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Abstract
Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a

widespread regulatory process in living organisms that involves multicomponent molecular

machines. Genome-wide cytosine methylation patterning participates in the epigenetic

reprogramming of a cell, suggesting that the biological information contained within methyl-

ation positions may be amenable to decoding. Adaptation to a new cellular or organismal

environment also implies the potential for genome-wide redistribution of CDM changes that

will ensure the stability of DNA molecules. This raises the question of whether or not we

would be able to sort out the regulatory methylation signals from the CDM background

(“noise”) induced by thermal fluctuations. Here, we propose a novel statistical and informa-

tion thermodynamic description of the CDM changes to address the last question. The

physical basis of our statistical mechanical model was evaluated in two respects: 1) the

adherence to Landauer’s principle, according to which molecular machines must dissipate

a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant,

and T is the absolute temperature and 2) whether or not the binary stretch of methylation

marks on the DNA molecule comprise a language of sorts, properly constrained by thermo-

dynamic principles. The study was performed for genome-wide methylation data from 152

ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tis-

sues. The DNA persistence length, a basic mechanical property altered by CDM, was esti-

mated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by

applying information thermodynamic modelling, which is able to discriminate signal from

noise. Our finding suggests that the CDM signal comprises a language scheme properly

constrained by molecular thermodynamic principles, which is part of an epigenomic com-

munication system that obeys the same thermodynamic rules as do current human commu-

nication systems.

Introduction
Plant and animal phenotypes respond to environmental changes, an adaptive capacity that is,
at least in part, trans-generational. Genetic and epigenetic factors are involved in a phenotypic
range of this response. The genome-wide cytosine DNAmethylation patterning that
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participates in the epigenetic response of cells to environmental variation is controlled by a com-
plex network of genes. Cytosine DNAmethylation (CDM) results from the addition of methyl
groups to cytosine C5 residues, and the configuration of methylation within a genome provides
trans-generational epigenetic information. The biochemical reaction is catalyzed by methyltrans-
ferases recruited into complex multicomponent molecular machines [1]. The reverse process of
methyl group removal is catalyzed by demethylases [2]. These epigenetic modifications can influ-
ence the transcriptional activity of the corresponding genes, or maintain genome integrity by
repressing transposable elements and affecting long-term gene silencing mechanisms [1,3].

Analysis of the biophysical mechanisms associated with cytosine methylation, and how
these mechanisms can potentially explain the functional impact of cytosine methylation, has
been described [4,5]. CDM alters the mechanical properties of a DNAmolecule, particularly its
flexibility [6–10]. Experimental evidence to date indicates that CDM plays an important role in
preserving the stability of DNA [10–14]. As a consequence, we assume that adaptation of an
individual to a new environment induces regulatory methylation responses (biological signal)
that would likewise ensure DNA stability.

At a molecular level, the uncertainty of methylation status at each single cytosine site pri-
marily derives from the omnipresent thermal fluctuations [5,6,9,10] that, in addition, impact
the kinetics of biomolecular systems [6,15–18]. Thus, spontaneous methylation variation can
be observed across generations, which may also affect gene expression [19,20].

Uncertainty of methylation status would be manifest even in a dataset generated from an
“ideal zero error experiment” with perfectly synchronized cell samples. At a tissue level, this
uncertainty derives from the several biological processes (e.g., differentiation, reprogramming,
disease transformations) that involve cell transitions through distinct states [21]. In natural
environments, cells from the same tissue are not necessarily in the same state and, therefore,
corresponding cytosine sites differ in methylation status. Consequently, overall organismal
response is conveyed as a statistical outcome, requiring an ability to distinguish regulatory
methylation signals from the CDM statistical background (“noise”) induced by thermal fluctu-
ations. Solving this problem transcends current state of the art in methylation analysis, which
relies predominantly on ad hoc concepts of differentially methylated positions (DMPs) and dif-
ferentially methylated regions (DMRs) defined by statistical tests that ignore the biochemical
and biophysical (thermodynamic) nature of the genome-wide methylation process.

Based on statistical biophysics subjacent to CDM, we propose a novel statistical mechanical
approach to describe the information thermodynamics of CDM changes and to confront the
problem of methylation regulatory signal detection. We assume that if a significant proportion of
the methylation changes induced by thermal fluctuation serve to stabilize the DNAmolecule,
then these changes will conform to statistical mechanical principles. In particular, the minimal
energy dissipated to process the information associated with these methylation changes should
follow statistical mechanical probability distributions. This energy is determined by Landauer’s
principle, according to which, a molecular machine must dissipate a minimum energy of ε = kBT
ln2 (about 3 × 10−21 Joules at room temperature) at each step in the genetic logic operations
including proofreading [22,23]. This is the expected minimal energy dissipation that a molecular
machine must spend to produce a change in one bit of information.

