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Abstract

Signalling through gap junctions contributes to control insulin secretion and, thus, blood glu-
cose levels. Gap junctions of the insulin-producing 3-cells are made of connexin 36 (Cx36),
which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those
observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a num-
ber of common features with pancreatic 3-cells. Given that a synonymous exonic single
nucleotide polymorphism of human Cx36 (SNP rs3743123) associates with altered function
of central neurons in a subset of epileptic patients, we investigated whether this SNP also
caused alterations of B-cell function. Transfection of rs3743723 cDNA in connexin-lacking
Hela cells resulted in altered formation of gap junction plaques and cell coupling, as com-
pared to those induced by wild type (WT) GJD2 cDNA. Transgenic mice expressing the
very same cDNAs under an insulin promoter revealed that SNP rs3743123 expression con-
sistently lead to a post-natal reduction of islet Cx36 levels and 3-cell survival, resulting in
hyperglycemia in selected lines. These changes were not observed in sex- and age-
matched controls expressing WT hCx36. The variant GJD2 only marginally associated to
heterogeneous populations of diabetic patients. The data document that a silent polymor-
phism of GJD2 is associated with altered B-cell function, presumably contributing to T2D
pathogenesis.
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Introduction

Gap junctional channels are composed of connexin (Cx) proteins, and allow for the communi-
cation between adjacent cells through the diffusion of cytosolic ions and small molecules [1, 2].
Cx36 is the main connexin isoform expressed in neurons and pancreatic B cells [3-8], and pre-
vious studies have provided evidence that alterations of Cx36 signalling profoundly affects the
function and survival of these two cell types [9, 10]. Thus, deletion of Cx36 results in loss of
gap junctions between fast-spiking interneurons of hippocampus and cortex, and interferes
with their oscillatory activity [11, 12]. This deletion also impairs the coupling of amacrine and
bipolar neurons of retina, resulting in vision alterations [13, 14] and increased retinal vulnera-
bility [15]. In pancreatic islets, loss of Cx36 alters the regular Ca>" oscillations which are
induced in B cells during glucose stimulation, as well as basal, first and second phases of insulin
release [16], resulting in glucose intolerance [17]. The absence of Cx36 also leads to increased
apoptosis of B cells after exposure to cytotoxic drugs and cytokines [18, 19], and to decreased
transcriptional regulation of the insulin gene [4]. Several of these alterations mimic signs of
type 2 diabetes (T2D) [20].

A single-nucleotide polymorphism (SNP rs3743123) in the coding sequence of the G/D2 gene,
which encodes for human Cx36 (hCx36), has been associated with juvenile myoclonic epilepsy
[21, 22]. Alike type 2 diabetes, this form of epilepsy has a complex inheritance pattern [23].

Given the numerous similarities between neurons and B cells [24], we investigated whether
the same GJD2 polymorphism may alter the function of the insulin-producing B cells, suffi-
ciently to cause an abnormal regulation of glycaemia. By generating novel lines of HeLa cells
stably expressing either the WT or the SNP rs3743123 variant of hCx36, we found that the lat-
ter reduced the gap junction-mediated coupling of B cells and altered the packing of Cx36
channels in the cell membrane. By generating novel lines of transgenic mice, we further
observed that the variant form of hCx36 decreased after birth, consistently resulting in loss of
B cells which, in some lines, lead to sustained hyperglycemia. By investigating a population of
Caucasian individuals, we show that the variant GJD2 is marginally associated to type 2
diabetics.

Materials and Methods
Culture and transfection of HelLa cells

HeLa cells (American Type Culture Collection-LGC Promochem, Teddington, Middlesex,
UK) were grown in DMEM without glutamax (Gibco 61965), containing 10% (v/v) fetal calf
serum (INVITROGEN 10270098), and a 1% penicillin/streptomycin mix (GIBCO 15140).
Cells were cultured in 75 cm? culture flasks, and incubated in a 5% CO, humidified environ-
ment at 37 C. Once confluent, cells were trypsinized and seeded in 12-well culture plates
(5x10* cells per well). Cells were incubated to reach 70% confluence and then transfected with
an empty pcDNA3.1 (3.4 pg/ul vector) or with a pcDNA3.1 construct containing 3.8 ug/pl
cDNA encoding for either hCx36 WT or hCx36 SNP rs3743123, using Lipofectamine 2000
(GIBCO 11668-030) according to the manufacturer's instructions. One day later, the cells were
collected and cultured in a medium containing 750 pg/mL G418 (GIBCO 11811-031), which
was changed every 2 days. Surviving cells were passed at one week intervals, and plated under
limiting dilution conditions (1 cell/well) in 96 well plates, to select individual clones which,
thereafter, were cultured for a 3 year period under the continuous pressure selection provided
by G418. Three clones, which were shown by immunofluorescence staining and western blot
analysis of total proteins to express similar and stable levels of either the WT or the rs3743123
form of hCx36, were selected for the experiments.
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Predicted folding of Cx36 mRNAs

