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Abstract
An all-chain-wireless brain-to-brain system (BTBS), which enabled motion control of a

cyborg cockroach via human brain, was developed in this work. Steady-state visual evoked

potential (SSVEP) based brain-computer interface (BCI) was used in this system for recog-

nizing human motion intention and an optimization algorithm was proposed in SSVEP to

improve online performance of the BCI. The cyborg cockroach was developed by surgically

integrating a portable microstimulator that could generate invasive electrical nerve stimula-

tion. Through Bluetooth communication, specific electrical pulse trains could be triggered

from the microstimulator by BCI commands and were sent through the antenna nerve to

stimulate the brain of cockroach. Serial experiments were designed and conducted to test

overall performance of the BTBS with six human subjects and three cockroaches. The

experimental results showed that the online classification accuracy of three-mode BCI

increased from 72.86% to 78.56% by 5.70% using the optimization algorithm and the mean

response accuracy of the cyborgs using this system reached 89.5%. Moreover, the results

also showed that the cyborg could be navigated by the human brain to complete walking

along an S-shape track with the success rate of about 20%, suggesting the proposed BTBS

established a feasible functional information transfer pathway from the human brain to the

cockroach brain.

Introduction
The movie “Avatar” shows the dream of direct brain-to-brain control between different individ-
uals, which has inspired researchers to develop physical communication connections between
different brains. Some pilot studies have moved a step forward toward this fantastic dream
through developing a brain-to-brain system (BTBS). Pais-Vieira et al. [1] developed a BTBS
between two rats based on invasive technologies (neuronal ensemble recordings and
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intracortical microstimulation), where the “decoder” rat could follow the same sensorimotor
task as the “encoder” rat with the system. Yoo et al. [2] established functional interface between
brains of human and rat based on noninvasive technologies, electroencephalography (EEG) and
focused ultrasound (FUS), where the rat’s tail could be controlled by a human’s intention. Rao
et al. [3] realized a BTBS between two persons based on noninvasive technologies, EEG and
transcranial magnetic stimulation (TMS), in which the receiver’s (a subject) finger motion could
be triggered by a sender (the other subject). The previous studies are amazing, but the function
of such BTBS is very limited, i.e. only a simple motion or action can be accomplished. This work
aims to develop a versatile multi-functional BTBS between humans and cockroaches.

A typical BTBS should consist of two key parts: brain-computer interfaces (BCIs) used for
getting information from one brain and neuromodulation technologies used for sending infor-
mation to another brain. BCI is a well-known technology that helps people communicate with
external worlds through measuring and translating brain signals without involving muscular
movements or peripheral nervous system [4]. Using BCIs, humans have already could control
external devices such as robotic arm, wheel chair, quadcopter and so on [5–7]. In general, there
are two categories of BCIs, i.e. invasive and non-invasive BCIs. Non-invasive BCIs include
EEG, near-infrared spectroscopy (NIRS), and functional magnetic resonance imaging (fMRI)
etc. While, electrocorticography (ECoG) and intracortical recordings belong to the scope of
invasive BCIs [8, 9]. Among the available BCIs, EEG should be the most practical and conve-
nient method at present, and steady-state visual evoked potential (SSVEP) is one of the most
reliable, versatile and robust EEG paradigms, which is thus adopted in our study [10].

SSVEP is an EEG response from the visual cortex generated by repetitive visual stimuli
when subjects gaze at flickering source [11]. SSVEP has high signal-to-noise ratio (SNR) and
information transfer rate (ITR), and needs short training time. These favorable features of
SSVEP are desired for the high-performance BTBS developed in this study. Even though
SSVEP can be elicited by visual stimulation with a wide range of frequencies from 1–100 Hz,
the better SSVEP performance is achieved under visual stimulation with lower frequencies
range of 6–15 Hz in general [12, 13].