The physical foundation of our statistical mechanical model was evaluated by the estimation
of a basic molecular property of DNA molecules, the DNA persistence length Lp. The value of
Lp indicates the maximum length of a polymer before thermal motion forces it to fluctuate

wildly. The consensus value from estimations of DNA persistence length L̂p is about 50 nm

(~150 bp) [24,25], although estimated values of L̂p can vary depending on ionic strength

[26,27]. Evidence suggests that methylated ds-DNA has a substantially higher persistence
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length than non-methylated DNA [10], reaching about 92.5 nm when 9% of the total DNA is
methylated. This effect increases rigidity of the DNAmolecule and increases nucleosome com-
paction and rigidity [10,28].

Here we present theoretical and experimental validation for the statistical mechanical
model, as well as definitions involving its preliminary application to methylation analysis.
Results suggesting the existence of a methylation language consistent with our statistical
mechanical modeling are also described. For simplification, all equations used to derive the
presented information are provided in the Materials and Methods section.

Results and Discussion
The absolute amount of information IR processed by the methylation machinery in the geno-
mic region R was estimated from Arabidopsis and human methylomes (Eq 3). Under Land-
auer’s principle, the minimum energy dissipated to process the information IR can be
expressed by the equation: ER = IRkBT ln2 (Eq 4). Based on simple physical assumptions, the
probability density function (PDF) for the energies ER was approached by a Generalized
Gamma distribution (GG, Eq 7). This probability distribution accounts for an informational
statistical thermodynamics description of methylation changes induced by thermal fluctua-
tions, which are presumed to stabilize the DNAmolecule. These methylation changes represent
“methylation background noise” with respect to the signal created by the methylation regula-
tory machinery. However, since methylation changes alter the mechanical properties of the
DNAmolecule [6], any methylation signal created by the methylation regulatory machinery
also implies a redistribution of CDM changes for DNA stability. So, the knowledge of the prob-
ability distribution followed by the methylation background noise provides an analytical way
to discriminate it from the biological signal [29–31].

Because GG distribution comprises a family of distributions, the best physical description of
methylation background noise could be found in any member of the family. In this case, Wei-
bull distribution, a member of the GG distribution family, was also identified in two ways that
are presented in S1 Appendix. The Weibull distribution was derived under the assumption that
the dissipation of the energies ER follows a binomial process or a Poisson process, which in
turn is derived as the limiting case of the former. To define a binomial (or a Poisson) process,
the numbers of CDM changes induced by thermal fluctuations in non-overlapping genomic
regions must be independent for all genomic regions. If the CDM changes induced by thermal
fluctuations are consistent with a binomial (Poisson) process, then we can distinguish these
CDM changes from those originated from the methylation regulatory machinery, which are
not independent for all genomic regions.

Robust estimations of GG andWeibull cumulative distribution functions (CDFs, Eqs 12
and 14) were obtained for non-overlapping regions of 2000 to 5000 bp (S1 and S2 Tables and
S1 Fig). Also, in a section (below) on the binary language of cytosine DNA methylation, we
show that the architecture of small clusters (“words”) of CDM not only are characterized based
on maximum entropy and least effort principles, but also fits the statistical mechanics given by
Weibull distribution on statistical and physical basis.

In the next section we discussed statistical and physical evidence retrieved from the experi-
mental data that support the application of Weibull distribution to discriminate the biological
signal from methylation background noise.

Statistical mechanical basis of the information thermodynamic model
Although for each nonlinear fit we estimated Akaike and Bayesian information criteria [32,33],

the final model selection also relied on whether or not the value of the scaling parameter l̂ðlÞ,
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numerically estimated, was meaningful from a physical perspective. The scaling parameter λ(l)
(from Eqs 12 and 14) conveys the contribution of all degrees of freedom to the average energy
per molecule. For both Arabidopsis and human methylome datasets, the best fit was obtained
by Weibull distribution (Fig 1).

In the case of Arabidopsis, the numerical algorithm used in the nonlinear fit of GG distribu-

tion yielded extremely low values of l̂ðlÞ, approaching zero, which is meaningless from a physi-

cal standpoint. For the case of human methylomes, high and low extremes for l̂ðlÞ values were
also observed in several samples. The introduction of constraints in the numerical algorithm

for the interval of possible values for l̂ðlÞ improved the estimations, but it did not solve the fit-
ting issue for all samples (see below).

As presented in Fig 1, fitting the human methylome data toWeibull and GG distribution per-

mitted estimation of the DNA persistence length Lp. In the current case, the L̂p estimations for

Arabidopsis and human methylomes obtained through Eq 20 and the regression analyses, �̂lðlÞ
versus region length l (Fig 1A, based onWeibull distribution), yielded values consistent with
those reported in the literature [24–27]. Estimation based on GG distribution overestimated the
values of Lp (Fig 1B), perhaps consistent with the finding that GG distribution improperly fit sev-
eral samples from the human methylome dataset. However, this result doesn’t imply a general
rejection of GG distribution, since different samples and genomic partitioning could fit the GG
statistical model or another member of the GG distribution family as well.

