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Abstract

Airway smooth muscle (ASM) cells play a critical role in the pathophysiology of asthma due
to their hypercontractility and their ability to proliferate and secrete inflammatory mediators.
microRNAs (miRNAs) are gene regulators that control many signaling pathways and thus
serve as potential therapeutic alternatives for many diseases. We have previously shown
that miR-708 and miR-140-3p regulate the MAPK and PI3K signaling pathways in human
ASM (HASM) cells following TNF-a exposure. In this study, we investigated the regulatory
effect of these miRNAs on other asthma-related genes. Microarray analysis using the lllu-
mina platform was performed with total RNA extracted from miR-708 (or control miR)-trans-
fected HASM cells. Inhibition of candidate inflammation-associated gene expression was
further validated by qPCR and ELISA. The most significant biologic functions for the differ-
entially expressed gene set included decreased inflammatory response, cytokine expres-
sion and signaling. gPCR revealed inhibition of expression of CCL11, CXCL10, CCL2 and
CXCLS8, while the release of CCL11 was inhibited in miR-708-transfected cells. Transfection
of cells with miR-140-3p resulted in inhibition of expression of CCL11, CXCL12, CXCL10,
CCL5 and CXCL8 and of TNF-a-induced CXCL12 release. In addition, expression of
RARRES2, CD44 and ADAM33, genes known to contribute to the pathophysiology of
asthma, were found to be inhibited in miR-708-transfected cells. These results demonstrate
that miR-708 and miR-140-3p exert distinct effects on inflammation-associated gene
expression and biological function of ASM cells. Targeting these miRNA networks may pro-
vide a novel therapeutic mechanism to down-regulate airway inflammation and ASM prolif-
eration in asthma.

Introduction

Several recent reports have provided evidence that airway smooth muscle (ASM) has strong
pro-inflammatory and immunomodulatory functions [1-4]. These properties of ASM are medi-
ated through its synthetic function as well as through expression of a variety of cell-surface mol-
ecules, integrins [5-7], and Toll-like receptors [8, 9]. During acute airway inflammation,
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mediators and cytokines released from structural and inflammatory cells alter ASM contractile
function [10-13]. However, during persistent airway inflammation, cytokines and chemokines
produced by inflammatory cells and ASM can cause ASM proliferation, leading to structural
changes in the airways, often referred to as airway remodeling [14, 15]. During chronic airway
inflammation, the immunomodulatory role of ASM may be more significant in establishing
structural changes within the airways than its contractile function. In this context, recent reports
show that ASM is capable of releasing cytokines such as IL-5 [16, 17], IL-6 [18, 19], IL-33 [20],
TSLP [21], GM-CSF [22] and VEGF [23]; chemokines such as RANTES[16], Fractalkine [24],
CCL11 [25], CXCL10[26-28], CXCL8[29]; adhesion molecules such as ICAM-1[30, 31],
VCAM-1 [30, 32], CD44 [33] and LFA-1[34]; and growth factors such as IGF-1 [35, 36] and
stem cell factor [37]. Cytokines released by immune cells recruited into the lungs during allergic
inflammation may also stimulate ASM cells to alter the expression of proinflammatory genes in
an autocrine or paracrine manner. There is also evidence for hypersecretion of chemokines both
constitutively and in response to cytokines in ASM cells obtained from asthmatics than in cells
from non-asthmatics [14, 38]. There is also increased chemotaxis of mast cells toward ASM
cells from asthmatics both in vivo and in vitro [28, 39-41]. Other studies have examined the
transcriptional regulation of expression of chemokine genes in human ASM cells (HASM) [29,
42]. While such transcriptional regulation of expression of chemokines is better understood, the
post-transcriptional regulation is an emerging area of investigation. In this context, recent stud-
ies provide evidence for specific microRNAs in the regulation of ASM proliferation [43, 44],
ASM phenotype [45] and airway inflammation [46, 47].