The most recent annotated Cx36 mRNA sequence (NM_020660.2) of 1096 bp, covering the
complete coding region of Cx36, was downloaded from the NCBI. ClustalW [25] implemented
in Jalview [26] was used to generate the sequence alignment of WT Cx36 mRNA (681C) and of
two allelic variants: variant 681C>T, previously known as 588C>T, and variant 462C>T, pre-
viously known as 369C>T. Visual Gene Developer 1.7 program [27] was used to calculate the
mRNA structure by employing the “mRNA structure (slow)” tool.

Generation of transgenic mice

The experiments were carried out in accordance with the animal protection law of the State of
Geneva. All animals were housed and cared for according to the guidelines of the Direction
Générale de la Santé du Canton de Geneve. This study was reviewed and approved by the Com-
mission cantonale pour les expériences sur les animaux and the Direction Générale de la Santé
du Canton de Geneva. Mice were euthanized by rapid cervical dislocation.

cDNAs encoding either hCx36 WT or hCx36 SNP rs3743123 were subcloned into a plasmid
containing a 0.7 kb-long fragment of the rat insulin II promoter, and a 1.6 kb-long sequence
containing an intron and the polyA signal of the rabbit B-globin gene. After testing the actual
expression of the transgenic proteins by transient transfection of the 2 constructs in the RIN
cell line [4, 28], the transgenes were excised from the plasmids and injected into the zygotic
pronuclei of B6D2/JIcoF1 hybrid mice (C57BL/6] x DBA/2]), which were implanted into
pseudo-pregnant NMRI females [29]. Nine and six independent founders (F,) were generated
using the hCx36 WT and the hCx36 SNP 53743123 construct, respectively. Expression of
either hCx36 WT or hCx36 SNP rs3743123 was detected in three and two lines of mice, respec-
tively. Transgenic female mice positive for the transgenes, and heterozygous for mCx36, were
then crossed with Cx36-null male mice [16] to obtain litters whose B cells only expressed either
the WT (hereafter referred to as RIP-hCx36WT mice) or the 53743123 form of hCx36 (hereaf-
ter referred to as RIP-hCx36rs3743123 mice). Mice were then bred to maintain the transgenes
at the heterozygous state in all animals, and to avoid homozygous loss of function. We gener-
ated three independent lines of RIP-hCx36WT mice and two independent lines of RIP-
hCx367s3743123 mice (lines A and B), expressing comparable levels of hCx36. The genotype of
littermates was determined by PCR amplification of ear DNA [30]. Experiments were initiated
with mice of the F2 generation and repeated with mice of the F6 generation. Both males and
females were used for the experiments.

Immunofluorescence

Cells were attached to polylysine (P7280 Sigma) coated glass slides, and fixed for 10 min in
70% ETOH at -20°C. For insulin, glucagon and Cx36 staining, mouse pancreas were fixed for
90 min in 4% paraformaldehyde (PFA), washed in 0.1 M phosphate-buffered saline (PBS), and
transferred in PBS containing 25% sucrose overnight. Cryostat sections of 10-pm thickness
were incubated for 20 min in PBS containing 0.2% Triton, washed in PBS, incubated for 30
min in PBS supplemented with 2% BSA, and exposed for 2 h at room temperature to one of the
following primary antibodies: rabbit polyclonal antibody anti-Cx36 (1:80, Life Technologies),
guinea pig polyclonal anti-insulin (1:400, DAKO), mouse monoclonal anti-glucagon (1:1000,
SIGMA), rabbit polyclonal anti-somatostatin (1:200, DAKO). After rinsing, sections were incu-
bated with one of the following secondary antibodies: Alexa Fluor™ 488 Dye, Alexa Fluor™
TRITC Dye, Alexa Fluor™ 647 Dye (Invitrogen), whichever required, and all diluted 1:500.
DAPI was added to the secondary antibodies. Cell and section immunolabeling were examined

PLOS ONE | DOI:10.1371/journal.pone.0150880 March 9, 2016 3/17



@’PLOS ‘ ONE

Variant of Connexin 36 and 3-Cells Function

with an Axiophot fluorescence microscope (Zeiss) and a Leica TCS SPE confocal microscope
(Leica Microsystems, Bannockburn, IL), respectively.

Electron Microscopy

Cells were fixed for 60 min in 2.5% glutaraldehyde in 0.1 M phosphate buffer at room tempera-
ture, and processed for freeze-fracture, as previously described [31, 32].