Although the experimental data used for this analysis were from different species and
obtained by different research groups, the results obtained for Weibull distribution remained
consistent. Thus, under Landauer’s principle, Eqs 12 and 14 yield a statistical mechanical descrip-
tion of the information thermodynamics of CDM changes that occur in genomic regions.

Fig 1. Statistical mechanical basis of the information thermodynamic model. (A) Analysis based onWeibull distribution. (B) Analysis based on GG
distribution. Under Landauer’s principle statistical mechanical probability distributions were derived for the absolute amount of information IR processed by
the methylation machinery in a genomic region R (Eqs 12 and 14, Material and Methods). For each partition of the methylome into genomic regions, nonlinear

fits were performed to estimate the scaling parameter l̂^ðlÞ. Next, regression functions were obtained from the regression analyses
�̂
l^�ðlÞ versus l, as predicted

by Eq 18 (19). The estimations of the DNA persistence length L̂^p were based on Eq 20.

doi:10.1371/journal.pone.0150427.g001
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Differentially informative methylated positions
The knowledge of the statistical mechanical CDFs followed by the methylation background
noise provides the tools for a robust estimation of differentially methylated position (DMP). A
DMP is a single genomic position for which a significant statistical difference between the
methylation levels from two different samples or two groups of samples is detected by the
application of a suitable statistical test. Several statistical tests have been proposed to assess the
detection of DMPs, including Fisher’s exact test, binomial test, logistic regression and beta
binomial regression [34].

Two main sources of bias are present when DMPs are estimated by considering only the
experimental data and the statistical test to evaluate the differences between samples. The first
source of bias is introduced by ignoring the biophysical nature of the methylation process. In
consequence, the classical methylation analysis is not able to sort out the regulatory methyla-
tion signals from the methylation background noise. Any statistical test to estimate DMPs
must consider the statistical thermodynamics subjacent and inherent to the methylation pro-
cess [4–7]. A second source of bias is introduced when a high number of multiple comparisons
is performed. Adjustment of p-values is required for multiple comparisons and, in conse-
quence, a number of potential DMPs can be rejected. Several algorithms/strategies have been
proposed to confront this issue [34]. However, the application of these approaches to detect
DMPs can lead to subjective results. At a tissue level, DMPs are the result of statistical-biophys-
ical events that depend on the cells’ capacities to perform physical work. Thus, a DMP repre-
sents an objective difference that does not depend on the statistical test or the algorithm used
to detect it, but rather, the magnitude of energy dissipated to produce it.

A formal definition of DMP can be derived based on the energy dissipated to produce a
divergence between methylation levels. Eq 3 permits not only estimation of the uncertainty var-
iation at a single cytosine position, but also the divergence between methylation levels. Results
indicate that three other information divergencemeasures also express the divergence between
methylation levels consistent with the theory developed for IR: Total-variation (TV, Eq 25),
Kullback–Leibler (KL, Eq 26) and Hellinger (HD, Eq 27).

A formal definition of DMP inspired by the signal detection theory (STD) can be proposed

[29–31]. Let PðED
k � ED0

k Þ be the probability that energy ED
k , dissipated to create an observed

divergence D0 between the methylation levels from two different samples at a given genomic

position k, can be lesser than or equal to the amount of energy ED0
k . Then, a single genomic

position k shall be called a DMP at a level of significance α if, and only if, the probability

PðED
k > ED0

k Þ ¼ 1� PðED
k � ED0

k Þ to observe a methylation change with energy dissipation

higher than ED0
k is lesser than α. With this definition we want to emphasize the statistical-bio-

physical nature of DMPs at tissue or organ levels.
The above definition is intuitive from a biophysical perspective. Since Eqs 12 and 14 were

derived on physical basis, these CDFs do not explain the methylation changes originated by the
methylation regulatory machinery. Hence, a biological signal created by the regulatory methyl-
ation machinery can also be originated by statistical mechanic processes affecting the DNA

molecule with probability PðED
k > ED0

k Þ ¼ 1� PðED
k � ED0

k Þ. According to the SDT, PðED
k >

ED0
k Þ is the probability of false positive, i.e., the probability to accept a cytosine methylation

change as a DMP created by the methylation regulatory machinery when in fact it was created
to stabilize the DNAmolecule [31]. SDT provides the means to establish a threshold α to mini-
mize the risk and to increase the sensitivity of DMP detection.

In practice, probabilities PðED
k � ED0

k Þ can be approached by giving specific values to the
divergence DR in Eq 29 (for R = k, for brevity, any reference to Eq 29 will take into account its
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particular cases as well). A conservative approach can be, for example, DR ¼ HD
R . That is,

PðED
k � ED0

k Þ ffi PðHD
k � ĤD0

k Þ provided thatHD
k is proportional to ED

k , where the Hellinger

divergence ĤD0
k is estimated from the experimental data according Eq 27 and the probabilities

PðHD
k � ĤD0

k Þ are estimated by means of Eq 29 for R = k and substituting Dk ¼ ĤD0
k .