Neuromodulation, as an intervention technology used to modulate the nervous system
function, has been applied to the brain, spinal cord, peripheral nerves, autonomic nerves and
other nervous organs [14]. Among the variety of technologies used for neuromodulation
(mechanically, chemically and electrically, etc.), electrical stimulation-based neuromodulation
is frequently introduced when developing live cyborgs or biobots. In fact, a variety of cyborgs
(a cyborg is an organism with both biological and electronic parts) have been successfully
developed via applying electrical stimulation to specific muscles or nerves in recent years, such
as rats, moths, and beetles [15–19]. To build up a cyborg that could be remotely controlled by a
human brain, cockroach is a preferable choice for robust control performance and good surgi-
cal implementability. It’s known that cockroaches rely on antennas heavily for navigation dur-
ing walking. The antenna is a multi-functional and important sensory organ that can generate
tactile, thermal, humidity and olfactory sense. When sending specific micro-electrical pulse
trains through the antenna nerve, stimulation information will be encoded as sensory informa-
tion by the antennal neurons and sent to the brain, which will activate the descending mechan-
osensory interneurons (DMIs) (interneurons with the largest caliber axons descending to
thoracic levels from the brain) [20, 21]. Subsequently, the thoracic motor centers will be acti-
vated, and as a result, the evasive behaviors such as turning will be elicited [21–24]. If an electri-
cal pulse train is applied to the nerves of right (left) antenna, a left (right) -direction turn will
be triggered from the cockroach. By inserting a tiny electrode into antenna and providing elec-
trical stimulation, a functional neural-machine interface between external device and cock-
roach brain can be developed.

Brain-Computer Interface Controlled Cyborg Cockroach
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Based on the present technologies of BCI and neuromulation, we find it is possible to realize
communication and virtual signal transfer from one brain to another one with a functional
BTBS. This interesting concept is explored in this study and we aim to control cyborg cock-
roaches to accomplish path-tracking tasks with human brain signals for the first time.

Materials and Methods

Overview of BTBS
The BTBS that can navigate a cockroach by human brain was developed, and the framework of
the entire system is shown in Fig 1. SSVEP-based BCI was utilized to decode the sender’s
thoughts, and a cyborg cockroach was developed to be the receiver and execute the expected
motion tasks from the sender. In addition, an imperative wireless communicative sub-system
between these two parts was established to transfer the sender’s command from the host com-
puter to the receiver (cyborg cockroach). We also used a wireless video capture module in the
SSVEP program to visually obtain the real-time response of the receiver from an LCD screen,
therefore, a closed-loop control system was established. The system was implemented with the
following configurations.

A USB dongle, which had a system-on-chip CC2541 (Texas Instrument Inc.), was used and
plugged in the host computer to pair with the microstimulator wirelessly. Besides, two custom
softwares were developed for this system and run in the host computer. SSVEP program
(SSVEP Cyborg, v1.0, SJTU) was written in Visual C++ to be used as an integration platform
for the whole system (acquiring realtime brain signal, processing and generating classification
outputs), while another custom software (BLE Control Panel, v1.0, SJTU) was programmed in
Visual C# to realize the communication between the microstimulator and SSVEP program as
well as adjustment of stimulus parameters for the electronic backpack. A large number of off-
line tests were conducted in pilot study for the purpose of getting proper stimulation parame-
ters, and reaction from the cyborg cockroach was evaluated by its turning angle and reaction
duration after stimulation. Finally, a 1.5 V, 50 Hz, 50% duty cycle and 500 ms monopole square
pulse train was used because such neurostimulation configuration was effective and optimal to
the navigation of the cyborgs.

Fig 1. SystemOverview. Entire system consists of an SSVEP-based BCI, a cyborg cockroach, and a
communication sub-system. The communication sub-system transfers the real-time BCI commands from the
host computer to the cyborg cockroach. The controller wirelessly steers the cyborg cockroach using his/her
brain signals from the LCD screen.

doi:10.1371/journal.pone.0150667.g001
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Implementation of SSVEP-based BCI
EEG data were recorded with the Emotiv EPOC headset (Emotiv Company) reversely wore on
the head of subjects (Fig 2c). This portable brain headset had 14 EEG channels and used 2
scalp reference electrodes. All electrode impedances were kept below 10 kO, four standard elec-
trodes in the EEG headset were used and were positioned over the visual cortex (locations
PO3, PO4, O1, O2 according to the international extended 10/20 system, two CMS/DRL refer-
ence electrodes were placed on C5/C6). The raw EEG was down-sampled at 128 Hz and the
band pass was set to 0.16–43 Hz after applying a notch filter at 50 and 60 Hz automatically on
the incoming signal. The data were wirelessly transmitted to the host computer through a Blue-
tooth USB chip operating in 2.4 GHz by using an Emotiv Testbench software (Emotiv Sys-
tems). This EEG headset had been validated on its performance and had been put into
scientific use in the previous studies [25–28].

