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Abstract

Background

Selecting a subset of relevant properties from a large set of features that describe a dataset

is a challenging machine learning task. In biology, for instance, the advances in the available

technologies enable the generation of a very large number of biomarkers that describe the

data. Choosing the more informative markers along with performing a high-accuracy classifi-

cation over the data can be a daunting task, particularly if the data are high dimensional. An

often adopted approach is to formulate the feature selection problem as a biobjective optimi-

zation problem, with the aim of maximizing the performance of the data analysis model (the

quality of the data training fitting) while minimizing the number of features used.

Results

We propose an optimization approach for the feature selection problem that considers a

“chaotic” version of the antlion optimizer method, a nature-inspired algorithm that mimics

the hunting mechanism of antlions in nature. The balance between exploration of the search

space and exploitation of the best solutions is a challenge in multi-objective optimization.

The exploration/exploitation rate is controlled by the parameter I that limits the random walk

range of the ants/prey. This variable is increased iteratively in a quasi-linear manner to

decrease the exploration rate as the optimization progresses. The quasi-linear decrease in

the variable Imay lead to immature convergence in some cases and trapping in local min-

ima in other cases. The chaotic system proposed here attempts to improve the tradeoff

between exploration and exploitation. The methodology is evaluated using different chaotic

maps on a number of feature selection datasets. To ensure generality, we used ten biologi-

cal datasets, but we also used other types of data from various sources. The results are

compared with the particle swarm optimizer and with genetic algorithm variants for feature

selection using a set of quality metrics.
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1 Introduction
The large amounts of data generated today in biology offer more detailed and useful informa-
tion on the one hand, but on the other hand, it makes the process of analyzing these data more
difficult because not all the information is relevant. Selecting the relevant characteristics or
attributes of the data is a complex problem. Feature selection (attribute reduction) is a tech-
nique for solving classification and regression problems, and it is employed to identify a subset
of the features and remove the redundant ones. This mechanism is particularly useful when the
number of attributes is large and not all of them are required for describing the data and for
further exploring the data attributes in experiments. The basic assumption for employing fea-
ture selection is that a large number of features do not necessarily translate into high classifica-
tion accuracy for many pattern classification problems [1]. Ideally, the selected feature subset
will improve the classifier performance and provide a faster and more cost effective classifica-
tion, which leads to comparable or even better classification or regression accuracy than using
all the attributes [2]. In addition, feature selection improves the visualization and the compre-
hensibility of the induced concepts [3]. Using a tumor as a simple example, there are a large
number of attributes that describe it: mitotic activity, tumor invasion, tumor shape and size,
vascularization, and growth rate, to name just a few. All of these attributes require measure-
ments and tests that are not always easy to perform. Thus, it will be ideal if the classification of
a tumor into benign or malignant (and which stage) could be performed with fewer investiga-
tions. The selection of a subset of the features that are relevant enough to perform the classifica-
tion will be of considerable benefit.

Many studies formulate the feature selection problem as a combinatorial optimization prob-
lem, in which the selected feature subset leads to the best data fitting [4]. In real world prob-
lems, feature selection is mandatory due to the abundance of noisy, irrelevant or misleading
features [5]. These factors can have a negative impact on the classification performance during
the learning and operation processes. Two main criteria are used to differentiate the feature
selection methods:

1. Search strategy: the method employed to generate feature subsets or feature combinations.

2. Subset quality (fitness): the criteria used to judge the quality of a feature subset.

There are two main classes of feature selection methods: wrapper-based methods (apply
machine learning algorithms) and filter-based methods (use statistical methods) [6].

The wrapper-based approach uses a machine learning technique as part of the evaluation
function, which facilitates obtaining better results than the filter-based approach [7], but it has
a risk of over-fitting the model and can be computationally expensive, and hence, a very intelli-
gent search method is required to minimize the running time [8]. In contrast, the filter-based
approach searches for a subset of features that optimize a given data-dependent criterion rather
than classification-dependent criteria as in the wrapper methods [1].

In general, the feature selection problem is formulated as a multi-objective problem with
two objectives: minimize the size of the selected feature set and maximize the classification
accuracy. Typically, these two objectives are contradictory, and the optimal solution is a trade-
off between them.

The size of the search space exponentially increases with respect to the number of features
in the dataset [8]. Therefore, an exhaustive search for obtaining the optimal solution is almost
impossible in practice. A variety of search techniques have been employed, such as greedy
search based on sequential forward selection (SFS) [9] and sequential backward selection (SBS)
[10]. However, these feature selection approaches still suffer from stagnation in local optima
and expensive computational time [11]. Evolutionary computing (EC) algorithms and other
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population-based algorithms adaptively search the feature space by employing a set of search
agents that communicate in a social manner to reach a global solution [12]. Such methods
include genetic algorithms (GAs) [13], particle swarm optimization (PSO) [14], and ant colony
optimization (ACO) [3].