RNA extraction and qRT-PCR

Cells were exposed to either 5 ug/ml actinomycin D (SIGMA A9415) in 100% ethanol or to
100% ethanol alone. RNAs were isolated at different time points using Trizol reagent (15596-
026, Invitrogen), as per the manufacturer’s instructions. RNA integrity was assessed on agarose
gels, and OD was measured using a BioPhotometer 6131. Retrotranscription was performed
with 1 pg RNA of each sample, using random hexamers and the SuperScript III Reverse Tran-
scriptase (Invitrogen). PCR reactions were performed using 2x Power SYBR Green Master Mix
(Applied Biosystem), and the following primers: for Cx36, CATAATGGTGTGTACCCCCAGTCT
(Fw) and CGGCGTTCTCGCTGCTT (Rev); for RPS9, GGGAACTGCTGACGCTTGAT (Fw) and
AGGGCGTTGCCTTCGAA (Rev); for GAPDH, ATGGAAATCCCATCACCATCTT (Fw) and
CGCCCCACTTGATTTTGG (Rev); for B-actin, CCAGCTCACCATGGATGATG (Fw) and
CCAGCTCACCATGGATGATG (Rev). Each reaction was performed in triplicates. Fold changes
were calculated using the GeNorm method [33].

Western Blot

For preparation of total protein extracts, transfected HeLa cells were sonicated 3 times during
10 sec in a 0.1 M Tris-HCl lysis buffer containing 5% SDS, 5 mM EDTA and a mix of protease
inhibitors (Roche Applied Science).

For preparation of membrane proteins, HeLa cells were sonicated in a 0.1 M Tris-HCI lysis
buffer, pH 7.4, containing 20 mM EDTA and a mix of protease inhibitors. The homogenates
were centrifuged at 4000 g for 10 min at 4°C. Supernatants were collected and centrifuged for
90 min at 260’000 g and 4°C. The membrane pellet was suspended in 0.1 M Tris-HCl buffer,
pH 7.4, supplemented with 5% SDS and 5 mM EDTA. Membrane proteins were incubated at
95°C for 10 min and sonicated a second time. Protein content was determined by the DC pro-
tein assay reagent kit (Bio-Rad). Proteins were heated at 50°C in a loading bulftfer, separated by
electrophoresis in a 10% polyacrylamide gel, and transferred for 60 min onto immobilon poly-
vinylidene difluoride membranes (Millipore), at a constant voltage of 100 V. Membranes were
washed 4 times 15 min in TBS-Tween20 0.1% and then incubated for 30 min at room tempera-
ture in TBS containing 5% milk and 0.1% Tween20 (blocking buffer). Then, membranes were
incubated overnight at 4°C with an antibody against Cx36, diluted 1:150 or actin (Sigma),
diluted 1:250 in blocking buffer. Membranes were washed and incubated with secondary anti-
bodies for 1 hour at room temperature, and antigen-antibody complexes were detected with
ECL. In these experiments, negative and positive controls included extracts of wild-type HeLa
and MING cells, respectively. Quantifications were performed using the ChemiDoc™hemiDoc-
cat (Biorad, Cressier, Switzerland) and the Quantity One software.

Dye injection

Three day-old cultures of HeLa cells were transferred onto the heated (37°C) stage of an inverted
Zeiss ICM35 microscope, and individual cells were microinjected with either 4% Lucifer Yellow
(LY) or 4% ethidium bromide (EB) in 150 mM LiCl buffered with 10 mM Hepes-buffered

PLOS ONE | DOI:10.1371/journal.pone.0150880 March 9, 2016 4/17



@’PLOS ‘ ONE

Variant of Connexin 36 and 3-Cells Function

(pH 7.2), as previously reported [34]. Three independent clones of each type of transfected cell
were tested, and data pooled for each cell type. Cell coupling extent was calculated after each
injection by scoring the number of cells containing one of the two injected tracers, including the
injected cell. Cell coupling incidence was determined by calculating the percentage of injections
resulting in the cell-to-cell transfer (i.e. more than one cell stained) of one of the two tracers.
From these data, we calculated a coupling index for either the LY or the EB tracers, given by the
product of mean coupling extent and coupling incidence, and a total coupling index given by
the product of the coupling index of LY and that of EB.