Human subjects sit about 0.7 m in front of a 44.5 cm × 38.5 cm LCD screen (refreshing rate
75 Hz) on which visual stimuli were provided in the form of three flashing blocks. The flicker-
ing frequency of each block was set as 12.5 Hz, 8.33 Hz, 6.818 Hz (Fig 2d), denoting the rest,
left-turn and right-turn control commands respectively, and size of the three blocks was 13.6
cm (length) × 7.0 cm (height) / (upper block), 6.9 cm (length) × 7.4 cm (height) / (left and
right block). The background of the SSVEP on the LCD screen was set as the real-time images
of the experimental environment captured by a wireless video capture system, which consisted
of a portable camera (ND-101, NBC Inc.), a wireless video transmitter and receiver module

Fig 2. Experimental set-up. a. Nerve system of a cockroach and electrodes implantation. b. A cyborg: a
cockroach with a microstimulator on the back. c. A human subject wearing an EEG headset. d. Snapshot of
the SSVEP user interface used in online control session.

doi:10.1371/journal.pone.0150667.g002
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(FOX-800A, Botong Inc.), and a wireless USB video capture card (UV200, 10moons Inc.). The
camera had a CMOS image sensor with 512×582 pixel and was fixed in a 50cm-high position
on the experiment desk.

Before the start of experiments, time-domain EEG signals, which were taken from above 4
channels by gazing each single flicker separately for 40 s, were plotted in Fig 3. Clear and strong
response distributed on each frequency could be found from Fig 3, demonstrating the three fre-
quencies used in this study were highly effective.

Implementation of Cyborg Cockroach
The Madagascar hissing cockroach (Gromphadorhina portentosa) was selected as the model
insect for the reason that it was strong, robust. Moreover, it has relatively larger size (* 50–80
mm) and slower walking speed [22]. These cockroaches were purchased from Chinese market.

To develop a cyborg cockroach, a microstimulator (Roboroach, v1.1b, Backyard Brains Inc.)
was used. Three silver wires (0.06 mm bare/0.08 mm coated) were used as electrodes to transfer
the stimulation pulses. Strands of 60 mm wires were taken and the insulation was removed at
either ends for about 5 mm. One end of the electrodes was soldered to the pins of a 2.54-mm
(spacing distance) header male connector, and the other end was inserted 3–5 mm into the
cockroach antenna after partially removing the flagellum of both the antennae to 8–10 mm.
For effective insertion and minimally disturb the insects, anesthetization was applied to the
cockroach through cold-treatment in ice for about 10 minutes. The male connector was firstly
placed on the cockroach pronotum with super glue after drying the cockroach, and then placed
the ground electrode in the first segment of the thorax though an incised hole (left and right

Fig 3. Plots of EEG signals in time domain, frequency domain, and spatial domain. The first row of the graphs are 40-second EEG signal taken from 4
channels when a subject facing visual stimuli with three different frequencies separately. Relevant spectrum is presented in the second row, and the third row
is the power distribution on brain map.

doi:10.1371/journal.pone.0150667.g003
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side could be used either, we stabbed the hole in right side of the thorax in this study). Super
glue was used to seal off all above points after successful insertion. Finally, the microstimulator
(Weight, 4.72 g; Size (mm), 34.00/L � 25.4/W � 6.9/H) could be fixed on the back of the cock-
roach by plugging it in the male connector and a living cyborg could be seen in Fig 2b.

Algorithms for BCI Classification
EEG signals (4 channels) were acquired and primarily processed with an online 4-order Butter-
worth 2 Hz high-pass filter in the Matlab (Mathworks, Natick, MA), filtering the frequency
band to 2–43 Hz. Feature extraction was firstly applied on the filtered signal and then a linear
discriminant analysis (LDA) classifier was introduced to process the EEG signals.

Feature Extraction. Based on the previous study of SSVEP [13], principle frequency com-
ponent and harmonic wave components of the signal were used for feature extraction with the
way of projecting the signal to sine and cosine space (Inner Product, Eqs (1)-(6)). The discrete
formulations were given below:

aij1ðnÞ ¼ hSiðmDTÞWðmDT � nsÞ; cos ð2pfjmDTÞi ð1Þ

bij1ðnÞ ¼ hSiðmDTÞWðmDT � nsÞ; sin ð2pfjmDTÞi ð2Þ

aij2ðnÞ ¼ hSiðmDTÞWðmDT � nsÞ; cos ð4pfjmDTÞi ð3Þ

bij2ðnÞ ¼ hSiðmDTÞWðmDT � nsÞ; sin ð4pfjmDTÞi ð4Þ

AijðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaij1ðnÞj2 þ jbij1ðnÞj2

q
ð5Þ

BijðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jaij2ðnÞj2 þ jbij2ðnÞj2

q
ð6Þ

where Si is the i th channel signal with i = 1. . .N;m is them th signal point withm = 1. . .L (L is
the total signal length);W(mΔT − ns) is the rectangle windows function at the center ns, ΔT is
the sampling interval, ΔT = 1/fs; fj is the j th stimuli frequency with j = 1. . .M; Aij(n) and Bij(n)
is the n th principle frequency and harmonic wave feature of i th channel signal in j th stimuli
frequency respectively; windows length used is 1 second in this study, s is the sliding step of the
signal window, s = 0.125 second.