GAs and PSO are the most common population-based algorithms. GAs are inspired from
the process of evolution via natural selection and survival of the fittest and have the ability to
solve complex and non-linear problems; however, in many cases, if no additional mechanisms
are employed, they can have poor performance and become trapped in local minima [15]. In
PSO, each solution is considered as a particle that is defined by position, fitness, and a speed
vector, which defines the moving direction of the particle [16].

The antlion optimization (ALO) algorithm [17] is a relatively recent algorithm that is com-
putationally less expensive than other techniques. The chaotic optimization algorithm (COA)
is a global optimization method whose main core contains two phases [18]. The first phase has
four steps:

1. Produce a sequence of chaotic points;

2. Map the chaotic points to a sequence of design points in the design space;

3. Compute the fitness (objective function) values based on the design points;

4. Select the point that has the minimum fitness value as the current optimum point.

The second phase has two steps:

1. Assume that the current optimum point is located near the global optimum after a number
of iterations;

2. Perform position alteration and search around the current optimum in the descent direction
along with the axis directions.

These phases are repeated until a convergence (termination) criterion is met. Chaos is con-
sidered to be a deterministic dynamic process and is very responsive to its initial parameters
and conditions. The nature of chaos is clearly random and unpredictable, but it also has an ele-
ment of regularity [18].

The aim of this paper is to enhance the performance of the antlion optimizer for feature
selection by using chaos. We are particularly interested in applying our methods to data from
biology and medicine, as these data possess a large number of attributes and generally have a
small number of instances, which makes the feature selection process more complex.

The remainder of this paper is organized as follows. Subsection 1.1 surveys the existing
related work. Section 2 provides background information about the antlion optimization algo-
rithm and chaotic maps. The proposed chaotic version of the antlion optimization (CALO) is
presented in Subsection 2.3. The experimental results with discussions are reported in Section
3. The conclusions of this research and directions for future work are presented in Section 4.

1.1 Related work
Nature-inspired heuristics, such as genetic algorithms, genetic programming, ant colony opti-
mization, and particle swarm optimization, have been successfully used for feature selection.
GA uses the accuracy of classification as a fitness (objective) function and removes or adds a
feature according to the ranking information. A feature selection algorithm based on GA using
a fuzzy set as the fitness function has been proposed in [19]. PSO with the same fitness function
achieves better performance than the GA algorithm in [20]. A multi-objective algorithm for
feature selection based on genetic programming has been proposed in [21].
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An ACO-based wrapper feature selection algorithm has been applied in network intrusion
detection [22]. ACO uses the Fisher discrimination rate to adopt the heuristic information. A
feature selection method based on ACO and rough set theory has been proposed in [23]. Logis-
tic map is one of the techniques used by the chaotic behavior and has bounded unstable
dynamic behavior. The system proposed in [24] uses the K-nearest neighbor (KNN) classifier
with leave-one-out cross-validation (LOOCV) and evaluates the classification performance.

The chaos genetic feature selection optimization method (CGFSO) is proposed in [18]. The
method proposed in [25] for text categorization consists of some primary stages, such as fea-
ture extraction and feature selection. In the feature selection stage, the method applies feature
selection algorithms to obtain a feature subset that can increase the classification accuracy and
method performance and can reduce the learning complexity. CGFSO explores the search
space with all possible combinations of a given dataset. In addition, each individual in the pop-
ulation represents a candidate solution, with the size of the feature subset being the same as the
length of a chromosome [26].

Chaotic time series with the EPNet algorithm is proposed in [27]. The authors present four
different methods derived from the classical EPNet algorithm applied in three different chaotic
series (Logistic, Lorenz, and Mackey-Glass). The tournament EPNet algorithm obtains the best
results for all time series considered, and the network architectures remains of a comparatively
limited size. The chaotic time series predictor requires a small network architecture, whereas
the addition of neural components may degrade the performance during evolution and conse-
quently provide more survival probabilities to smaller networks in the population [28].

2 Methods

2.1 Antlion optimization (ALO)
Antlion optimization (ALO) is a bio-inspired optimization algorithm proposed by Mirjalili
[17]. The ALO algorithm mimics the hunting mechanism of antlions in nature. Antlions (doo-
dlebugs) belong to the Myrmeleontidae family and Neuroptera order [17]. They primarily
hunt in the larvae stage, and the adulthood period is for reproduction. An antlion larvae digs a
cone-shaped hole in the sand by moving along a circular path and throwing out sand with its
huge jaw. After digging the trap, the larvae hides underneath the bottom of the cone and waits
for insects/ants to become trapped in the hole. Once the antlion realizes that a prey is in the
trap, it attempts to catch the prey. However, insects are typically not caught immediately and
attempt to escape from the trap.

In this case, antlions intelligently throw sand toward the edge of the hole to cause the prey
to slide to the bottom of the hole. When a prey is caught in the jaw of an antlion, it is pulled
under the soil and consumed. After consuming the prey, antlions throw the leftovers outside
the hole and prepare the hole for the next hunt.