microRNAs (miRNAs) are small non-coding ~22nt RNAs that regulate gene expression by
binding to the 3’-Untranslated Region (3’UTR) of target mRNAs to cause mRNA degradation
and/or translational repression [48]. Since binding of miRNAs to target sequences is dependent
on its ‘seed’ sequence, a single miRNA can potentially regulate a large number of genes. Specific
miRNAs have already been discovered that regulate cellular functions such as differentiation,
proliferation, and apoptosis. [48-50] Dysregulation of miRNA expression has been implicated
in airway inflammation [48-50], but the specific miRNAs (miR-140-3p and miR-708) control-
ling inflammation have not previously been reported. In a recent report we identified miR-708
in the post-transcriptional regulation of expression of a cell-surface protein CD38 through two
major signaling pathways [51]. Transfection of HASM cells with miR-708 causes the induction
of phosphatase and tensin homolog (PTEN), which regulates PI3K/AKT signaling by decreasing
Akt phosphorylation and interacts with members of the NF-«B signaling network. miR-708 also
induces DUSP-1, a dual specificity phosphatase, leading to JNK MAPK dephosphorylation [51].

Our recent investigations also provided evidence for down-regulation of p38 MAP kinase
and NF-«B activation in HASM cells following transfection with miR-140-3p [52]. The net
effect of PTEN and DUSP-1 induction as well as inhibition of MAP kinase and NF-«B activa-
tion in ASM cells by miRNAs should lead to modulation of key signaling pathways involved in
inflammation and cell proliferation. There is evidence that the expression of several chemokine
genes, the release of chemokines and cell proliferation in HASM cells are also regulated by
these same signaling pathways [53-59].

In this study, we evaluated differentially expressed genes using microarrays and gPCR in
HASM cells following miR-708 transfection and stimulation with the inflammatory cytokine
TNF-a, with particular emphasis on the expression of cytokine/chemokine genes, other pro-
inflammatory genes, and those reported to be involved in the asthmatic phenotype. Since
many of these chemokines are involved in the recruitment of inflammatory cells such as eosin-
ophils, basophils, mast cells and T lymphocytes into the airways during allergic airway disease,
we measured their release from cells stimulated with the inflammatory cytokine TNF-o and
following transfection with miR-708 or miR-140-3p.
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Materials and Methods

Ethics statement: Airway smooth muscle cells from human lungs were prepared in Dr. Panet-
tieri’s laboratory at the University of Pennsylvania. Lung tissues were obtained from the
National Disease Resource Interchange (NDRI) and its use was approved by the Institutional
Review Board at the University of Pennsylvania and University of Minnesota. All donor tissue
is harvested anonymously and de-identified and therefore the use of the cells does not consti-
tute human subjects research. Primary ASM cells were isolated from deceased donors.

Reagents

Reagents used in the current study: DMEM from GIBCO-BRL (Grand Island, NY); rh-TNF-o
from R&D Systems (Minneapolis, MN); TRIzol, SuperScript III reverse transcriptase, Opti-
MEM® reduced serum medium and Lipofectamine™ RN AiMax transfection reagent from Invi-
trogen Life Technologies (Carlsbad, CA); Brilliant 1ll Ultra-Fast SYBR Green qPCR Master Mix
from Agilent Technologies Inc (Santa Clara CA); control oligo (scrambled sequence mimic) and
miR-708 mimic (mature miR-708 sequence: 5 ~AAGGAGCUUACAAUCUAGCUGGG-3' ;
mature miR-140-3p sequence: 5'-UACCACAGGGUAGAACCACGG-3’) from Dharmacon (Lafa-
yette, CO); Tris-base, glucose, HEPES and other chemicals from Sigma Chemical Co. (St. Louis,
MO).

Microarray sample preparation

ASM cells, derived from three de-identified healthy donors, used between 2-5" passages, were
seeded at 1.5 X 10° cells/well and transfected with mimic or scrambled sequence mimic of
miR-708 at 50 nM concentration [51]. We used the same concentration which was previously
determined to be optimal to inhibit the expression of CD38 [51]. Cells that were growth
arrested (24 h) after transfection, were induced with pro-inflammatory cytokines TNF-o at 10
ng/ml (24 h). Total RNA was harvested using PureLink RNA isolation kit according to the
manufacturer’s instructions. Purity of the RNA was determined with a Nanometer 2000C for
the ratios 260/280 and 260/230. For each condition (mimic or scrambled oligo treatment),
1000 ng of total RNA was subjected to microarray analysis. Genome-wide changes in gene
expression in transfected cells were generated using Illumina human (HT-12) arrays and ana-
lyzed using BeadStudio version 3.1.1.

