantly lower DIS-
RUPTION EFFECT and, thus, contribute to an increased level of resource availability through
the expansion of accessible sites.

At the same time, some caution is required in interpreting these results because the spatial
distribution of the tsetse flies generally shows temporal changes, intra-annually as well as inter-
annually. These changes are not considered in the FAO’s dataset used here. Actual pastoralists
fully recognize such dynamics and adjust their movements accordingly [75]. Recent efforts to
develop more fine-grained spatial data on tsetse distributions [82] can be helpful in incorporat-
ing this temporal dimension into the current model.

Last, the vast expanse of croplands can have more subtle but equally disruptive effects on
pastoral resource access. Fig 14 summarizes the simulation results, which were obtained at dif-
ferent levels of temporal control of the access to the agricultural lands in ENV: open access

Fig 14. Effects of cropland expansion on the model. The seasonal land-use maps with the corresponding kappa statistics (top row), the means of the
ROUTE ranges (bottom left), and the means of the resources available to NOMADs (bottom right) are displayed. These, which are comparable to Fig 13
above, were derived from the simulations conducted at different levels of temporal control of the agricultural land access; otherwise, the settings were
identical to the baseline conditions.

doi:10.1371/journal.pone.0151157.g014
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(identical with the baseline condition), half-year access from November to April, dry season
access from January to March, and the total exclusion from the croplands. The land-use inten-
sity maps in the top row indicate that tightening or relaxing the land access does not have
noticeable effects on the macro pattern of land use in ENV, although some losses of key sites in
the south are barely recognizable in the case of the total exclusion. Quantitatively, even in this
drastic case, the kappa statistic still remains 0.734, which suggests a substantial level of similar-
ity with the baseline seasonal land use. The effects on the mean range of the ROUTEs are
equally ambiguous, as the bottom left graph shows. In contrast, from the bottom right graph, it
is clear that tightening the access steadily reduces the mean amount of resources that are avail-
able to NOMADs. This trend can be attributed to the near-ubiquitous existence of cropland all
over the southern part of the study area, which uniformly reduced the available resources there
without markedly altering the spatial pattern of land use.

The expansion of agricultural lands in the drylands and the resulting disruptions in pastoral
livelihoods are almost a global phenomenon [18]. The above results quantitatively confirm this
aspect of contemporary pastoralism in the context of northeastern Nigeria. Although the
NOMADs managed to retain their characteristic land-use pattern, the sheer extent of cropland
expansion overwhelmed any effort to obtain grazing resources. In West Africa, negotiated
access to croplands, especially in the dry season, has been widely observed [9,73,74]. The simu-
lations suggest that to significantly mitigate the potential loss of available resources, such access
must be assured extensively in both its temporal duration and spatial expanse.

Conclusions
In summary, the above simulations revealed the strong tendency of the model to generate a
specific macro pattern of pastoral land use that has a certain configuration of geographical clus-
ters and a certain dynamics of seasonal variations. This pattern, which is reminiscent of the
known behavior of Fulani pastoralists in several important respects, ensured a relatively high
level of resource access for the NOMAD agents who inhabit the unpredictable landscape.
Moreover, the land-use pattern was consistently observed in a wide range of parametric set-
tings, even though the details changed depending on specific parameter values. Finally, the
same macro pattern turned out to offer a useful basis for understanding the potential impact of
major disrupting factors, such as livestock disease vectors and agricultural land expansion.
These factors often altered the land-use pattern in terms of its form and generally hindered
resource access for the agents as a result. Nevertheless, the underlying macro dynamics of the
model was clearly persistent.