In vitro and in vivo data analysis

Data are expressed as means + SE of the indicated number of experiments. Statistical analysis
was performed using the Statistical Package for Social Science (SPSS 15.0, SPSS inc.). For nor-
mally distributed values, differences between means were assessed by analysis of variance,
using the post hoc Bonferroni test. Coupling extent data were compared using the median test.
Coupling indices were compared using the Chi square test. Statistical analysis of data from
transgenic mice was performed using GraphPad Prism 6.00 software (GraphPad, San Diego,
CA). Differences were considered significant when p<0.05.

eQTLs of human pancreatic islets

Islets from cadaver organ donors were provided by the Nordic Islet Transplantation Program
(www.nordicislets.org), courtesy of Prof. Olle Korsgren, Uppsala University, Sweden. All pro-
cedures were approved by the ethics committees of the Uppsala and Lund Universities, and
informed written consent obtained from donors or their relatives. The microarray experiments
(Human Gene 1.0 ST whole transcript) were performed on islets isolated from 81 normoglyce-
mic individuals, (aged 56.3 + 1.3 years, and featuring a BMI 25.7 + 0.4 kg/m?, and a HbA1,

5.5 + 0.04%), and 47 hyperglycemic patients (aged 60.3 + 1.2 years, and featuring a BMI 27.8
+0.6 kg/m?, impaired glucose tolerance, and a HbA1, 6.6 + 0.1%). RNA products were frag-
mented and hybridized to the GeneChip Human HG U 133A Array (Affymetrix, Santa Clara,
CA, USA) [35]. Statistical analyses of expression data were performed using two-tailed Spear-
man’s t-test.

Colaus study

The CoLaus cohort [36] consists of a random sample of 5435 Caucasian women and men, gen-
otyped using the 500 K Affymetrix chip technology. In this cohort, patients were defined as
T2D when featuring a fasting plasma glucose > 7.0 mmol/L or receiving an oral hypoglycaemic
or insulin treatment. The study was approved by the Institutional Ethics Committee of the
University of Lausanne (Commission d’Ethique de la recherche clinique, Sous-Commission I).
All participants received an information letter about the study and signed informed consent.
Out of this cohort, we initially analyzed a group of 299 T2D patients and 500 unrelated nor-
moglycaemic subjects (the clinical characteristics of the 2 groups are given in S1 Table), pre-
dicted to provide a 70% power of detecting a SNP associated to T2D, assuming that the relative
risk conferred by this SNP was about 1.5, i.e. similar to that of previously reported loci. Each
SNP was amplified with 10 ng total genomic DNA, using the primers and probes reported in
Mas et al. 2004 [22] and a jump start red taq ready mix (Sigma). Amplicons were analysed by
the Pyrosequencing™ technology (Biotage, Uppsala, Sweden). All amplification reactions were
carried out under identical conditions. 26 individuals were genotyped in duplicate to assess
genotyping accuracy. All SNPs gave a genotyping concordance rate of 100%. Allele and geno-
type frequencies were tested for Hardy-Weinberg equilibrium by a Chi-square test. Differences
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in allele and genotype distributions between cases and controls were compared using Pearson’s
chi square. Odds ratios, with 95% Cls and p values, were determined using a Chi-square test.
For all quantitative analyses, data were log transformed when appropriate, and a p value less
than 0.05 was considered significant. Statistics were performed using Minitab and SPSS (win-
dows version 14.0). Haploview software version 3.32 [37] was used to determine the pairwise
linkage disequilibrium and haplotype structure of GJD2. The haplotype reconstruction was car-
ried out using the PHASE software [38]. Power calculations were performed using the Genetic
Power Calculator [39], assuming a co-dominant model, 5% prevalence and a genotype relative
risk of 1.36.

Results
SNP rs3743123 alters Cx36 packing and function, but not half-life in vitro

To investigate the effect of SNP 153743123, we transfected HeLa cells, which lack connexin
expression ([34], S1 Fig and Table 1), with a cDNA fragment encoding either the WT or the
rs3743123 variant of human GJD2. For each of these 2 constructs, we selected 3 stable clones
expressing comparable levels of transfected hCx36 (S1 Fig). All clones showed the membrane
insertion of the transfected proteins, as assessed by immunoblotting of membrane proteins (S1
Fig), and by immunofluorescence staining of cells (Fig 1A, left panel). The latter approach fur-
ther revealed that whereas most WT hCx36 featured a spotted distribution at small membrane
domains, 53743123 hCx36 was often more broadly distributed along the cell membrane (Fig
1A, right panel). Freeze-fracture electron microscopy further revealed polygonal, linear or
arrayed gap junction plaques within the membranes of all stably transfected HeLa cell clones
(Fig 1B and 1C). While the distribution of these gap junction types differed (p < 0.004) in the
cells transfected for WT and variant hCx36, gap junction plaques contained on average a com-
parable number of connexons in the two cell types (Fig 1D).

Table 1. SNP rs3743123 reduces hCx36 coupling between adjacent cells.