Data Analysis

For statistical analysis and clustering, we used the Partek Genomics Suite software package
(Partek Inc., St. Louis, MO, USA). We performed a paired ¢-test with donor ID and mimic/con-
trol as the nominal variables. Before comparison analysis and clustering, we filtered extremely
low and non-variant genes out of the datasets. Significance cutoff filters were set at P < 0.05
and an expression change of at least 2-fold. For functional and pathway analyses we used Inge-
nuity Pathway Analysis (IPA) software (Qiagen, Redwood City, CA, USA). IPA employs a
right-tailed Fisher exact test to calculate a P value corresponding to the probability that a bio-
logic function not relevant to the input dataset is falsely identified as relevant. A Benjamini-
Hochberg false discovery rate of 0.05 was used to correct such P values.

Validation of genes by gPCR

As described in the “Microarray sample preparation”, total RNA was isolated and cDNA was
prepared using reverse transcription kit from Invitrogen Life Technologies (Carlsbad, CA).
cDNAs were subjected to qPCR analysis using Brilliant SYBR Green Master Mix and
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Table 1. Primer Sequences.
Gene
CXCL10

CXCL8

CCL5

CCL2

CXCL12

CCL11

RARRES2

ADAM33

CD44

B-Actin

doi:10.1371/journal.pone.0150842.t001

primer sequences

:5'=3" GAACTGTACGCTGTACCTGCA

:5'=3" TTGATGGCCTTCGATTCTGGA

:5'—3" ACTGAGAGTGATTGAGAGTGGAC

:5'—=3" AACCCTCTGCACCCAGTTTTC

:5'=3"' CAGTCGTCTTTGTCACCCGAA

1 5'=3"' TCCCAAGCTAGGACAAGAGCA

:5'—3"' AGGTGACTGGGGCATTGAT

:5'—3" GCCTCCAGCATGAAAGTCTC

1 5'—3" TGCCAGAGCCAACGTCAAG

1 5'—3"'" CAGCCGGGCTACAATCTGAA

1 5'—3"' CCCCAGAAAGCTGTGATCTTCA

:5'=3" GGAGTTGGAGATTTTTGGTCCAGAT

1 5'—3" GAGGGACTGGAAGAAACCCG

1 5'=3"'" CATGGCTGGGGATAGAACGG

:5'=3" GACCTAGAATGGTGTGCCAGA

1 5'=3" AGCCTGGC TTGTCACAGAAG
5'—3"' AGCATCGGATTTGAGACCTG

1 5'=3" GTCCACATTCTGCAGGTTCC
5'—3"' ACACTGTGCCCATCTACGAGG

:5'—3"'" AGGGGCCGGACTCGTCATACT

D M T M IV M IV M DT IO T IOV MDD T O T I

Stratagene Mx3000p qPCR system (Foster City, California, 94404). Primer sequences and con-
ditions for the genes tested are provided in Table 1. The B-actin gene was used as a housekeep-
ing gene to normalize the expressions of other genes.

Chemokine Release assay

HASM cells were transfected with mimic or scrambled sequence mimic of miR-708 or miR-
140-3p or were untransfected (control) as described in earlier publications [51, 52]. Cells were
then growth arrested and treated with 10ng/ml TNF-o. Cell culture supernatants were col-
lected at different time points ranging from 6-48 h. Collected supernatants were aliquoted and
immediately stored at -80°C until assayed. Chemokines in the culture supernatants were quan-
tified using ELISA kits from R&D system (Minneapolis, MN) according to the manufacturer’s
instructions.

Results
Microarray results

We performed a detailed analysis of the pattern of gene expression in HASM cells stimulated
with TNF-a following transfection with miR-708. Gene expression results are shown as a heat-
map (Fig 1). Visual inspection easily identifies differential patterns of expression between sam-
ples treated with a miR-708-5p mimic (purple bar) versus a scrambled control (orange bar).
Principal Component Analysis (PCA) confirmed the mimic as the primary differential compo-
nent (Fig 2). Our analysis found that 821 genes were differentially expressed (348 upregulated
and 473 downregulated) in HASM cells transfected with a miR-708 mimic versus a scrambled
control sequence (paired t-test, P < 0.05). Table 2 summarizes the differentially expressed che-
mokines/cytokines, transcription factors, extracellular matrix components, calcium signaling
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control

miR708-50 @ control W mimic

Fig 1. Heat map of mRNA microarray expression data. Purple bar indicates samples treated with the miR-
708 mimic; orange bar indicates samples treated with a scrambled control. Sample rows are arranged in the
same donor-order (i.e. donor 1 samples are rows 1 and 4).

doi:10.1371/journal.pone.0150842.g001

molecules, growth factors and other genes related to airway hyperresponsiveness. The complete
list of genes is available as S1 Data.