Thus, a feature vector F ((2×N×M)×1) could be extracted in following form:

F ¼ ðA11; :::Aij; :::ANM;B11; :::Bij:::BNMÞT ; i ¼ 1:::N; j ¼ 1:::M ð7Þ

Classification. An LDA classifier was applied to make quick classification using the
120-second training set after feature extraction. The parameters of the LDA classifier can be
derived by Fisher method which searches an optimal projection direction that maximizes dif-
ference between the two classes while minimizes difference within the class [29].

The multi-dimension data is then discriminated in the linear formulation as

y ¼ wTFþ w0 ð8Þ

where w is the optimal projection direction.

Brain-Computer Interface Controlled Cyborg Cockroach

PLOS ONE | DOI:10.1371/journal.pone.0150667 March 16, 2016 6 / 17



Since we use 3 classes, the classification result C in each signal window length is derived:

C ¼ argmax
i

X3

j¼1;j6¼i

yij; i ¼ 1; 2; 3

( )
ð9Þ

Define yij = 1, if yij>0; else yij = 0, where yij is the function of i (Eq (8)).

Optimization Algorithm for SSVEP-based BCI
Considering that a higher online classification accuracy from the SSVEP was essential to this
online control system, however, the discrete results generated directly from the LDA classifier
generally carried random errors in a much high possibility, therefore, an optimization algo-
rithm aimed to improve the online recognition accuracy of SSVEP-based BCI was designed
and then verified in the following experiment (Phase I). By constructing a buffer pool for the
original discrete results from the LDA classifier, the algorithm could obviously enhance the
fault-tolerant capacity and at the same time increase the rate of correct outputs. The algorithm
was described below:

Setting a variable Zi (i = 1, 2, 3), which represents the dynamic accumulation value belongs
to i th class of SSVEP. Initial value of Zi is set to 0. With the running of SSVEP classifier, a clas-
sification result C (Eq (9)) will be generated internally in each sliding step (0.125s), causing
simultaneously a change of Zi when following each cycle of below arithmetic rule,

1. For i = 1, 2, 3;

2. if C = i, Zi = Zi+Vpositive;

3. if Zi � Vnegative, Zi = Zi − Vnegative;

4. if Zi � Vthreshold, the i will be the final control command of SSVEP that will send to the
cyborg, after a command is triggered, Zi = Zi − Vminus;

5. go back to step 1.

where a series of V values are pre-set performance-adjustment parameters of the SSVEP pro-
gram. Among these parameters, Vpositive and Vnegative determine the speed of triggering an out-
put, Vthreshold controls the precision level of generating a final result, and Vminus is used to
adjust the time interval between two continuous outputs. Different combinations of the V val-
ues are tested and configured finally as (Vpositive = 20, Vnegative = 10, Vthreshold = 40, Vminus = 20)
in this study to achieve favorable performance of the SSVEP program (response fast and high
accuracy, see Results Phase I).

Human Subjects, Insects and Ethics Statement
Six healthy subjects were recruited and participated in the following experiments. All partici-
pants were fully informed about the experimental procedure and the written informed con-
sents were obtained from all participants before experiments. During the online control
experimental phase, three cyborg cockroaches were made and used. The information of human
subjects and cockroaches was given in Table 1. All animal procedures were performed in accor-
dance with the National Research Council’s Guide for the Care and Use of Laboratory Animals
and the whole study was approved by the Ethics Committee of Shanghai Jiao Tong University,
China. Besides, the individual in this manuscript has given written informed consent (as out-
lined in PLOS consent form) to publish these case details.

Brain-Computer Interface Controlled Cyborg Cockroach
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Experimental Protocol
Experiments were divided into two phases in this study, phase I was set to validate the effect of
applying the optimization algorithm in the SSVEP program, and phase II was to explore the
online control performance of current control system.