Artificial antlion. Based on the above description of antlions, Mirjalili uses the following
facts and assumptions in the artificial antlion optimization algorithm [17]:

• Prey (ants) move around the search space using different random walks;

• Random walks are affected by the traps of antlions;

• Antlions can build holes proportional to their fitness (the higher the fitness, the larger the
hole);

• Antlions with larger holes have a higher probability of catching ants;

• Each ant can be caught by an antlion in each iteration;
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• The range of random walks is decreased adaptively to simulate sliding ants toward antlions;

• If an ant becomes fitter than an antlion, this means that the ant is caught and pulled under
the sand by the antlion;

• An antlion repositions to the most recently caught prey and builds a hole to improve its
chance of catching another prey after each hunt.

Formally, the antlion optimization algorithm is given in Algorithm 1.

Algorithm 1: Antlion optimization (ALO) algorithm
Input: Search space, fitness function, numbers of ants and antlions, number
of iterations T
Output: The elitist antlion and its fitness

1. Randomly initialize a population of ant positions Ant and a population
of antlion positions Antlion.

2. Calculate the fitness of all the ants and antlions.
3. Find the fittest antlion; Elite.
4. t = 0.
5. while (t� T)
foreach Anti do

• Select an antlion using Roulette wheel.
• Slide ants toward the antlion as in Eq (2).
• Create a random walk for the Anti and normalize it, as shown in Eqs (4)
and (5) for modeling trapping, Eq (6) for random walk, and Eq (8) for
walk normalization.

end
6. Calculate the fitness of all ants.
7. Replace an antlion with its corresponding ant if the ant becomes fitter

following Eq (1).
8. Update the elite if an antlion becomes fitter than the current elite.
9. t = t+1
end while

The antlion optimizer applies the following steps to an individual antlion:

1. Building a trap: a roulette wheel is used to model the hunting capability of antlions. Ants
are assumed to be trapped in only one selected antlion hole. The ALO algorithm requires a
roulette wheel operator for selecting antlions based on their fitness during optimization.
This mechanism provides high chances to the fitter antlions for catching prey or ants.

2. Catching prey and re-building the hole: this is the final stage in hunting, in which the
antlion consumes the ant. It is assumed that prey catching occurs when the ant becomes fit-
ter (goes inside sand) than its corresponding antlion. The antlion has to update his position
to the latest position of the hunted ant to increase its chance of catching new prey. Eq (1)
reflects this process:

Antliont
j ¼ Antti If f ðAntti Þ is better than f ðAntliont

jÞ; ð1Þ

where:

• t shows the current iteration;

• Antliontj shows the position of the antlion j at iteration t;

• Antti indicates the position of the ant i at iteration t.

The antlion optimizer applies the following four operations to an individual ant:
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1. Sliding ants toward antlion: antlions shoot sand toward the center of the hole once they
realize that an ant is in the trap. This behavior causes the trapped ant that is attempting to
escape to slide down. To mathematically model this behavior, the radius of the ants’ random
walk hyper-sphere is decreased adaptively using Eqs (2) and (3).

ct ¼ ct

I
; ð2Þ

where:

• ct is the minimum of all variables at iteration t;

• I is a ratio, which is defined in Eq (3):

I ¼ 10w
t
T
; ð3Þ

where:

• t is the current iteration;

• T is the maximum number of iterations;

• w is a constant defined based on the current iteration (w = 2 when t> 0.1T, w = 3 when
t> 0.5T, w = 4 when t> 0.75T, w = 5 when t> 0.9T, and w = 6 when t> 0.95T). Basically,
the constant w can adjust the accuracy level of exploitation.

2. Trapping in the antlion holes: by modeling the sliding of prey toward the antlion, the ant is
trapped in the antlion’s hole. In other words, the walk of the ant becomes bounded by the
position of the antlion, which can be modeled by changing the range of the ant random
walk toward the antlion position as in Eqs (4) and (5):

cti ¼ ct þ Antliont
j ; ð4Þ

dt
i ¼ dt þ Antliont

j ; ð5Þ

where:

• ct is the minimum of all variables at iteration t;

• dt is the maximum of all variables at iteration t;

• cti is the minimum of all variables for ant i;

• dti is the maximum of all variables for ant i;

• Antliontj represents the position of the antlion j at iteration t.

3. Random walks of ants: Random walks are based on Eq (6):

XðtÞ ¼ ½0; cumsumð2rðt1Þ � 1Þ; cumsumð2rðt2Þ � 1Þ;
:::; cumsumð2rðtTÞ � 1Þ�; ð6Þ

where:

• cumsum calculates the cumulative sum;

• T is the maximum number of iterations;

• t is the step of the random walk (iteration);
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• r(t) is a stochastic function defined as:

rðtÞ ¼
1 if rand > 0:5

0 if rand � 0:5;

(
ð7Þ

where rand is a random number generated with a uniform distribution over [0, 1].
To keep the random walks inside the search space, they are normalized using Eq (8) (min–max
normalization):

Xt
i ¼

ðXt
i � aiÞ � ðdi � ctiÞ

ðbti � aiÞ
þ ci; ð8Þ

where:

• ai is the minimum random walk for variable i;

• bi is the maximum random walk for variable i;

• cti is the minimum of variable i at iteration t;

• dti is the maximum of variable i at iteration i.