HelLa type coupling extent @ coupling incidence ° coupling index °©
(% injections)

LY EB LY EB LY EB total
wild type 1.05 + 0.05 1.07 £ 0.05 4.8 71 8.6 7.6 65.4
n=21 n=28
transfected for hCx36 2.00 + 0.2458 3.33+0.3258 62.5%* 73.8%* 125.0 245.7 30°712.5%**
wild type n=16 n=42
transfected for hCx36 1.88 + 0.15% 2.38 £ 0.19%8 59.5%* # 69.1%% # 111.9 164.5 18'407.5%**
SNP rs3743123 n=42 n=55

LY = Lucifer yellow; EB = ethidium bromide. Coupling extent = number of cells labeled by the microinjected tracer (including the injected cell); coupling
incidence = percent of injections showing coupling (coupling extent >1); coupling index = mean coupling extent x coupling incidence; total coupling
index = coupling index of LY x coupling index of EB.

@ Data are mean + SE of 4 experiments, in which the results from 3 independent and stably-transfected clones were pooled for each cell type; n = number
of microinjections.

§ p< 0.003,

88 p < 0,001 vs corresponding value in wild type Hela cells, as evaluated by both ANOVA and median tests.

P values are percent of injections leading to labeling of > 1 cell.

*¥* p < 0.001 vs corresponding value in wild type Hela cells,

#p < 0.007 vs corresponding value in cells transfected for hCx36 wild type, as evaluated by the non parametric Chi square test.

¢ **%p < 0.001 vs corresponding value in wild type HeLa cells, as evaluated by the non parametric Chi square test.

doi:10.1371/journal.pone.0150880.t001
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Microinjections of ethidium bromide and lucifer yellow, showed a sizable coupling of the
transfected cells which, as expected for channels made by Cx36 [34], was larger in all clones
when tested with ethidium bromide than with lucifer yellow (Table 1). However, the estimates
of coupling extent and incidence were lower in the cells that expressed the variant form of
hCx36 than in those which were coupled by WT hCx36 (Table 1).

Exposure of HeLa cells to the transcription inhibitor actinomycin D, revealed that the tran-
script levels of both WT and variant hCx36 decayed with a similar time-course (T% ~about
3 h, Fig 2).

These data show that that SNP rs3743123 does not interfere with the intracellular trafficking
of hCx36, its insertion into the cell membrane and its packaging into functional gap junction
plaques. However, it affects gap junction distribution and reduces the extent of intercellular
coupling, without altering the native half-life of hCx36 mRNA.

SNP rs3743123 induces changes in the predicted folding of Cx36 mRNA

We investigated the most recent annotated version of Cx36 mRNA, where SNP rs3743123 is
attributed to position 681C>T (previously known as 588C>T [22]; S2 Fig). We found that the
allelic variant 681T markedly changed the predicted tridimensional structure of the native
hCx36 transcript containing a 681C nucleotide (S3 Fig). This conformational change was not
observed in the mRNA of hCx36 carrying another SNP rs35174018 (462 C/T, previously
reported as 369 C/T [22]) which, alike SNP rs3743123, is also located in exon 2 of hCx36 (54
Fig). The data show that SNP rs3743123 specifically alters the predicted structure of human
Cx36 mRNA.

SNP rs3743123 reduces the post-natal expression of Cx36 and the
survival of B cells in vivo

To evaluate the effect of SNP 153743123 in vivo, we generated transgenic mice expressing either
the WT or the 153743123 form of hCx36 specifically in f cells (S5A Fig). These mice were
crossed with Cx36-null male mice [16], whose f cells lack endogenous mCx36, to allow for
evaluation of the effects solely dependent on either WT or variant hCx36.

Immunofluorescence showed that hCx36 was similarly expressed in the B cells of 1 month-
old RIP-hCx36WT and RIP-hCx36rs3743123 mice (Fig 3) at levels significantly higher than
those of native mCx36 of non-transgenic animals (S5B-S5E Fig), consistent with the strong
activity of the insulin promoter used to generate the transgenic animals. All 1 month-old mice
featured comparable islet architecture, with somatostatin- and glucagon-containing cells
located as a mantle at the islet periphery, and surrounding a core of insulin-producing B-cells
(S6A and S6B Fig top rows and Fig 3 top row). At this stage, morphometry revealed a compara-
ble number of B-cells in the islets of the two mouse types (Fig 3B).