Functional and Pathway Analysis

The most significant biologic functions for this differential gene set included decreased inflam-
matory response, cytokine expression and signaling. In particular, many components of the IL-
17 pro-inflammatory pathway were down-regulated. Multiple pathways and biologic functions
related to cell cycle progression were predicted to be upregulated.

miR-708 inhibits chemokine mRNA expression and other asthma related
genes

Results of gene expression analysis revealed significant down-regulation of expression of sev-
eral chemokine genes as well as some genes associated with the asthmatic phenotype (Fig 3).
Therefore, we used qPCR analysis to validate the microarray results of expression of these
genes. HASM cells were transfected with miR-708-5p mimic oligonucleotides or the scrambled
control and then treated with TNF-o. 24 hours following the addition of TNF-a, total RNA
was collected from the cells and subjected to gPCR analysis. There was significant inhibition in
the expression of chemokine genes CCL11I (P <0.0001), CXCLI0 (P = 0.0308), CCL2

(P =0.0422) and CXCL8 (p = 0.0156) (Fig 4) as well as other ‘asthma related’ genes such as
CD44 (P =0.0328), ADAM33 (P = 0.0016) and RARRESS2 (P = 0.0006) (Fig 5). On the other
hand, the mRNA expression levels for chemokine genes CCL5 (P = 0.0549) and CXCL12 fol-
lowing transfection with the miR-708 mimic were not significantly different from expression
in scrambled oligonucleotide-transfected cells (Fig 4).

miR-708 transfection and release of chemokines

To determine whether changes in the mRNA expression of chemokines were reflected in their
protein expression, we measured their release in HASM cell culture supernatant following
miR-708 mimic or scrambled sequence mimic transfection and TNF-a induction. As a control,
we collected the culture supernatant from untransfected but TNF-o treated HASM cells. Of the
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Fig 2. Principal Component Analysis. There is a clear primary separation of samples based on miR-708
mimic versus scrambled control. Secondary separation was by donor ID.

doi:10.1371/journal.pone.0150842.9002

chemokines that were assayed, only CCL11 release exhibited significant downregulation of
release in mimic miR-708-transfected cells compared to release from cells transfected with the
scrambled oligonucleotide or from control cells at all time points examined (Fig 6).

miR-140-3p transfection and chemokine mRNA expression and release

The expression of many of the chemokine genes in HASM cells is regulated by signaling path-
ways that are downregulated by miR-140-3p. Therefore, we measured the expression and
release of chemokines in response to TNF-o. following miR-140-3p transfection. HASM cells
were transfected with miR-140-3p mimic oligonucleotides or the scrambled control and then
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Table 2. Differentially expressed genes in TNF-a-stimulated HASM cells following miR-708 mimic transfection.