The analysis on which information divergence can give the least biased estimation of

PðED
k � ED0

k Þ is a subject for further studies. Nevertheless, a DMP detected based on an infor-
mation divergence measure shall be termed a differentially informative methylated position
(DIMP). Densities of DIMPs detected using the cumulative distribution function of TV, KL
andHD in genomic regions close to the start and end sites of genes are similar to density pro-
files originating by Fisher’s exact test (Fig 2). Notice that the densities presented in Fig 2 only
express general statistical tendencies and that, at single cytosine positions, Fisher’s exact test
will coincide with statistical mechanical models only for extreme methylation changes.

Fig 2. Density of DIMPs around transcription start and end sites. In each graphic the bases at position zero denote the centers of the 3’ (left) and 5’ (right)
untranslated regions. The DMPs are estimates for the 30th generation lines: L29 and L119 (replicates 1 and 2) in respect to 3rd generation lines: L1 and L12
from reference [19]. Fisher exact test and the corresponding particular cases of Eq 30 (DR = Dk) for information (Eq 3, Dk = Ik), Total variation (Eq 25, Dk =
TVk), Kullback–Leibler (Eq 26, Dk = KLk) and Hellinger (Dk ¼ HD

k , Eq 27) divergences were used in the estimation of DMPs without distinction between
methylation contexts. The density of DIMPs based on the absolute difference of methylation levels (which is equal to TV) was estimated based on Fisher
exact test (TV (Fisher test)) and on the CDF for TV according to Eq 30 (Dk = TVk). DMPs estimated by the “classical”methods can be overestimated or
underestimated. Any method to estimate DMPs must take into consideration the statistical-biophysical nature of the methylation process at tissue or organ
levels. Every sample follow an independent ontogenetic development and the action of the omnipresent thermal fluctuations on cells and tissues leads to
different methylation profiles.

doi:10.1371/journal.pone.0150427.g002
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The correlations between DMP density profiles are shown in Table 1. Since DMPs are the
result of statistical-biophysical events, this is an expected outcome. However, this result does
not mean that DMPs detected by Fisher’s exact test coincide at every cytosine position with
those detected by the information divergences.

A DMP detected by a particular divergence measure in Eq 29 (30) indicates that a statisti-
cally significant amount of energy was dissipated to produce it. But the amount of energy dissi-
pated is relative to each tissue or individual. In addition, since the action of thermal
fluctuations through the ontogenetic development of cells is not the same for every cell, DMPs
may differ between lineages of identical genetic background. These biophysical aspects of the
methylation process are addressed by the non-linear estimation of Eq 29 (30) for each individ-
ual, while these aspects are ignored by the application of statistical tests analogous or equivalent
to Fisher’s exact test.

Differentially informative methylated regions (DIMRs). Currently there are various
methods used to define differentially methylated regions (DMRs) [34]. These approaches can
be distinguished mainly into two classes: 1) those that rely on an algorithm for clustering geno-
mic regions rich in DMPs, and 2) those that function on predefined genomic intervals [34].
The statistical mechanical model presented here can be applied to any of these variants. A sam-
ple hybrid method is given in the next section, where an approach for clustering of single cyto-
sines is performed and followed by the estimation of the statistical mechanical CDF for the
cluster of same size.

Now, let π be a subset of genomic regions of the same size. Then, for each element from π,
an information-theoretic divergence DR (Eq 28, e.g., Hellinger divergence HR) can be calculated
and the cumulative distribution function estimated according to Eq 29. Then the definition of
DMP given above is easily extended to define a differentially methylated region (DMR).

Table 1. Correlation between the densities of DMPs around transcription start and end sites.

L1R1 vs L29R1a L1R1 vs L119R2 a

TVF
b TV HD KL I TVF TV HD KL I

TVF 1.00 0.68 0.74 0.79 0.68 1.00 0.95 0.92 0.95 0.91

TV 0.57 1.00 0.97 0.97 0.95 0.90 1.00 0.93 0.94 0.97

HD 0.75 0.92 1.00 0.97 0.98 0.86 0.91 1.00 0.94 0.93

KL 0.70 0.96 0.95 1.00 0.94 0.89 0.89 0.88 1.00 0.90

I 0.68 0.88 0.98 0.89 1.00 0.84 0.92 0.94 0.83 1.00

L1R2 vs L29R2 L1R2 vs L119R2

TVF 1.00 0.87 0.85 0.89 0.79 1.00 0.96 0.94 0.83 0.89

TV 0.76 1.00 0.94 0.97 0.87 0.85 1.00 0.99 0.82 0.94

HD 0.75 0.93 1.00 0.95 0.97 0.81 0.97 1.00 0.83 0.96

KL 0.78 0.96 0.95 1.00 0.88 0.69 0.75 0.80 1.00 0.83

I 0.70 0.88 0.98 0.90 1.00 0.62 0.83 0.90 0.77 1.00

L12R1 vs L29R1 L12R2 vs L119R2

TVF 1.00 0.72 0.81 0.82 0.79 1.00 0.92 0.91 0.93 0.85

TV 0.59 1.00 0.96 0.97 0.91 0.92 1.00 0.99 0.86 0.94

HD 0.78 0.84 1.00 0.97 0.98 0.91 0.98 1.00 0.86 0.96

KL 0.77 0.89 0.97 1.00 0.92 0.84 0.79 0.81 1.00 0.81

I 0.75 0.75 0.98 0.86 1.00 0.85 0.90 0.94 0.77 1.00

a Correlations around transcription start site are located in upper diagonal, while the correlations around transcription end sites are in the lower diagonal