4. Elitism: to maintain the best solution(s) across iterations, elitism has to be applied. In this
work, we consider that the random walk of an ant is guided by the selected antlion and by
the elite antlion, and hence, the repositioning of a given ant follows the average of both ran-
dom walks, as shown in Eq (9):

Antti ¼
Rt
A þ Rt

E

2
; ð9Þ

where:

• Rt
A is the random walk around the antlion selected using a roulette wheel;

• Rt
E is the random walk around the elite antlion.

2.2 Chaotic maps
Chaos means a condition or place of great disorder or confusion [29]. Chaotic systems are
deterministic systems that exhibit irregular (or even random) behavior and a sensitive depen-
dence on the initial conditions. Chaos is one of the most popular phenomena that exist in non-
linear systems, whose action is complex and similar to that of randomness [30]. Chaos theory
studies the behavior of systems that follow deterministic laws but appear random and unpre-
dictable, i.e., dynamical systems. To be referred to as chaotic, the dynamical system must satisfy
the following chaotic properties [29]:

1. sensitive to initial conditions;

2. topologically mixing;

3. dense periodic orbits;

4. ergodic;

5. stochastically intrinsic.

Chaotic variables can go through all states in certain ranges according to their own regular-
ity without repetition [30]. Due to the ergodic and dynamic properties of chaos variables,
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chaos search is more capable of hill-climbing and escaping from local optima than random
search, and thus, it has been applied for optimization [30]. It is widely recognized that chaos is
a fundamental mode of motion underlying almost all natural phenomena. A chaotic map is a
map that exhibits some type of chaotic behavior [29]. The common chaotic maps in the litera-
ture are as follows:

1. Logistic map: this map is one of the simplest chaotic maps [31], as defined in Eq (10):

xkþ1 ¼ axkð1� xkÞ; ð10Þ

where:

• xk 2 (0, 1) under the condition that x0 2 [0, 1], 0< a� 4;

• k is the iteration number.

2. Sinusoidal map: represented by Eq (11) [31]:

xkþ1 ¼ ax2k sinðpxkÞ; ð11Þ

which generates chaotic numbers in the range (0, 1) with a = 2.3.

3. Tent map: resembles the logistic map due to its topologically conjugate behavior. A tent
map can display a range of dynamical behaviors from predictable to chaotic depending on
the value of its multiplier, as shown in Eqs (12) and (13):

xkþ1 ¼ GðxkÞ; ð12Þ

GðxÞ ¼

x
0:7

; x < 0:7

1

0:3
xð1� xÞ otherwise

8>><
>>: ð13Þ

4. Singer map: given in Eq (14) [32]:

xkþ1 ¼ mð7:86xk � 23:31x2k þ 28:75x3k � 13:3x4kÞ; ð14Þ

with xk 2 (0, 1) under the condition that x0 2 (0, 1), μ 2 [0.9, 1.08].

5. Piecewise map: given in Eq (15) [33]:

xkþ1 ¼

x
p
; 0 � xk < p

xk � p
0:5� p

p � xk < 0:5

1� p� xk
0:5� p

0:5 � xk < ð1� pÞ

1� xk
p

ð1� pÞ � xk < 1

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð15Þ

where p is a constant defined between 0 and 1.
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2.3 The novel chaotic antlion optimization (CALO)
In this section, we present our chaotic antlion optimization (CALO) algorithm based on k-
nearest neighbor (KNN) for feature selection. Exploration can be defined as the acquisition of
new information through searching [34]. Exploration is a main concern for all optimizers
because it might lead to new search regions that might contain better solutions. Exploitation is
defined as the application of known information. The good sites are exploited via the applica-
tion of a local search. The selection process should be balanced between random selection and
greedy selection to bias the search toward fitter candidate solutions (exploitation) while pro-
moting useful diversity into the population (exploration) [34].

Parameter I controls the trade-off between exploration and exploitation in the original
antlion optimization algorithm. This parameter is linearly decreased to allow more exploration
at the beginning of the optimization process, while exploitation becomes more important at
the end of the optimization. Therefore, half of the optimization resources are consumed in
exploration, whereas the remaining time is dedicated to exploitation, as shown in (Fig 1).

Although the algorithm proved efficient for solving numerous optimization problems, it
still possesses the following drawbacks:

1. Sub-optimal selection: at the beginning of the optimization process, I is small, which makes
the random walk unbounded in the search space and allows an ant to apply random walk in
almost the entire search space. This may cause the algorithm to select sub-optimal solutions.

2. Stagnation: once the algorithm approaches the end of the optimization process, it becomes
difficult to escape local optima and find better solutions because its exploration capability is
very limited; I becomes very large, thereby limiting the boundaries for the random walk.
This causes the algorithm to continue enhancing solutions that have already been found,
even if they are sub-optimal.