This analysis can be made more extensive as well as more in-depth. The possible combina-
tions of parameters and scenarios are open-ended, and various tools for data analysis can aid
the exploration of these possibilities. In particular, the arguments could be made more robust
with more systematic sampling of the parameter space than attempted here. Nevertheless, the
above analysis has already accomplished much with regard to its major purpose: to illuminate
the outstanding strengths of the approach presented here. First, the use of multi-temporal
MODIS vegetation data allows a considerable amount of the spatial heterogeneity and tempo-
ral variability of actual dryland ecologies to be incorporated into analyses of mobile pastoral-
ism. Second, on this firm basis, the agent-based model enables an extensive investigation of
pastoral mobility and resource access, which derives a range of possibilities in which pastoral-
ists can find themselves under different circumstances. Such an investigation might even reveal
some robust pattern among these possibilities. For example, there may be strong convergence
to a specific configuration of seasonal land use such as the pattern illuminated here. These pos-
sibilities and patterns can offer a solid intellectual basis for enhancing the sustainability of
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mobile pastoralism, which faces numerous risks and threats in the contemporary world. Third,
the approach has a high level of applicability and extendibility. The global coverage of MODIS
and its public availability make it fairly straightforward to apply the same approach to other
dryland areas. Moreover, by combining the MODIS data with other compatible datasets such
as those derived from Advanced Very High Resolution Radiometer (AVHRR), which has been
in operation for more than 30 years, it is possible to enlarge the time horizon of an analysis still
further. Thus, the present approach can be fruitfully applied to an assessment of the possible
impacts on pastoral livelihoods of factors working at even larger temporal scales, including the
pressing issue of global climate change among other examples.

The enumerated strengths of the present approach are clear advantages over the existing
approaches that are found in the literature on pastoralism. Most of the existing approaches,
whether qualitative description or quantitative measurement, have not provided adequate spa-
tio-temporal coverage for analyzing a highly variable system such as dryland pastoralism. This
circumstance does not mean, however, that meaningful dialogue among the approaches is
impossible. On the contrary, there is ample opportunity for mutual enhancement, even the
synthesis, of different methodologies. With regard to the model presented here, as was indi-
cated above, the behavioral rule of an agent must be constantly checked against field observa-
tions of the corresponding micro-behavior of actual pastoralists. More detailed representation
of pastoral livelihoods might become necessary along the way, from more explicit treatment of
livestock and human demography to richer description of collaborations and competitions
among pastoralists and other relevant actors. Moreover, the recent development of tracking
technologies has paved the way for more direct validation of the model. At the very least, quan-
titative tracking data on pastoralist or livestock movements can be utilized to calibrate some of
the parameters of the model, which leads to a potentially significant reduction in the parameter
space to be searched in the simulations. Achieving a higher level of efficiency through the use
of these data is one fruitful step that can be taken next.

Supporting Information
S1 Table. Summary of sensitivity analysis. The shaded cells correspond to the baseline runs.
The mean outputs (ROUTE's range and obtained resources) of 20 runs in each parameter setting
were computed along with the standard deviations (SD). Their difference from those in the base-
line was assessed by a two-sample Welch’s t-test (�: significant at the 0.05 level; ��: significant at
the 0.01 level; ���: significant at 0.005 level). The kappa statistic measures the degree of similarity
of a seasonal land-use pattern observed in a given parameter setting to the baseline pattern. The
underlying confusion matrix was formed using one of three different thresholds (0.001, 0.01 and
0.1); if the mean frequency of visits to a site in the rainy season (the dry season) exceeded that in
the dry season (the rainy season) by more than the threshold amount, the concerned site was cat-
egorized as 'rainy-season dominant' ('dry-season dominant'). See the main text for more details.

Apart from the parameters and settings that are discussed in the main text, the following con-
ditions were also manipulated: NDVI Years: the temporal range of MODIS NDVI data employed
in simulation. NDVI Reduction: the discount rate applied to NDVI values of the land types not
preferred by NOMADs (i.e., land types other than ‘grasslands’, ‘savannas’, and ‘woody savan-
nas’). Resource Share: if TRUE, NOMADs which happen to stay on the same site equally share
the grazing resources there; if FALSE, the resources are available only to a randomly selected one
of them. Movement Cost Function: different ways of computing the cost incurred during a
NOMAD's movement, comparing the original step function and alternative linear cost functions
with different slope values (per km).
(PDF)
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