Islet structure and proper control of blood glucose levels were not altered with aging in mice
expressing the WT form of hCx36 (Fig 3). In contrast, a progressive loss of B-cells (Fig 3A bot-
tom row and Fig 3B), altering islet structure (S6A and S6B Fig bottom rows) and resulting in
hyperglycemia (Fig 3C and 3D), was observed with time in one of the two lines (line A)
expressing the variant form of hCx36. These alterations, which were observed in male and
female mice, and across multiple animal generations, were paralleled by a reduction of hCx36
expression (Fig 4A-4C). Five months after birth, the second line expressing the variant hCx36
(line B), and which was generated independently of line A, also featured a statistically signifi-
cant reduction in the number of B cells and of immunolabelled hCx36, as compared to mice
expressing the WT form of hCx36 (S7A, S7B, S7TE-S7H Fig). However, these alterations were
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Fig 1. SNP rs3743123 alters the distribution of Cx36 at the cell membrane. A, In HeLa cells stably
transfected with the wild type form of Cx36 (left) the protein shows a spotted distribution (green) at the cell
membrane. After transfection of the SNP rs3743123 variant (right) the spotted distribution of the protein
alternates with regions of continuous membrane staining. Scale bar, 20 um. B, Freeze-fracture electron
microscopy revealed polygonal and array-shaped gap junction plaques (arrow heads) in HeLa cells
transfected with either the WT or variant form of Cx36 (right). Scale bar, 85 nm. C, Distribution of different gap
junction patterns (polygonal, linear, array shaped) and D, numbers of particles (connexons) per plaque in
Hela cells transfected with the wild type (n = 37) and SNP rs3743123 forms of Cx36 (n = 48). Images and
mean + SEM data are from three independent clones stably expressing either the wild type or the SNP
rs3743123 form of the protein.

doi:10.1371/journal.pone.0150880.g001
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Fig 2. SNP rs3743123 does not alter the stability of Cx36 mRNA. Exposure to 5 pg/ml actinomycin D,
revealed comparable levels of Cx36 mRNA at different time points in 3 independent clones of HelLa cells
stably transfected with either the wild type (black symbols) or the SNP rs3743123 form of hCx36 (red
symbols).

doi:10.1371/journal.pone.0150880.g002

substantially milder than those observed in line A. Accordingly, mice of line B remained nor-
moglycemic throughout the entire duration of the experiment (S7C and S7D Fig).

The data show that the overexpression of WT and variant hCx36 did not affect the structure
of the endocrine pancreatic islets of young mice, and that the variant connexin later impaired
both islet structure and function.

SNP rs3743123 reduces GJD2 expression in human pancreatic islets,
but marginally associates to T2D patients

Comparison of the expression of quantitative trait loci (¢QTL) in human islets of normoglycae-
mic and hyperglycaemic donors showed that the expression of hCx36 transcript was signifi-
cantly decreased (p<0.03) in pancreatic islets of hyperglycemic organ donors, and specifically
in those expressing SNP 153743123 than in those expressing the WT form of the gene. (52
Table).

To test whether SNP rs3743123 associates to T2D, we investigated the CoLaus cohort ([36],
S1 Table) for several SNPs which lie in the haplotype block of 753743123, with pair-wise linkage
coefficients D’> 0.98 [22]. Five common haplotypes, accounting for 99% of control chromo-
somes were identified, whose distribution was not significantly different in control and T2D
individuals (S3 Table). Comparison of the genotype and allele frequencies of the 4 SNPs we
investigated revealed that SNPs 75651724, rs35174018 and rs34964522 did not associate to T2D
in the CoLaus population (S4 Table). In contrast, the synonymous SNP rs3743123 (S196S) was
nominally associated to the disease, at both allele (p = 0.03; OR = 1.27 [1.02-1.82]) and geno-
type levels, as assessed per a recessive model (p = 0.03; OR = 1.36 [1.02-1.59]), although this
association did not reach statistical significance after correction for multiple testing (S4 Table).
The data show that SNP rs3743123 reduces the islet expression of hGJD2, but marginally asso-
ciates to T2D, in a heterogeneous population of patients.

Discussion

Type 2 diabetes (T2D) refers to a set of pathogenically distinct disorders which are usually
identified by a persistent hyperglycemia, often due to a variable loss of the insulin-producing 8
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doi:10.1371/journal.pone.0150880.g003

cells of pancreas, and to a selective insensitivity to glucose of the residual f cells. These alter-
ations are believed to be caused via a complex interplay of multiple genetic, cellular and envi-
ronmental factors [40, 41]. Previous studies have indicated that Cx36, a protein of the
connexin family which forms membrane channels for the electrical and metabolic coupling of
B cells [42], contributes to control glucose-stimulated insulin secretion and the resistance of
cells to cytotoxic conditions [18, 42, 43]. Strikingly, the pharmacological, siRNA and genetic
interference with the expression and function of Cx36 results in alterations of murine f3 cells
[16, 18, 44], which mimic the major alterations observed in T2D [45].