Fig 1. Exploration rate (1
I
) at different iterations in the original ALO.

doi:10.1371/journal.pone.0150652.g001
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These problems motivate our work on adapting 1
I
to obtain successive periods of exploration

and exploitation. Therefore, when reaching a solution, exploitation will be applied, followed by
another exploration, which may jump to another promising area, followed by using exploitation
again to further enhance the solution found, and so on. Chaotic systems with their interesting
properties, such as topologically mixing and dense periodic orbits, ergodicity and intrinsic sto-
chasticity, can be used to adapt this parameter, allowing for the required mix between explora-
tion and exploitation. (Fig 2a) presents an example of a chaos map for the values of I for 500
iterations, in which we can observe alternating regions of exploration and exploitation. A small
variation in the period means exploitation, whereas a larger variation in the period means explo-
ration. The tentmap smoothly and periodically decrements the exploration rate, while the sinu-
soidal map abruptly switches between exploration and exploitation, which may cause loss of the
optimal solution and lead to worse performance (as shown in (Fig 2b and 2c).

The proposed CALO algorithm is schematically presented in (Fig 3). The search strategy of
the wrapper-based approach explores the feature space to find a feature subset guided by the
classification performance of individual feature subsets.

This approach may be slow because the classifier must be retrained on all the candidate sub-
sets of the feature set and its performance must be measured. Therefore, an intelligent search of
the feature space is required. The goals are to maximize the classification performance P and to
minimize the number of selected features Nf. The fitness function is given in Eq (16) [35]:

minimize að1� PÞ þ ð1� aÞ Nf

Nt

� �
; ð16Þ

where:

• Nf is the size of the selected feature subset;

• Nt is the total number of features in the dataset;

• α 2 [0, 1] defines the weights of the sub-goals;

• P is the classification performance measured as in Eq (17).

P ¼ Nc

N
; ð17Þ

where Nc is the number of correctly classified data instances and N is the total number of
instances in the dataset.

The number of dimensions in the optimization is the same as the number of features, with
each feature related to a dimension and each variable limited to the range [0, 1]. To determine
whether a feature will be selected at the evaluation stage, a static threshold of 0.5 is used, as

Fig 2. The exploration and exploitation values of different chaotic maps.

doi:10.1371/journal.pone.0150652.g002
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shown in Eq (18):

yij ¼
0 Ifðxij < 0:5Þ

1 Otherwise

(
ð18Þ

where yij is the discrete representation of solution vector x, and xij xij is the continuous position
of the search agent i in dimension j.

3 Results and Discussion

3.1 Experimental setup
Datasets. Table 1 summarizes the 18 datasets used for the experiments. The datasets are

taken from the UCI data repository [36]. We use ten biological datasets to validate the perfor-
mance of our method and its potential applicability for data generated in biology. In addition,
we use eight datasets from other areas to show the general adaptability of our method. Each
dataset is divided into 3 equal parts for training, validation, and testing. The training set is used
to train a classifier through optimization and at the final evaluation. The validation set is used
to assess the performance of the classifier at the optimization time. The testing set is used to
evaluate the selected features.

Four different optimization methods are compared in this study: CALO with five different
chaotic maps—logistic, singer, tent, piecewise, and sinusoidal; the original ALO; particle

Fig 3. The proposed chaotic antlion optimization (CALO).

doi:10.1371/journal.pone.0150652.g003
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swarm optimization [14]; and genetic algorithms [13]. The parameter settings for all the algo-
rithms are presented in Table 2.

3.2 Performance metrics
Each algorithm has been applied 20 times with random positioning of the search agents except
for the full features selected solution, which was forced to be a position for one of the search
agents. Forcing the full features solution guarantees that all subsequent feature subsets, if
selected as the global best solution, are fitter than it. The well-known KNN is used as a classifier
to evaluate the final classification performance for individual algorithms with k = 5 [1].
Repeated runs of the optimization algorithms were used to test their convergence capability.
The indicators (measures) used to compare the different algorithms are as follows:

• Statistical mean: is the average performance of a stochastic optimization algorithm applied
M times and is given in Eq (19):

Mean ¼ 1

M

XM
i¼1

gi�; ð19Þ

where gi� is the optimal solution that resulted at the i−th application of the algorithm.

Table 2. Parameter settings for CALO.

Parameter Value

No of search agents 8

No of iterations 70

Problem dimension Same as number of features in any given database

Search domain [0 1]

doi:10.1371/journal.pone.0150652.t002

Table 1. Datasets used in the experiments.