(see also Fig 2). Samples from Schmitz et al. [19] and Becker et al. [35] trans-generational studies.
b The density of DMPs based on the absolute difference of methylation levels (which is equal to TV) estimated based on Fisher exact test.

doi:10.1371/journal.pone.0150427.t001

Information Thermodynamics of Cytosine DNAMethylation

PLOS ONE | DOI:10.1371/journal.pone.0150427 March 10, 2016 7 / 20



Let PðED
R � ED0

R Þ be the probability that energy ED
R , dissipated to create an observed divergence

D0 between the methylation levels from two different samples at a given genomic region R, is

lesser than or equal to the amount of energy ED0
R . Then, a single genomic region R represents a

DMR at a level of significance α if, and only if, the probability PðED
R > ED0

R Þ ¼ 1� PðED
R � ED0

R Þ
to observe a methylation change with energy dissipation higher than ED0

R is lesser than α.

As in the case of the definition of DMPs, probabilities PðED
R � ED0

R Þ can be approached by

giving specific values to the divergence DR in Eq 28. For example, we can set DR ¼ ĤD0
R , where

ĤD0
R is the Hellinger divergence estimated according to Eq 28 by making Dk ¼ ĤD0

k , and ĤD0
k is

estimated from the experimental data by Eq 27. Next, PðED
R � ED0

R Þ ffi PðHD
R � ĤD0

R Þ provided
thatHD

R is proportional to ED
R , and probabilities PðHD

R � ĤD0
R Þ can be estimated by means of

Eqs 29 and (30), substituting DR by Ĥ
D0
R (DR ¼ ĤD0

R ). A DMR detected based on an information
divergence measure shall be called differentially informative methylated region (DIMR). In
addition, it should be noticed that since the given definitions of DMPs and DMRs are based on
the statistical mechanical CDF followed by the methylation background noise, there is an open
door for the application of SDT and Bayesian SDT to bypass the limitations of current deci-
sion-making based on controversial p-values [29,36–40].

The binary language of cytosine DNAmethylation
Results obtained may reflect the existence of a methylation language, with ‘words’ depicted in
the binary alphabet of methylated (1) and non-methylated (0) bases. Postulating that the begin-
ning and the end of a methylation word must be 1, genome-wide screening can be performed
where two consecutive cytosine positions of value 1 are separated by less than a given threshold
d of 0s. For a large enough methylome dataset, detection of the potential framework of letter
variations is possible (see Materials and Methods). We have designated these variations as
Potential Word Frameworks (PWFs). The results for a genome-wide screening in Arabidopsis
that considers all cytosine methylation contexts are summarized in Fig 3. The analysis was lim-
ited to the case of the Weibull distribution given by Eq 14. GG distribution was not analyzed
due to the high computational cost that conveys its nonlinear fit when the number of genomic
regions goes over 50,000.

The exponential increment of the mean �̂lðlÞ of l̂ðlÞ with the PWF length l is predicted by
Eqs 22 and (23), which was derived after considering the mechanical behavior of small DNA
fragments (with sizes l� Lp or*Lp) as a linear entropic spring that obeys Hooke’s law [25].

The nonlinear regression fit �̂lðlÞ vs l permitted an alternative way to estimate the DNA persis-

tence length L̂p through Eq 24. The results are consistent with those reported in the literature

(Fig 3 and S2 Fig for Arabidopsis ecotypes) [24–27]. Since L̂p is a basic mechanical property of

the DNA molecule that can be altered by CDM [10], this result and previous estimations for
large genomic regions support the statistical mechanical basis of the Weibull distribution given
by Eq 14. Consequently, Eq 14 can be properly used to determine whether or not a PWF is a
DIMR. That is, Eq 14 can be used to discriminate methylation changes observed on a PWF that
were created by the methylation regulatory machinery. This analysis provides a robust way for
the in silico prediction of methylome “words”.

The exponential increment of the mean �̂lðlÞ of l̂ðlÞ with the PWF length l (Fig 3) indicates
the existence of an energetic limit for PWF size. According to Eqs 4 and 14, this observation
implies a rapid decline in the probability of a methylation change with energy dissipation EPWFd

l

in a PWFl
d of length l derived from a methylome partition Sd into PWFs with threshold d.