In humans and rodents, the GJD2 gene which codes for Cx36 (http://www.genenames.org/
genefamily/gj.php) is solely expressed in pancreatic B cells, neurons, and neuron-related endo-
crines [46]. Previous studies have shown that a specific SNP (rs3743123) in the exon 2 of GJD2,
is associated with juvenile myoclonic epilepsy [21, 22]. Since neurons and f cells share a num-
ber of common features [24], in spite of a rather different embryological origin, we investigated
whether the same SNP also causes alterations of B-cell function, possibly involved in the devel-
opment of T2D.
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Stable transfection experiments of human cells which lack native connexin expression, dem-
onstrated that the variant cDNA containing SNP rs3743123 did not alter the expected half-life
of the hCx36 transcript, nor prevent the quantitative biosynthesis of the cognate protein, its
transport to and insertion within the cell membrane, and its aggregation into bona fide gap
junction plaques. Still, and in spite of a normal electrophoretic mobility and preservation of the
expected immunoreactivity at the C terminus, the hCx36 protein encoded by the variant
mRNA formed channels less permeable to two gap junction-permeant tracers, distributed dif-
ferently within the cell membrane, and aggregated into distinct patterns of gap junction pla-
ques. These observations suggest that the form of hCx36 carrying SNP 53743123 is processed
somewhat differently than the wild type form. Our computing analysis confirmed that the syn-
onymous SNP rs3743123 alters the predicted structure of hCx36 mRNA, to an extent which is
not induced by other SNPs located in the same exon of G/D2. Other synonymous SNPs, have
been shown to affect the splicing [47], stability [48], and secondary structure of messenger
RNAs [49-51], as well as the levels and function of the cognate proteins [52-55]. For example,
differences in the translation rate due long ribosomal pause along mRNAs featuring a SNP can
result in major alterations in the co-translational protein folding [53-55], leading to altered
protein conformation. Our data now document that, in the case of GJD2, the synonymous SNP
rs3743123 did not affect the translation of hCx36, but somehow altered the packing of the pro-
tein in the cell membrane, and decreased the permeability of the cognate cell-to-cell channels.
Whether the latter change is due to the modified aggregation pattern of connexons and it
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occurs also in vivo remains to be validated. However, based on previous studies, indicating that
the experimental modifications of Cx36-dependent coupling induced in cell lines consistently
mimicked those found in primary mouse islets exposed to the same conditions [16, 19, 28, 34],
the observed decrease in cell-to-cell coupling would be expected to decrease both the secretion
and survival of B cells [16, 18, 44].

To validate this possibility, we generated the first lines of transgenic mice expressing in 8
cells solely the wild type or the variant form of human Cx36. Comparison of these lines showed
that they all exhibited normal islet structure and were normoglycemic at birth. However, mice
of the two lines expressing the variant form of hCx36 developed a significant reduction in the
number of B cells and of Cx36 immuno-labeling within the first five months of life, which per-
sisted in both genders and across many generations and were paralleled by hyperglycemia in
one of the lines. Given the independent generation of these two lines, and the hemizyogous
genotype of all the mice we used (which was purposely planned to decrease the risk of a posi-
tional loss of function), it is very unlikely that the phenotype observed resulted from a random,
non-specific, positional effect of the transgene. Rather, the data strengthen the alternative view
that this phenotype was specifically due to the expression of the hCx36 variant. However, as
sustained hyperglycemia does decrease the B-cell population in many models of diabetic mice
[56], and may reduce Cx36 expression [57], the possibility that the altered islet and Cx36 phe-
notypes we observed were induced by the elevated circulating levels of glucose should also be
considered. Two observations do not support this possibility: first, islets of mice expressing
rs3743123-hCx36 of the A line, which were hyperglycemic, did not show the large increase in
o.- and 8-cell numbers, which consistently characterizes the abnormal islet architecture in most
models of diabetic mice [56]; second, a loss of B-cells was also observed in the islets of line B,
which did not featured elevated circulating levels of glucose. Thus, our experiments suggest
that the expression of variant hCx36 decreased Cx36 signaling, leading first to a post-natal loss
of B cells that, when sufficient, resulted, in turn, in altered homeostasis of blood glucose. This
sequence also fits with the finding that the altered islet and Cx36 phenotypes were more intense
in mice expressing 7s3743123-hCx36 of line A, which eventually developed hyperglycemia,
than in those of line B, which remained normoglycemic throughout the duration of the experi-
ment. Most likely, this difference can be accounted for by a different level of expression of the
hCx36 transgene between the two transgenic lines, which may have been influenced by its site
of insertion (due to a different euchromatin environment) and number of copies (due to tan-
dem repeats). Thus, in animals of the A line the Iresidual levels of hCx36 may not have suffice
to maintain the B-cell mass and, therefore, normal glucose homeostasis, whereas the higher lev-
els of hCx36 expressed in the mice of line B, may have been adequate to sustain both functions.
This is in agreement with the previous observations that Cx36 is dispensable for the develop-
ment and function of pancreatic islets, till more than 50% of the protein is lost [58].