Dataset No. of features No. of samples Scientific area

Breastcancer 9 699 Biology

BreastEW 30 569

Exactly [37] 13 1000

Exactly2 [37] 13 1000

HeartEW 13 270

Lymphography 18 148

M-of-n 13 1000

PenglungEW 325 73

SonarEW 60 208

SpectEW 22 267

CongressEW 16 435 Politics

IonosphereEW 34 351 Electromagnetic

KrvskpEW 36 3196 Game

Tic-tac-toe 9 958 Game

Vote 16 300 Politics

WaveformEW 40 5000 Physics

WineEW 13 178 Chemistry

Zoo 16 101 Artificial, 7 classes of animals

doi:10.1371/journal.pone.0150652.t001
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• Statistical best: is the minimum fitness function value (or best value) obtained by an optimi-
zation algorithm inM independent applications, as shown in Eq (20):

Best ¼ minM
i¼1g

i
�; ð20Þ

• Statistical worst: is the maximum fitness function value (or worst value) obtained by an opti-
mization algorithm inM independent applications, as in Eq (21):

Worst ¼ maxMi¼1g
i
�; ð21Þ

• Statistical standard deviation (std): is used as an indicator of the optimizer stability and
robustness: when Std is small, the optimizer always converges to the same solution, whereas
large values of std represent close to random results, as shown in Eq (22):

Std ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � 1

X
ðgi� �MeanÞ2

r
; ð22Þ

• Average classification accuracy: describes how accurate the classifier is given the selected fea-
ture set, as shown in Eq (23).

Avg Perf ¼ 1

M

XM
j¼1

1

N

XN
i¼1

MatchðCi; LiÞ; ð23Þ

where:

• N is the number of instances in the test set;

• Ci is the classifier output label for data instance i;

• Li is the reference class label for data instance i;

• Match is a function that outputs 1 when the two input labels are the same and outputs 0
otherwise.

• Average selection size (reduction): represents the fraction of selected features from all feature
sets, as shown in Eq (24).

Avg Selection Size ¼ 1

M

XM
i¼1

sizeðgi�Þ
Nt

; ð24Þ

where Nt is the number of features in the original dataset.

• Average fisher score (f-score): is a measure that evaluates a feature subset such that in the data
space spanned by the selected features, the distances between data instances in different clas-
ses are as large as possible, while the distances between data instances in the same class are as
small as possible [4]. F-score in this work is calculated for individual features given the class
labels and forM independent applications of an algorithm, as given in Eq (25):

Fj ¼
Pc

k¼1 nkðmj
k � mjÞ2

ðsjÞ2 ; ð25Þ

where:
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• Fj is the fisher score for feature j;

• μj is the mean of the entire dataset;

• (σj)2 is the standard deviation of the entire dataset;

• nk is the size of class k;

• mjk is the mean of class k.

Algorithms used for comparison: our comparisons include the following algorithms:

• ALO: the original antlion optimization

• CALO-Log: chaotic ALO with logistic map

• CALO-Piec: chaotic ALO with piece-wise chaotic map

• CALO-Singer: chaotic ALO with singer chaotic map

• CALO-Sinu: chaotic ALO with sinusoidal map

• CALO-Tent: chaotic ALO with tent map

• GA: genetic algorithm

• PSO: particle swarm optimization.

3.3 Analysis and discussion
Fig 4 shows the average statistical mean fitness, best fitness, worst fitness, and the standard
deviation for all the methods used and for all 18 datasets. The results for the biological datasets
are presented in (Fig 5), and those for the other non-biological datasets are presented in (Fig
6). We can observe that ALO and CALO generally perform better than GA and PSO. The
search method adopted in ALO is more explorative than the one used in GA and PSO because
ALO performs a local search around a roulette wheel selected solution, and in this way, other
areas (apart from the area around the current best) are explored. Because of the balanced con-
trol of exploration and exploitation, the CALO algorithm outperforms the original ALO. The
nonsystematic adaptation of exploration rate in the CALO allows the successive local and
global searching and helps escaping from local minima that commonly exist in the search
space. The tent chaos map outperforms the other chaos maps, whereas the sinusoidalmap pro-
vides the worst chaotic result.

To assess the stability of the stochastic algorithms and the stability to converge to the same
optimal solution, we measure the statistical standard deviation (std) of the fitness values over
different runs. The minimum for the std measure is obtained by CALO in almost all the data-
sets, which reaffirms that CALO is more stable and can converge to the same optimal solution
regardless of its stochastic and chaotic manner. In addition, we can see that the tentmap still
performs better than the other maps in terms of its repeatability. The results for the classifica-
tion accuracy presented in Table 3 show that CALO obtains the best results for 11 of the data-
sets, thus demonstrating the capability of CALO to find optimal feature combinations ensuring
good test performance.

Table 4 summarizes the results for the size of the selected feature subsets. We can see that
CALO, while outperforming all the other methods in terms of classification performance, has
comparable values with the other approaches for the number of features selected.

Tables 5 and 6 show particular feature selection size (reduction) examples for the Breastcan-
cer dataset, which has 9 input features, and for the HeartEW dataset, which has 13 input
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features. From the Breastcancer dataset, we can observe that CALO suggests that only four of
the features are good enough to classify a tumor. As might be evident, it is particularly pre-
ferred in biology and medicine to consider a small number of biomarkers for a disease because
this involve fewer experiments, which may sometimes be difficult to perform and have side
effects for the patient. For the Heart dataset, our method suggests that five of the data attributes
will assure the same precision in performing the classification as if we consider all the features.
Such tools could be of real help in the future as they will lead to fewer patient investigations
and can lower the costs involved. Overall, while comparing CALO with GA and PSO, we
observe that CALO almost always obtains better or very similar classification accuracy with a
lower number of features selected. In the majority of the tests performed, on average, approxi-
mately 75% of the features selected by CALO are in common with the features selected by GA
or PSO, but in most of the cases, the set of features selected by CALO is included in the set of
features selected by GA and PSO.