Phase I: Optimization Algorithm Verification. Only BCI part was established in this
phase for the reason that optimization process could work internally in the SSVEP program
without really navigating a cyborg. A virtual rotated ball, which acted as both a guidance of the
subject’s visual attention and a mimic representation of the subject’s willingness, randomly
appeared near one of three flickering blocks for 5 s. Experiment was conduct according to the
protocols in Fig 4. In the end of experiment, the acquired EEG signals were comparatively ana-
lyzed in Matlab between running and without running the optimization algorithm.

Phase II: System Performance Evaluation. Cyborg cockroaches were placed at a distance
of about 1.5 m from the host computer on a white sheet with a black-boundary S-shape track.
Size of the S-shape track was 750 mm (vertical length) / 790 mm (stretched length) × 135 mm
(width). Full shot of the cyborg cockroach and the experimental platform were wirelessly pro-
jected into the LCD screen as background of the SSVEP program (Fig 2d). Three cyborg cock-
roaches (Table 1) were made in this experiment.

Table 1. Information of human participants/cockroaches.

Age(years) Gender Experiment

Subject_1 28 M Phase I &II

Subject_2 24 M Phase I &II

Subject_3 24 M Phase I &II

Subject_4 22 M Phase I

Subject_5 25 M Phase I

Subject_6 25 M Phase I

Age(years) Length(cm) * Weight(g) Experiment

Cockroach_1 1.5 6.1 * 7.74 Phase II

Cockroach_2 1.5 5.8 * 6.95 Phase II

Cockroach_3 1.5 5.8 * 8.23 Phase II

doi:10.1371/journal.pone.0150667.t001

Fig 4. Experimental paradigm for Phase I and Phase II.

doi:10.1371/journal.pone.0150667.g004
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For the purpose of making better internal comparative analysis on performance-related
parameters from both the cyborg and the human aspect as well as giving a general evaluation
on the entire system, three of six human subjects (Table 1) were randomly selected as control-
lers and the three subjects took online control of each cyborg in sequence to walk along the S-
shape track after the cyborg started to move forward from the start point of the track with a
certain speed range (1.5–5.5 cm/s). Therefore, three experimental groups were divided respec-
tively based on the order of each cyborg.

Ten online-control trials were conducted for each subject and cyborg. A 2-minute rest was
guaranteed between trials to minimize the effects of fatigue from both human and insects. To
make sure the cyborg cockroach recover its sensitivity to stimuli, a rest of at least 2 hours was
given between two experiments (Fig 4). Trajectories of the cyborg were captured by a digital
video camera (HDR-XR350E, SONY Inc.).

Besides, some other parameters related to cyborg and microstimulator were pre-measured
through offline tests in this phase for the goal of making precise control. The time lag counted
from the sending out of a command via the SSVEP program to the corresponding response of
the electronic backpack, was measured with the custom software written in Visual C# (cf.
Materials and Methods) and the result was 130.8±6.6 ms under a distance of about 1.5 m from
the host computer to the electronic backpack. The duration time counted from reception of a
stimulation command to completion of reaction on the neural stimulation just received by the
cyborg, was 642±134 ms when the given length of stimulation was 500 ms. So the time length
from sending out a command by the SSVEP program to the completion of reaction by a cyborg
cockroach was about 772 ms. Therefore, we set the minimal stimulation interval as 1000 ms in
the SSVEP software to avoid disordering the cyborg.

Results

Phase I: Optimization Algorithm Verification
Fig 5 presented the accuracy and time information before optimization (BO) and after optimi-
zation (AO) through the experimental Phase I in detail, including three sub-classes and the
mean value of entire session. The classification accuracy (CA) was firstly obtained (10-fold
cross-validation) during training session before the start of online optimization, and then the
value of recognition time (Time lag for classifying the first correct result in transition state) was
calculated during transition state (The beginning of shift on flickering frequency). Finally,
using the classifier generated in the training session, we computed the online classification
accuracy before and after applying the optimization algorithm in the online test session (Accu-
racy obtained using the optimization algorithm was computed by: Accuracy = NC/NT (NC
(NT); Number of correct results (total results) in each 120-s test session generated by the intro-
duced algorithm)).