Gene ID Fold Function
change
Inflammatory mediators
Chemokines CXCL10 -2.695 Chemoattracts mast cell
CCL8 -5.38 Chemoattracts monocytes
CCL11 -8.968 Chemoattracts Eosinophils
CXCL12 -5.254 Chemoattractant T-lymphocytes & monocytes
CCL5 -3.52 Chemoattracts Eosinophil
CCL2 -3.21 Chemoattracts monocytes, fibrocytes and basophils
CXCL8 -2.03 Chemoattracts neutrophils, basophils and T-cells
CXCL16 -2.688 Scavenger receptor on macrophages
CXCL5 -2.389 Activates neutrophils
CXCL9 -2.375 Chemoattracts activated T-cells
CXCL11 -2.151 Chemoattracts interleukin-activated T-cells
CXCL6 -2.039 Chemoattracts neutrophil, granulocytes
Cytokines
IL18BP -4.028 Inhibits the early TH1 cytokine response
IL6 -1.832 Stimulates the differentiation of B-cells and acts as a myokine.
TNFSF13B -4.216 Stimulates B- and T-cell function
Genes associated with
Extracellular Matrix
VCAM1 -20.59 Enhances leukocyte-endothelial cell adhesion and T cell inflammatory functions
COL3A1 -9.808  Activates RhoA pathway
COL6AT1 -3.185 A major structural component of microfibrils
CD44 -4.25 Increases airway hyperresponsiveness [80]; leads to inflammation [61, 81] by interacting
with T-cell [33] and mast cell [67]; increases ASM cell proliferation [82]
THBS1 -4.797 Increases IL-8 production [83]
MXRA5 -4.581 Associates with matrix-remodeling protein
ADAMTS- 6.158 Increases FEV1 [84]
1
TAPBP -4.38 Increases antigen processing andassembly of MHC class | [85]
Transcription factors
NFKB1 -1.876 Regulates immune response
RELA -1.728 Regulates immune response
Calcium signaling
CD38 -2.286 Increases cell adhesion, signal transduction, AHR and calcium signaling.
BDKRB1 -1.994 Increases chronic and acute inflammatory responses
FKBP10 -2.198 Regulates [Ca2+]i dynamics
Growth factors and related
genes
IGFBP5 -4.009 Prolongs the half-life of the IGFs
PDGFRL -4.258 Increases proliferation
EGFL6 -3.886 Regulates cell cycle & induces proliferation
Airway hyper-responsiveness
ACTG2 -17.181 Increases muscle contraction
TAGLN -4.691 Increases calcium interactions and contractility
MYLK -2.12 Increases Smooth muscle contraction
PDE5A -2.50 Inactivates cGMP [86]
Genes associated with F2F7 6.8 Anti-proliferative [87]
proliferation
(Continued)
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Table 2. (Continued)

Gene ID Fold Function
change
Inflammatory mediators
IL24 11.6 Anti-proliferative [88]
COL1A1 -7.474 Increases ASM cell proliferation [89]
DUSP6 10.915  Decreases ASM cell proliferation
UBE2C 18.96 Increases cell proliferation
CDC20 16.459 Increases cell proliferation
ID1 16.089 Increases cell proliferation
ANGPTL4 12.633 Increases ASM cell proliferation [90]
CDK1 5.387 Increases cell proliferation

doi:10.1371/journal.pone.0150842.1002
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treated with TNF-o. Twenty four hours following the addition of TNF-o, total RNA was col-
lected from the cells and subjected to qPCR analysis. There was significant inhibition in the
expression of chemokine genes CCL11 (p = <0.005), CXCL12 (p<0001), CCL5 (p<0.0009),
CXCL10 (p = 0.0033), CCL2 (p = 0.0422) and CXCL8 (p = 0.0033) (Fig 7). We measured the

miR-708-5p

88

CCL2

Cb44

Fig 3. Network diagram. Potential regulatory pathways connecting miR-708 and down-regulated molecules of interest in HASM cells. Several chemokine
genes were observed to be significantly down-regulated, particularly CD44 and CD38 (-3.23 and -2.287, respectively). Nodes are colored either by observed
expression changes in the paired t-test (Green) or by predicted activation status (Blue = predicted inhibition) based on the assumption of increased miR-708-
5p (Red). Potential relationships are indicated by solid (direct interaction) or dotted (indirect interaction) lines. Interaction lines are colored based on whether
the predicted relationship leads to inhibition (Blue), leads to predicted activation (Yellow; but inconsistent with observed results), or effect was not able to be

predicted (Gray).

doi:10.1371/journal.pone.0150842.9003
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:
1.0+ p=0.0308 0422 ' %

*  p=0.0156
*

*

Expression at mRNA level
following miR-708 transfection
and TNF-a treatment

Fig 4. Downregulation of chemokine mRNA expression following miR-708 transfection. HASM cells
derived from 3-5 donors were transfected with mimic or scrambled (Scr) sequence mimic of miR-708
followed by exposure to TNF-a (10ng/ml) to measure chemokine mRNA expression. Note the significant
inhibition in the expression of CCL11, CXCL10, CXCL8 and CCL2 following miR-708 mimic transfection
compared to expression in cells transfected with scrambled sequence. Data represents mean+SEM.

doi:10.1371/journal.pone.0150842.g004

release of chemokines in HASM cell culture supernatant following miR-140-30 mimic or
scrambled sequence mimic transfection and TNF-a induction. As a control, we collected the
culture supernatant from untransfected but TNF-o-treated HASM cells. Of the chemokines
that were assayed, only CXCL12 release exhibited significant down-regulation of release in
mimic miR-140-3p-transfected cells compared to release from cells transfected with the scram-
bled miR-140-3p oligonucleotides or from control cells at all time points examined (Fig 7).