F-score values are given in Table 7, where we can again observe that CALO using the tent
map obtains the best results overall. Additionally, note that the worst performing map is the
sinusoidalmap.

Limitations. The main limitation of the methodology proposed in this paper is the non-
exact repeatability of the optimization results. We observed that at different applications of the
algorithm, the subset of features selected might differ. Although the resulting solutions are all
good solutions, it may be confusing for the user to determine which subset to consider. The
proposed algorithm works on the wrapper-based feature selection approach using the KNN

Fig 4. The fitness values obtained from different methods for all 18 datasets.

doi:10.1371/journal.pone.0150652.g004
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Fig 5. The fitness values obtained from different methods for biological datasets.

doi:10.1371/journal.pone.0150652.g005

Fig 6. The fitness values obtained from different methods for non-biological datasets.

doi:10.1371/journal.pone.0150652.g006
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classifier as a simple one. The running time may increase when switching to another classifier,
such as support vector machine (SVM) or random forest (RF). Therefore, switching to a differ-
ent classifier should be carefully handled, particularly if the algorithm is adopted in real-time
applications.

Table 3. Average classification accuracy of 20 independent runs for GA, PSO, ALO, and 5 different chaosmaps of CALO.

Dataset ALO CALO-Log CALO-Piec CALO-Singer CALO-Sinu CALO-Tent GA PSO

Breastcancer 0.954 0.955 0.955 0.950 0.957 0.951 0.955 0.951

BreastEW 0.943 0.943 0.946 0.949 0.948 0.952 0.946 0.942

Exactly 0.660 0.675 0.655 0.671 0.681 0.661 0.659 0.671

Exactly2 0.741 0.737 0.747 0.730 0.761 0.736 0.728 0.737

HeartEW 0.824 0.813 0.813 0.811 0.822 0.820 0.802 0.824

Lymphography 0.744 0.772 0.732 0.728 0.720 0.724 0.744 0.692

M-of-n 0.875 0.891 0.882 0.880 0.851 0.930 0.867 0.841

PenglungEW 0.658 0.659 0.625 0.644 0.603 0.632 0.676 0.627

SonarEW 0.714 0.723 0.680 0.734 0.697 0.717 0.723 0.737

SpectEW 0.787 0.784 0.780 0.778 0.778 0.787 0.782 0.800

CongressEW 0.946 0.941 0.942 0.950 0.942 0.932 0.938 0.960

IonosphereEW 0.848 0.819 0.838 0.853 0.836 0.843 0.824 0.815

KrvskpEW 0.938 0.948 0.953 0.953 0.941 0.930 0.950 0.946

Tic-tac-toe 0.766 0.737 0.739 0.754 0.725 0.732 0.739 0.722

Vote 0.914 0.928 0.922 0.920 0.918 0.882 0.914 0.898

WaveformEW 0.769 0.765 0.767 0.766 0.764 0.762 0.766 0.757

WineEW 0.937 0.930 0.950 0.950 0.953 0.957 0.947 0.923

Zoo 0.836 0.798 0.805 0.854 0.846 0.860 0.824 0.805

doi:10.1371/journal.pone.0150652.t003

Table 4. Average selection size of 20 independent runs for GA, PSO, ALO, and 5 different chaosmaps of CALO.