Mean value in Fig 5 also showed an overall statistical changes of SSVEP outputs. As a result
of the optimization, a 5.70% increase from 72.86±13.03% to 78.56±10.45% in online classifica-
tion accuracy of entire session could be achieved (t = -5.279, P = 0.0003, Paired T-test). Besides,
the online classification accuracy of all the sub-classes increased significantly as well (P<0.005),
5.42%, 6.32%, 5.26% increment for 12.5 Hz, 6.818 Hz, 8.33 Hz respectively (Fig 5). Furthermore,
the value (online classification accuracy) in entire session increased by 8.08% from 83.34
±15.59% to 91.42±12.79% (t = -5.697, P = 0.0001, Paired T-test) after removing signals of the
transition state. Meanwhile, the recognition time of the entire session from the SSVEP program
turned significantly a little bit longer from 1.07±0.13 s in transient state and 0.125 s (minimum)
in steady state to 1.79±0.11 s (t = -11.517, P<0.0001, Paired T-test) and 0.25 s (minimum). The
time delay was then cross-evaluated through recent published researches [1–3], and results
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demonstrated response of the program using this algorithm was still comparatively quick
enough. Therefore, the optimization process, which contributed to the improvement of online
classification rate under an acceptable time delay, was verified as a superior strategy in online
control and hence was introduced into the following experiments in Phase II.

Phase II: System Performance Evaluation
Experiments were then conducted following the experiment paradigm described in Phase II.
Fig 6 illustrated one track of each cyborg cockroach during online control, as can be seen from
the figure, real-time human intention from the BCI were transferred to navigate the cyborg
cockroach successfully, indicating as well the successful establishment of a practicable func-
tional BTBS.

Fig 5. Experiment results before optimization (BO) and after optimization (AO). A. Classification accuracy (CA) in training phase. B. Online
classification accuracy for all sub-classes and entire experiment. C. Recognition time in transient state for all sub-classes and entire experiment in online test
session. (*** indicates the P<0.001, ** indicates the P<0.01.)

doi:10.1371/journal.pone.0150667.g005
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The time that a cyborg took to complete walking along the track was recorded in each trial
and called completion time (CPT) in short. Since one class (12.5Hz) we set in the SSVEP pro-
gram was resting state and would cause no reaction from the cyborg, only the number of left-
turn commands (LTC) and number of right-turn commands (RTC) sent out by the SSVEP in

Fig 6. Trajectories of three cyborgs when walking along the S track under wireless BCI control of subjects. A green dot indicates a left-turn command
sent from the subject, a red dot indicates a right-turn command. Corresponding time information in each trial is labelled as well.

doi:10.1371/journal.pone.0150667.g006
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each trial were imperative to be counted so that we can generally measure the effects of micro
electrical stimulation on the cyborg. Number of turning commands (TC), which was the sum
of left-turn commands and right-turn commands, was listed as well (Fig 7 & Table 2).

In addition, control performance coefficient (CPC) was proposed as one of indications of con-
trol performance based on following rules, and four labels based on the theory of receiver operat-
ing characteristics (ROC) were defined to cover all the possibilities that would occur during the
actual situation [30]. The occurrences of true positives (TP: an expected command is sent to the
cyborg and the cyborg turns in an expected direction), false positives (FP: an expected command
is sent to the cyborg but the cyborg turns in an unexpected direction), false negatives (FN: an
unexpected command is sent to the cyborg but the cyborg turns in an expected direction), true
negatives (TN: an unexpected command is sent to the cyborg and the cyborg turns in an unex-
pected direction as well) were recorded. Response accuracy (RA) of the cyborg was computed
using the equation RA = (TP+TN)/(P+N), where P = TP+FN, N = FP+TN.

Besides, a scoring strategy was adopted to quantify the CPC, which defined that a TP scored
3, a FP scored 2, a FN scored 1 and a TN scored 0, the related score was represented by a vari-
able X. During the controlling process, the cyborg might go out of the boundary of the S-shape
track, taking this into consideration, we then introduced an accuracy factor α, where α was 1
when the cyborg was walking inside the boundary, otherwise α was 0.5. The CPC was defined
as CPC = 1/3n

Pn
i¼1 Xi αi, where Xi was the i th performance scores of the stimulation com-

mand, αi was the i th accuracy factor, n was the TC in a trial.
Furthermore, successful rate (SR) was computed after each 10-trial session, where complet-

ing walking along the S-shape track without going outside of the boundary was counted as a
successful trial.