Discussion

Using a transcriptomics-based approach, we investigated differentially expressed genes in
HASM cells treated with TNF-o. following miR-708 transfection compared to expression in
cells transfected with the scrambled mimic oligonucleotides. This analysis revealed changes in

_5 15
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=3 1.01 p=0.0328
58 3 > p=0.0006
ST L P=0.0016
% E & 0.5 T
n D
2ET 1
83 & |
o 2 |
‘2 0.0 | T - T
) Q% {
s & & F
QO <&

v

Fig 5. Down regulation of other ‘asthma related’ genes by miR-708. HASM cells obtained from 3-5
donors were transfected with mimic or scrambled sequence mimic (Scr) of miR-708 followed by treatment
with TNF-a (10ng/ml/). Note significant inhibition of expression of CD44, ADAM33 and RARRES2 transcripts
in miR-708 mimic-transfected cells compared to expression in scrambled sequence transfected cells. Data
represents mean+SEM.

doi:10.1371/journal.pone.0150842.9005
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Fig 6. Chemokine release from HASM cells following miR-708 transfection. HASM cells from 3—6
donors were transfected with mimic or scrambled sequence mimic of miR-708 and treated with TNF-a (10ng/
ml) following growth arrest of cells. Untransfected cells treated with TNF-a served as an additional control.
Twenty hours later cell culture supernatants were collected for the measurement of chemokines. Note the
release of CCL11 was significantly inhibited at every time point following miR-708 transfection when
compared to scrambled sequence mimic transfection. Data represents meantSEM.

doi:10.1371/journal.pone.0150842.9006

the expression of several genes, including those for chemokines/cytokines, extracellular matrix
proteins, transcription factors, calcium signaling molecules, growth factors, and genes associ-
ated with airway hyperresponsiveness. Several genes involved in cell cycle regulation were up-
regulated, although the genes that block cell proliferation such as E2F7, DUSP6 and IL-24, were
also significantly upregulated. There was downregulation of expression of JNK MAP kinase
which is involved in serum-induced ASM cell proliferation [60]. The changes in the expression
of chemokine genes revealed in this approach were confirmed by qPCR. In addition, miR-708
also caused downregulation of expression of several ‘asthma-related” genes such as CD44 [33,
61], ADAM33 [62, 63] and RARRES?2 [64-66]. Prior reports have shown that CD44 is involved
in mast cell-ASM cell adherence through Type I collagen and this adherence is greater during
airway inflammation as well as in ASM cells derived from asthmatics [67]. miR-140-3p trans-
fection of HASM cells also resulted in inhibition of expression of chemokines that were sensi-
tive to inhibition by miR-708, with the exception of CXCL12. However, chemokine release
measurements revealed inhibition of release of CXCL12, but not the other chemokines.

In the present study, we examined the post-transcriptional regulation of expression of several
inflammatory genes in HASM cells by miR-708. HASM cells express miR-708 and miR-140-3p
constitutively and TNF-o. causes a significant reduction in their expression [51, 52]. Further-
more, the constitutive expression of DUSP-1 and PTEN are also significantly downregulated
following exposure to TNF-o. [51]. Transfection with miR-708 in cells stimulated with TNF-o.
resulted in a significant augmentation of PTEN and DUSP-1 expression, with concomitant
decreased activation of Akt and JNK MAP kinase, respectively [51]. The PI3 kinase/Akt and
MAP kinase signaling mechanisms are involved in airway inflammation by activating transcrip-
tion factors such as NF-kB and AP-1 [68-71]. Recent reports have shown that this signaling is
involved in the hyperproliferative phenotype of ASM cells from asthmatics [54]. Our earlier
study showed that miR-140-3p decreases the activation of p38 MAP kinase and NF-kB in
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Fig 7. Chemokine mRNA expression and release from HASM cells following miR-140-3p transfection. HASM cells derived from 3-5 donors were
transfected with mimic or scrambled (Scr) sequence mimic of miR-140-3p followed by exposure to TNF-a (10ng/ml) to measure chemokine mRNA
expression and chemokine release. Note the significant inhibition in the expression of CCL11, CXCL10, CXCL8, CXCL12 and CCLS5 following mimic
transfection compared to expression in cells transfected with scrambled sequence. Note the release of CXCL12 was significantly inhibited following mimic

transfection. Data represents mean+SEM.