An obvious question is whether our mouse findings apply to humans. In this perspective, it
is striking that the islets of cadaveric donors expressing a GJD2 with SNP rs3743123, featured a
lower expression of Cx36 mRNA than those of individuals expressing the WT form of the
gene. Accordingly, our analysis of the CoLaus cohort revealed a nominal, if marginal associa-
tion of SNP 53743123 to T2D patients. However, investigating the DIAGRAM and MAGIC
meta-analyses consortia, we failed to detect a significant association of SNP rs3743123 in other
populations of T2D patients (data not shown). Because T2D is a heterogeneous disease, this
negative finding does not rule out a relevant contribution of the G/D2 gene in subpopulations
of T2D patients, specifically those who feature the lowest residual insulin secretion in response
to glucose stimulation [59], or other phenotypic traits. The validation of this tentative hypothe-
sis awaits the further screening of other patients and transgenic mice populations. At any rate,
our data extend to a different and much large human cohort the preliminary findings that
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hCx36 levels are decreased in some, but not all T2D patients [4], and provide the very first evi-
dence for an in vivo pathogenic role of a connexin variant in the function of pancreatic islets.

Supporting Information

S1 Fig. Expression of hCx36 is induced in HeLa cells after transfection of either the WT or
the SNP rs3743123 form of Cx36. A-B, Representative western blots of total and membrane
protein extracts. hCx36 is induced in several independent clones of HeLa cells stably trans-
fected with either the WT (clones WT#1-2-3) or the SNP rs3743123 form of hCx36 (clones
SNP#1-2-3). C-D, Densitometric quantification of Cx36 signal in western blots of total (C) and
membrane proteins (D). The hCx36 signal was normalized to the actin signal. SNP rs3743123
does not alter the membrane insertion of Cx36. Data are mean + SD values of three indepen-
dent experiments. Student's ¢ test with Welch's correction.

“P <0.05"*P < 0.01"**P < 0.001"*** P < 0.0001 compared to non-transfected HeLa cells, S
P<0.05%°P <0.01°%%P <0.001°%%°P <0.0001 compared to Min6 cells.

(PPTX)

S2 Fig. Multiple sequence alignment of Cx36 mRNA, the allelic variant 681C>T and the
allelic variant 462C>T. The previous versions of the three mRNA are also reported for com-

parative purposes.
(PPTX)

S3 Fig. Predicted structure of the wild type and the rs3743123 form of hCx36 mRNA. A,
Wild type hCx36 mRNA. The enlarged section (square) shows the region carrying the 681C. B,
Folding structure of the rs3743123 form of Cx36 and magnification of the region carrying the
allelic variant 681T.

(PPTX)

$4 Fig. Predicted structure of the wild type and the rs35174018 form of hCx36 mRNA. A,
mRNA structure of the wild type hCx36 and magnification of the region carrying the 462C. B,
mRNA structure of hCx36 carrying the allelic variant 462T. Notably, the two structures are
conserved. This observation validates the prediction of the altered structure of the Cx36
mRNA 681C>T allelic variant.

(PPTX)

S5 Fig. HCx36 overexpression in transgenic animals. A, Construct used for generating RIP-
hCx36WT and RIP-hCx36rs3743123 mice. B-C, Immunofluorescence images of mouse endog-
enous hCx36 in islets of wild type and knock out mice. D-E, Immunofluorescence images of
hCx36 in islets of mice carrying the wild type and the SNP rs3743123 form of the protein. Scale
bar: 10 pum.

(PPTX)

S6 Fig. Islets morphology of RIP-hCx36WT and RIP-hCx36rs3743123 mice. Immunofluo-
rescence images of islets of RIP-hCx36WT (A) and RIP-hCx367s3743123 mice (B) at 1 (top
panel) and 5 months (bottom panel) after birth. Somatostatin green, glucagon purple, insulin
red. Scale Bar 10 pm.

(PPTX)

S7 Fig. Expression of hCx36rs3743123 causes a mild phenotype in a second, independent
mouse line (line B). Immunofluorescence images of islets of RIP-hCx36WT mice, RIP-
hCx367s3743123 mice of lines A and B, 5 months after birth (A) and quantification of the num-
ber of B cells per islet section (B). Glycaemia curve (C) and area under this curve (D) of RIP-
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hCx367s3743123 line B mice. Immunofluorescence images of hCx36 in islets of RIP-
hCx367s3743123 line B mice 1 and 5 months after birth (E). Quantification of volume density
(Vv) (F), numeric density (Nv) (G), and length of hCx36 plaques (H) in RIP-hCx36rs3743123
mice of the B line. Data show means + SEM. *P < 0.05**P < 0.01***P < 0.001**** P < 0.0001.
(PPTX)

S1 Table. Characteristics of the T2D and control groups from the CoLaus cohort analysed
to establish the distribution of GJD2 SNPs.
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$2 Table. Control of GJD2 transcription in human islets by SNP rs3743123.
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$3 Table. Distribution of GJD2 haplotypes in CoLaus cohort.
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S$4 Table. Case-control association studies of 4 SNPs in exon 2 of GJD2 in the CoLaus
study.
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