Relevant parameters of each cyborg group (cf.Materials and Methods) were attained and
shown in Fig 7 in detail. We found the parameter value varied among subjects and groups,
however, some general features could be discovered. The subject (subject_3) had the best con-
trol performance (SR as high as 50%) on three cyborgs where his CA was the highest, and the
subject (subject_2) had the lowest SR among three groups where his CA was the lowest as well.
The Pearson correlation test was then conducted to analysis if there existed certain correlation
between each pair of parameters. The correlation coefficient between SR and CA was ρ =
0.6059, where the value was ρ = 0.3798 between SR and RA, and ρ = 0.6227 between SR and the
product of CA and RA (CA�RA), the results indicated that SR did have certain correlation with
CA (from the controller) and RA (from the cockroach), but fully correlation was not found
between them because not only CA and RA but also some other factors, e.g. control skills of
the subjects and self-willingness of the cyborg, might influence the control performance of
such an integrated system.

The overall results of online experiments were given in Table 2. On average the subjects took
30.8±16.7 s and sent 12.7±8.5 turning commands included 7.8±6.5 left-turn commands and 4.9
±3.5 right-turn commands to the cyborg to complete the control task in this study. As could be
seen from Table 2 as well, the cyborg showed highly accurate response to the specific stimulation
(1.5V, 50Hz, 50% duty cycle and 500ms monopole square pulse train) in most cases, the mean
RA could reach by 89.5±15% (left-turn accuracy (84.6±12.7%); right-turn accuracy (92.0
±9.5%)). At the same time, in the aspect of human, SSVEP acted as an efficient BCI solution,
mean CA of SSVEP on three subjects in training session reached by 86.0±10.4%, indicating that
both BCI and neruomodulation sub-system we used hold the characteristic of high accuracy and
hence a robust information transfer pathway from one brain to another could be established.

As a solid performance-evaluating indicator for the system, the mean CPC value reached
0.616±0.169 and was obviously higher than the chance level (0.375) (t = 8.170, P<0.0001, One-
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Fig 7. Results acquired in experimental phase II from three groups.CPT was measured in seconds, LTC, RTC and TC were counted in number, their
value were shown on primary axis located in the left edge of above figure; RA from each cyborg, CPC, SR and CA were presented in decimal number in
secondary axis located in the right edge of above figure. (Notes: Positive Standard Deviation are presented only.)

doi:10.1371/journal.pone.0150667.g007
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Sample T-Test). Besides, experiments for control groups were also taken in this study. In con-
trol groups, three cyborgs walked along the S-shape track freely without control from any
human subjects for 10 trials separately. We kept track of the related parameters during the pro-
cess and the SR of all control groups were 0%. However, the mean SR for the online experi-
ments achieved with this functional BTBS system reached 20% and it was significantly higher
than that of the control groups (t = 3.464, P = 0.0085, Paired T-test). A video of a successful
navigation was available for demonstration via the link (https://www.youtube.com/watch?
v=k5t6WkTkJkA).

Discussion
The present study demonstrated that human’s intention, extracted from the subject’s EEG,
could be transmitted to partially dominate an insect’s brain. The human could successfully
steer a cockroach to make turns using thoughts through SSVEP-based BCI and micro invasive
neural stimulation.

The SSVEP could achieve a high CA (90.21%) by only using 4 channels on the scalp of visual
cortex with a portable and wireless EEG device in the training phase (Fig 5). We also proposed
an optimization algorithm for SSVEP, which greatly eliminated the random errors occurred
during online control process, as a result, it significantly increased online classification accuracy
by 8.08% from 83.34% to 91.42% with the removal of frequency-transient state signals. Gener-
ally, misclassification appeared during shifting period of a subject’s gaze in SSVEP. Therefore
this phenomenon might be improved by adding a program to detect transition of the EEG signal
on frequency before classification in further study, even though such increase of online classifi-
cation accuracy was possibly at the sacrifice of SSVEP program’s fast-response performance.
Besides, regarding the present SSVEP-based BCI, due to high brightness and repetitive stimula-
tion, the user might suffer fatigue when using SSVEP for a long time, where fatigue was a gener-
ally feeling of tiredness, reduced concentration when performing a task [31]. The amplitude and
SNR of the EEG signals were consequently affected by the fatigue [32, 33]. One possible solution
to reduce fatigue of SSVEP was to use visual stimulation with high frequency or modulated
amplitude [34, 35]. By implementing the possible improvements on SSVEP in further research,
we can move current system a step closer to practical applications.