Information Thermodynamics of Cytosine DNAMethylation
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Fig 3. Statistical trends of l̂^ðlÞmean and PWF frequencies from partitions S6 and S7. Statistical trends were estimated in forty transgenerational

methylome variants from Arabidopsis thaliana [19,35] considering all CDM contexts. (A) and (B), exponential region of l̂^ðlÞ vs l in the range of PWF from 5 to

Information Thermodynamics of Cytosine DNAMethylation
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Moreover, a structured limit for PWF length seems to be encoded in the DNA sequence itself.
The subplots in Fig 3 show an exponential decay in the frequency of PWFs with increasing
length, so that the frequency of large PWFs is low. This exponential decay law (Eq 33) is consis-
tent with the principles of maximum entropy and least effort. Probability distributions that
minimize the costs per average bits of information contained in the PWFls (Eq 32) are those
with maximum Gibb-Shannon’s entropy (Boltzmann distributions). Thus, the enzymatic regu-
latory machinery, which “reads” the message carried by PWFls and triggers the tissue response
to environmental variation, receives, on average, the maximum amount of information at min-
imum cost. According to Eqs 14 and 33, PWFs cannot be arbitrarily large, and long PWFs rep-
resent “sentences” of shorter PWFs (see Material and Methods). Similar results for Arabidopsis
ecotypes [41] are shown in S2 Fig.

The exponential decay in genomic frequency of PWFs with increasing size (Eq 33) estab-
lishes a thermodynamic restriction for binary methylation language. The average estimation of
the Helmholtz free energy ΔF = RT ln(N0/ϕ) (Eq 35) could be a suitable indicator of the differ-
ence in methylation languages from different species. In particular, the estimations of ΔF for
Arabidopsis samples from the trans-generational studies [19,35] and from ecotypes [41] (sub-
plots in Fig 3 and S2 Fig, respectively) indicate that the Arabidopsis methylation language is
stable at different environmental conditions. Indeed, the difference between corresponding
estimations of ΔF reflects the expected natural variation within the limits of experimental and
numerical error. If the Arabidopsis methylation language is consistent with thermodynamic
theory used to derive ΔF = RT lnZ(γ) (Eq 34), then we must expect that, in a closed system at
volume and temperature constants, ΔF is constant. In the current case, we are dealing with an
open system and natural variation such as mutation can exist [41], implying variation of the
system volume. Hence, in the Arabidopsis methylome dataset we must expect small natural
variations of ΔF. This result points to a robust structure of the methylation language in
Arabidopsis.

Within the current dataset, about 75% of PWFs comprise methylation signals concentrated
in gene regions (Fig 3E and 3F). This finding in Arabidopsis is striking. It is believed that the
three methylation contexts of CG, CHG and CHHmay have distinct biological roles in Arabi-
dopsis [1]. The primary genomic sites for differential methylation of contexts CHG and CHH
are not gene regions, but more often transposable element and repetitive sequences. Although
the algorithm for detection of PWFs does not make distinction between particular methylation
contexts, the annotation of PWFs within gene regions indicates that the contribution derives
largely from CG context. Learning the degree of specificity will require further refinement of
PWFs and more detailed experimental confirmation. For example, a particular PWF6

11 with
eleven digits from a methylome partition S6 into PWFs with threshold d = 6 could be
11010000011 (subject to a given data set), while a particular realization of this PWF could be
11110000011. Such results would suggest the existence of an epigenomic code, or a set of meth-
ylation rules that determine whether or not a binary stretch of methylation marks is a meaning-
ful signal for recognition by the molecular machines that trigger tissue response.

70 nm for the partitions S6 and S7, respectively. (C) and (D), exponential regions of l̂^ðlÞ vs l in the range of PWF from 5 to 80 nm for the partitions S6 and S7,
respectively. The exponential behavior is consistent with Eqs 22 and (23), which permits the estimation of the DNA persistence length Lp by means of Eq 24.
(E) and (F) correspond to barplots for the annotated PWFs from linear regions presented in the panels A and B, respectively (4 to 100 bp ~ 34 nm). The
relative frequencies of PWFs were normalized taking into account the overall length of the genomic region occupied by each genomic feature (promoter,
exons, transposable elements (TEs), intergenic, etc) in the Arabidopsis thaliana genome. The exponential decay law predicted by Eq 33 was verified
(subplots mean of PWF-frequency (f) vs l in panels A to D). The estimated value of the Helmholtz free energy ΔF = RT lnZ(γ) (Eq 34) at 298.15 K of
temperature is indicated.

doi:10.1371/journal.pone.0150427.g003
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Conclusions
Results to date encompass the classical methylome analysis based on DMP detection, and sug-
gest that CDM underlies an epigenomic communication system in living tissues, shown here in
Arabidopsis thaliana and human samples. These observations present an approach for epige-
nomic studies within a framework of communication systems. The information thermody-
namic modeling proposed here unveils links between genome-wide methylation analysis,
molecular thermodynamics and information theory. The application of an information ther-
modynamics approach permits not only the discrimination of biological signal from methyla-
tion background noise, but also the application of Bayesian SDT [29,36]. That is, application of
Bayesian SDT together with the information thermodynamics process provides the formulae
for robust detection of epigenetic biomarkers [29,38,39].