doi:10.1371/journal.pone.0150842.9007

HASM cells. The promoter regions of several chemokine genes contain binding sites for NF-xB
and AP-1 as well as for other transcription factors [72-74]. Furthermore, TNF-o has been
shown to induce the expression and release of cytokines/chemokines from HASM cells [25, 41,
42,75, 76] including the chemokines that we have examined in this study. Although the mecha-
nisms by which miR-708 decreased the expression of the chemokine genes that we examined
are not addressed in this study, the 3’UTRs of CXCL12 and CCL5 have predicted target sites for
miR-708 indicating that this miRNA may directly target these transcripts. As well, miR-140-3p
also has predicted binding sites at 3’'UTR of CXCL12 and CXCL8. It is very likely that the inhibi-
tion of expression of chemokine genes following miR-708 or miR-140-3p transfection resulted
from indirect mechanisms of decreased activation of transcription factors and MAP kinases as
well as binding of miRNAs to cause translational repression and/or mRNA breakdown.

The miRNAs examined in this study had profound inhibitory effects on the chemokines
involved in the recruitment of eosinophils, mast cells, T lymphocytes and fibrocytes. Chemo-
kine release studies additionally revealed inhibition of release of CCL11 and CXCL12. It is
interesting to note that our microarray results showed a high level of downregulation of
CXCL12 expression by miR-708, while the qPCR results did not show any change in CXCL12
transcript levels following miRNA transfection. It is very likely that miR-708 may regulate
transcription and release of some chemokines while it may have a dominant effect on release
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for others. It is also known that production of specific chemokines in ASM cells may involve
unique signaling pathways and stimuli, as has been shown for CXCL10 release [41]. In this
study, it was reported that in HASM cells exposed to TNF-o or IL-18, CXCL10 production
required JNK MAP kinase activation, while its release was induced by p38 MAP kinase activa-
tion. The results of the microarray analysis of differentially expressed genes and qPCR results
confirmed selective downregulation of JNK MAP kinase expression by miR-708, with
decreased JNK MAP kinase phosphorylation. This decreased JNK MAP kinase activation may
be a mechanism involved in the inhibition of CCL11 release and expression in miR-708 trans-
tected cells following exposure to TNF-o. It should be noted that among the chemokine tran-
scripts examined, miR-708 transfection resulted in a profound inhibition of CCL11 expression
while the inhibition of expression of other chemokine transcripts was modest and not of suffi-
cient magnitude to be reflected in inhibition of release. Transfection of cells with miR-140-3p
caused significant attenuation of expression of all the five chemokine genes examined, while
exerting a selective inhibitory effect on the release of CXCL12 but not the other chemokines.
The decreased p38 MAP kinase activation following miR-140-3p transfection noted in our pre-
vious studies [59] may be involved in the attenuation of CXCL12 release in response to TNF-o.
Furthermore, these miRNAs may selectively inhibit the release of some chemokines but not
others. Recent investigations have shown that stimulation of ASM cells with a mixture of cyto-
kines causes significantly higher amounts of chemokine release than following exposure to
individual cytokines [56, 59]. It should be emphasized that in our study chemokine release was
measured from cells following miRNA transfection and growth-arrest, before stimulation with
TNEF-o. It will be interesting to examine release of chemokines in response to a mixture of cyto-
kines following miRNA transfection.

In conclusion, this study demonstrates a profound anti-inflammatory effect of miR-708 and
miR-140-3p in HASM cells stimulated with the inflammatory cytokine TNF-o. Specifically,
targeting these miRNAs resulted in the down-regulation of expression of multiple different
chemokines and the release of specific chemokines involved in the recruitment of inflamma-
tory cells into the airways during allergic airway inflammation. Previous results have shown
that CD38, involved in generating calcium mobilizing molecules, contributes to airway hyper-
responsiveness. [77-79]. Therapeutic strategies that target both CD38 and these miRNA net-
works may prove effective in reversal of allergen-induced changes in airway
hyperresponsiveness and airway inflammation, particularly in the asthmatic patient.

Supporting Information

S1 Data. Complete list of differentially expressed genes in HASM cells transfected with a
miR-708 mimic. Table shows fold-change in expression relative to expression in cells trans-
fected with a scrambled control sequence and the p value.
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