Dataset ALO CALO-Log CALO-Piec CALO-Singer CALO-Sinu CALO-Tent GA PSO

Breastcancer 0.800 0.844 0.756 0.689 0.822 0.733 0.667 0.600

BreastEW 0.567 0.753 0.580 0.687 0.653 0.680 0.527 0.460

Exactly 0.538 0.538 0.723 0.692 0.754 0.738 0.508 0.615

Exactly2 0.785 0.492 0.646 0.585 0.477 0.738 0.508 0.415

HeartEW 0.677 0.538 0.615 0.738 0.662 0.723 0.615 0.677

Lymphography 0.400 0.456 0.456 0.600 0.611 0.456 0.522 0.433

M-of-n 0.815 0.800 0.754 0.846 0.954 0.631 0.708 0.492

PenglungEW 0.266 0.419 0.316 0.357 0.442 0.259 0.494 0.476

SonarEW 0.357 0.350 0.433 0.537 0.360 0.210 0.483 0.497

SpectEW 0.391 0.418 0.382 0.400 0.427 0.527 0.518 0.455

CongressEW 0.300 0.362 0.512 0.388 0.325 0.388 0.450 0.375

IonosphereEW 0.324 0.200 0.694 0.135 0.524 0.235 0.553 0.535

KrvskpEW 0.739 0.611 0.561 0.550 0.672 0.594 0.528 0.489

Tic-tac-toe 0.711 0.756 0.711 0.756 0.622 0.667 0.711 0.533

Vote 0.475 0.588 0.613 0.500 0.313 0.625 0.325 0.475

WaveformEW 0.850 0.765 0.825 0.855 0.805 0.810 0.575 0.600

WineEW 0.615 0.585 0.462 0.554 0.677 0.615 0.446 0.508

Zoo 0.637 0.662 0.700 0.613 0.588 0.588 0.613 0.600

doi:10.1371/journal.pone.0150652.t004
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4 Conclusions
In this paper, we address the feature selection problem by developing a chaos-based version of
a recently proposed meta-heuristic algorithm, namely, antlion optimization (ALO). A parame-
ter whose setting is crucial for the algorithm performance is adapted using chaos principles.
The proposed chaotic antlion optimization (CALO) is applied to a common challenging opti-
mization problem: feature selection in the wrapper mode. The feature selection is formulated
as a multi-objective optimization task with a fitness function reflecting the classification perfor-
mance and the reduction in the number of features. The proposed system is evaluated using 18
different datasets against a number of evaluation criteria. We developed this method with par-
ticular interest in datasets generated in biology, as these data typically have a large number of
attributes and a low number of instances. CALO proves to be more efficient compared to ALO,
PSO, and GA regarding the quality of the features selected. CALO is able to converge to the

Table 5. An example of the feature selection size (reduction) for each optimization algorithm using theBreastcancer dataset.

Optimizer Selected features

Total
No.

Indices Labels

CALO-Tent 4 1, 2, 5, 6 Clump Thickness, Uniformity of Cell Size, Single Epithelial Cell Size, Bare Nuclei

CALO-Sinu 6 1, 3, 4, 6, 7, 9 Clump Thickness, Uniformity of Cell Shape, Marginal Adhesion, Bare Nuclei, Bland Chromatin, Mitoses

CALO-Singer 7 1, 2, 3, 5, 6, 7,
9

Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Single Epithelial Cell Size, Bare Nuclei,
Bland Chromatin, Mitoses

CALO-Piec 7 1, 2, 3, 5, 6, 7,
9

Clump Thickness, Uniformity of Cell Size, Uniformity of Cell Shape, Single Epithelial Cell Size, Bare Nuclei,
Bland Chromatin, Mitoses

CALO-Log 5 1, 3, 6, 7, 9 Clump Thickness, Uniformity of Cell Shape, Bare Nuclei, Bland Chromatin, Mitoses

ALO 8 1, 2, 4, 5, 6, 7,
8, 9

Clump Thickness, Uniformity of Cell Size, Marginal Adhesion, Single Epithelial Cell Size, Bare Nuclei, Bland
Chromatin, Normal Nucleoli, Mitoses

GA 5 1, 3, 6, 7, 9 Clump Thickness, Uniformity of Cell Shape, Bare Nuclei, Bland Chromatin, Mitoses

PSO 5 1, 3, 5, 6, 7 Clump Thickness, Uniformity of Cell Shape, Single Epithelial Cell Size, Bare Nuclei, Bland Chromatin

doi:10.1371/journal.pone.0150652.t005

Table 6. An example of the feature selection size (reduction) for each optimization algorithm using theHeartEW dataset.

Optimizer Selected features

Total
No.

Indices Labels

CALO-Tent 5 3, 9, 10, 11, 12 chest pain type, exercise-induced angina, oldpeak, slope of the peak exercise ST segment, number of
major vessels

CALO-Sinu 6 1, 3, 7, 9, 12, 13 age, chest pain type, resting electrocardiographic, exercise-induced angina, number of major vessels,
defect type

CALO-Singer 8 1, 3, 4, 7, 8, 11,
12, 13

age, chest pain type, resting blood pressure, resting electrocardiographic, maximum heart rate, slope of
the peak exercise ST segment, number of major vessels, defect type

CALO-Piec 8 1, 2, 3, 6, 8, 10,
11, 12

age, sex, chest pain type, fasting blood sugar, maximum heart rate, oldpeak, slope of the peak exercise
ST segment, number of major vessels

CALO-Log 6 1, 2, 3, 7, 12, 13 age, sex, chest pain type, resting electrocardiographic, number of major vessels, defect type

ALO 6 2, 3, 5, 11, 12,
13

sex, chest pain type, serum cholesterol, slope of the peak exercise ST segment, number of major vessels,
defect type

GA 7 3, 5, 8, 9, 10, 11,
12

chest pain type, serum cholesterol, maximum heart rate, exercise-induced angina, oldpeak, slope of the
peak exercise ST segment, number of major vessels

PSO 8 1, 2, 3, 6, 7, 10,
12, 13

age, sex, chest pain type, fasting blood sugar, resting electrocardiographic, oldpeak, number of major
vessels, defect type

doi:10.1371/journal.pone.0150652.t006
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same optimal solution for a higher number of applications compared to ALO, PSO, and GA,
regardless of the stochastic searching and the chaotic adaptation. The performance of CALO is
better than that of the other methods over the test data considered.
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