We describe here an open problem to be confronted by the application of coding theory, a
means of estimating the code-words that would maximize error control in an epigenomic com-
munication system (see [42] for a brief overview). Digital signal processing (DSP) provides the
tools to analyze genome-wide regulatory features of such an epigenomic signal [43]. Potential
applications of coding theory, DSP and SDT in a multifaceted, reiterative process should ulti-
mately lead to successful deciphering of the epigenomic code. Knowledge of such a methylation
code would create new opportunities with important biomedical and agricultural implications.

Material and Methods

Information processed by themethylation machinery in a genomic region
The addition or removal of a methyl group to a cytosine C5 residue within a DNAmolecule
can be verified by DNA bisulfite conversion methodology coupled with next-generation
sequencing approaches (Bis-seq), allowing determination of the methylation status of nearly
every cytosine in a genome. Methylation status of particular cytosine sites is then expressed in
terms of methylation level pi = #Ci/(#Ci +#nonCi), where #Ci and #nonCi represent the num-
bers of methylated and non-methylated read counts observed at the genomic coordinate i,
respectively. At a tissue level, methylation status (methylated or non-methylated) of cytosine Ci

at the genomic coordinate i can be analyzed as a random variable that takes value “methylated”
with probability pi and “non-methylated” with probability 1 − pi.

Shannon’s entropy H(p(xi)) = −∑i p(xi)log 2p(xi) (1) of a random event with probability dis-
tribution p(xi) has been widely accepted as a measure of the uncertainty associated with ran-
dom events [44]. In particular, an expression similar to Eq 1 was used in an experimental
demonstration of information-to-energy conversion [45]. A modified expression of Eq 1 has
been applied to quantitatively assess the variation in DNAmethylation patterns [46]. The
inherent uncertainty of the methylation status at each cytosine site leads to the direct applica-
tion of Eq 1 to experimental data obtained from plant and animal tissues:

HðCiÞ ¼ �pðCiÞlog2pðCiÞ � ð1� pðCiÞÞlog2 ð1� pðCiÞÞ ð2Þ

The entropy defined by Eq 2 is therefore the expected value of the logarithm base 2 of the
methylation level [47].

Assuming that, as a result of variations in environmental conditions, a change of methyla-
tion status in genomic region R takes place, the absolute amount of information processed by
the methylation machinery in the genomic region R is given by:

IR ¼ j
X

i2RHðCafter
i Þ �

X
i2RHðCbefore

i Þj ð3Þ
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Where Cbefore
i and Cafter

i stand for the methylation status before and after the variations of
environmental conditions, respectively. That is, the absolute amount of information IR is
defined as the absolute difference between two entropies (the uncertainty change) associated
with the knowledge about two states (before and after) of a given system [22,48,49]. At tissue
or organ levels, Eq 3 gives the uncertainty variation of the methylation status originated by the
methylation changes at a given genomic region R or a single cytosine site.

Derivation of probability density functions (PDF) and cumulative
distribution functions (CDF) for energies ER and information IR
Amethylation change at a genomic region R has an associated amount of information IR pro-
cessed by the activity of methyltransferases and demethylases. To estimate the amount of infor-
mation associated with methylation changes, a methylome is split into N genomic regions of
length l, and information IR is computed according to Eq 3 in each region R. Under Landauer’s
principle, the minimum energy dissipated to process the information IR can be approached by
equation: ER = IRkB T ln2 (4).

For a fixed length of genomic region R, the range of possible values for energy dissipation
ER along a methylome is large, but with a finite range of possible values. We assume that
methyltransferase/demethylase activities at different genomic regions are independent of one
another, and that the methylation changes induced by the action of thermal fluctuation are
independent as well. Kinetic parameters and mechanisms of enzymatic reaction catalyzed by
methyltransferases are assumed to be consistent across different genomic regions.

Derivation of the generalized gamma (GG) distribution follows the derivation given by
Lienhard and Meyer [50], with the assumptions rewritten for the context of cytosine DNA
methylation (CDM). Let Ni be the number of time that an amount of energy in the interval
½Ei�1

R ; Ei
RÞ is dissipated in N genomic regions (GRs). The following requirements are imposed

upon Ni:

1. The total number of occurrence of the event is fixed: ∑iNi = N; Ni ’s and N are assumed large
numbers.

2. For each choice of δ the following sum is a positive constant:
X

i

Ni

N
ðEi

RÞd ¼ K

3. The number of distinguishable ways, ni, in which the event can occur with values in the

interval ½Ei�1
R ;Ei

RÞ is proportional to a specific power of Ei
R. That is, ni ¼ AðEi

RÞn�1.