The other similar studies were compared with our work as well. Pais-Vieira et al. [1] suc-
ceeded in building up a BTBS for real-time sharing of sensorimotor information between two
rats with intra-cortical microstimulation (ICMS), in which the decoder translated correctly
64.32% the motor information (two-mode) from the encoder under a time delay of 20.06 s
(encoder) and 13.59 s (decoder), another experiment in the research demonstrated the decoder
translated correctly encoder’s 62.34% tactile information (two-mode) and the time delay was
2.66 s (encoder) and 2.68 s (decoder) respectively. Recently, Rao et al. [3] accomplished a direct

Table 2. Summary of system-performance-related parameters.

Group CPT(s) TC(LTC/RTC) CA RA CPC SR

Cyborg_1 33.9±15.4 15.0±11.1(10.6±9.1/4.4±2.8) 87.1±10.4% 93.1±9.5% 0.653±0.170 33.3±15.3%

Cyborg_2 22.9±20.4 11.2±6.9(6.8±4.2/4.5±4.1) 86.4±14.0% 82.4±20.8% 0.652±0.153 20.0±17.3%

Cyborg_3 28.5±13.5 11.8±6.5(5.9±3.8/5.9±3.5) 85.0±11.2% 92.9± 9.6% 0.544±0.165 6.7±11.5%

Mean 30.8±16.7 12.7±8.5(7.8±6.5/4.9±3.5) 86.0±10.4% 89.5±15% 0.616±0.169 20.0±17.3%

Abbreviations List: CPT, completion time; LTC/RTC/TC, number of left/right-turn commands/turning commands(LTC+RTC); CPC, control performance

coefficient; SR, success rate; CA, classification accuracy; RA, response accuracy.

doi:10.1371/journal.pone.0150667.t002
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BTBS between humans, where the motor imaginary (two-mode) and TMS were applied to
complete a task, the paired true positive rate (TPR) varied from 83.33% to 25.00% and paired
false positive rate (FPR) varied from 0.00% to 37.50% in online experiments with a 2 s set-up
time plus a 20 s visual countdown in each trial and a transmission duration of about 650 ms
along the system. In this work, cyborgs (receiver) produced quick and accurate response (mean
RA = 89.5%, left-turn accuracy (84.6%), right-turn accuracy (92.0%)) through applying the
invasive technique of neuromodulation, where monopole square pulse trains were indirectly
sent to the brains of the cyborg cockroach via antennas, and the time that a command sent
from SSVEP to the completion of reaction from the cyborg was about 772 ms. In addition, the
techniques we used in BCI (three-mode) segment in this study showed high decoding accuracy
(CA = 86.0±10.4%) of sender’s intention as well and the average decoding time was 1.79 s
(0.25 s minimum).

In the work of [22], Latif et al. tried to steer a cyborg cockroach to walk along an S-shape lap
in two-directions manually and succeeded in achieving a success rate of around 10%. However,
a successful online navigation of cyborg with human brain in this study was much more chal-
lenging, which required stable and continuous high level of accuracy in both “sender” and
“receiver” sides, the experimental results demonstrated the BCI could successfully control the
cyborg to walk along the S-shape track in all three groups, and the success rate ranged from
0.00% to 50.00% in 10-trial experiments, where the mean success rate (SR) was 20.00%, the
value was not high enough, but significantly above the level in control group (0.00%)
(t = 3.464, P = 0.0085). And the SR coincided with the roughly estimated value ((CA�RA)TC)
based on the accuracy from both “sender” and “receiver” parts as there were 12.7 turning com-
mands in average (Table 2) during each online trial. Additionally, the CPC, as an indicator of
system performance, reached 0.616 (Table 2), while its chance level was 0.375. Above all, the
results achieved through the system in present experiments were rather optimistic and instruc-
tive. In addition, the architecture of current system still had the potential of enabling develop-
ing multi-mode control cyborgs (more than three modes), and increasing the control modes
might contribute to the improvement of SR in online control tasks and at the same time enable
more precise online assignments as well, which would be designed and validated in further
study.

It is meaningful to build up a BTBS between the human and the animal. Firstly, this all-
chain-wireless system proves that it’s possible to built up an embryonic virtual brain-to-brain
information transfer device with current technology. Besides, the idea also has the applicable
value in reality, e.g. could be further used for detection in complex and dangerous environ-
ments. Most importantly, as a pioneer study of brain communication between human and ani-
mal, the successful implementation of BTBS expands the possible usage of both BCI and
neuromodulation, furthermore, the alternative BCI and neuromodulation modalities (both
invasive and non-invasive) may have huge potential of intersection and integration to create
far-reaching usage in future. We have seen a mushroom growth of internet based on computers
during recent years, and perhaps brain-to-brain network may be developed in the future just as
the science-fiction films predict.
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