In addition, δ, ν, and K> 0. Assumption 3 can be derived from physical constraints (S1
Appendix, Eqs 2 and 3), but here we are following Lienhard and Meyer [50] derivation. Under
these assumptions, the reasoning indicated by Lienhard and Meyer [50], leads to the GG distri-
bution with parametrization given by Stacy [51]:

f ðERja; d; nÞ ¼
d

anGðn=dÞ E
n�1
R e�

ER
að Þd ð5Þ

The form commonly used in practice is obtained by the parametrization: ψ = ν/δ, β = a, and
α = δ:

f ðERja; b;cÞ ¼
a

bGðcÞ
ER

b

� �ac�1

e�
ER
bð Þa ð6Þ

With a scale parameter β, and two shape parameters, α and ψ. After splitting a methylome
into relatively large genomic regions, it is possible that every region contains at least one or
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more methylation changes in such a way that ER > η> 0 for all regions R. From a statistical
point of view, η is a location parameter and, in this case, the last equation adopts the form:

f ðERja; b; Z;cÞ ¼
a

bGðcÞ
ER � Z

b

� �ac�1

e�
ER�Z
bð Þa ð7Þ

Since methylation changes can take place with random fluctuations in thermal noise, the
scaling parameter β(l) can be set equal to the average energy per DNA molecule in thermal
equilibrium. That is, β(l) = φ(l)kBT (8), where φ(l) expresses the contribution of all degrees of
freedom to the average energy per molecule as a function of genomic region length l.

Under the Landauer principle, we can use Eq 4 to derive the probability density function of
the information IR, which is also a GG distribution:

f ðIRja; l; m;cÞ ¼
a

lðlÞGðcÞ
IR � m
lðlÞ

� �ca�1

e
� IR�m

lðlÞ

� �a

; IR > m > 0 ð9Þ

Where λ(l) = φ(l)/ln 2 (10) and μ = η/(kB T ln 2) (11) is the location parameter of the GG
distribution of IR.

The cumulative distribution function for Eq 9 is given by:

FðIRja; m; lðlÞ;cÞ ¼

1

GðcÞ g c;
IR � m

l̂ðlÞ

 !a !
a > 0 and IR > m > 0

1� 1

GðcÞ g c;
IR � m
lðlÞ

� �a� �
a < 0 and IR > m > 0

ð12Þ

8>>>><
>>>>:

Where γ(�) denotes the lower incomplete gamma function. GG distribution gives rise to a
family of distributions, which encompasses Weibull, gamma, Rayleigh, exponential, and Max-
well velocity distributions and lognormal as a limiting distribution [50]. An extended list of
members of this family of distributions can be found in Crooks [52]. In particular, Weibull dis-

tributions with PDF: f ðIRja; l; mÞ ¼ a
lðlÞ

IR�m
lðlÞ

� �a�1

e
� IR�m

lðlÞ

� �a

; IR > m > 0 (13) derives from Eq 9

when ψ = 1. Weibull CDF is given by FðIRja; l; mÞ ¼ 1� e
� IR�m

lðlÞ

� �a

(14). The parameters from
Eqs 12 and 14 can be estimated from the nonlinear fit of IR values computed from the experi-
mental methylome data at the different fixed windows of length l used to split the genome into
non-overlapping genomic regions.

Under Landauer’s principle, Eqs 9–14 must hold; likewise for any member of a GG distribu-
tion family derived as a particular case of Eq 9.

Physics of the scaling parameter. The scaling parameters β(l) and λ(l) are expressed in
terms of φ(l), which is a function of the contribution of all degrees of freedom to the average
energy per molecule E(l) and, ultimately, a function of the counter length l for the DNA regions
under consideration. For a large genomic region, the complexity of motion complicates a full
theoretical derivation of an expression for φ(l).

A double-stranded DNA (dsDNA) molecule in solution bends and curves locally as a result
of thermal fluctuations [25]. In the inextensible worm-like model, the molecule is treated as a
flexible rod of length l that curves smoothly. One assumes a general exponential relationship λ

(l) vs E(l): lðlÞ ¼ a e
EðlÞ
1
2
kBT (15), where a is a proportionality constant. The simplest approach

assumes E(l) proportional to l
Lp
(for l>> Lp), i.e., EðlÞ ¼ c l

Lp
where Lp is the persistence length

of the DNAmolecule (~ 50 nm, [24,53]) and c is a proportionality constant. Next, we can set
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lðlÞ ¼ a e
b l
Lp (16), where b ¼ 2c

kBT
. Taking the first two terms of the Taylor expansion of Eq 16

around Lp gives: lðlÞ ffi ð1� bÞa eb þ a ebb
Lp

l (17). Taking into account Eq 10, we can set a eb =

(ln 2)−1 and rewrite Eq 16 as lðlÞ ¼ ð1�bÞ
ln 2

þ b
Lpln 2

l (18). Under Landauer’s principle, the empiri-

cal averages �̂lðlÞ of l̂ðlÞ estimations obtained for each set of methylome data (e.g., Arabidopsis

ecotypes and human cell tissues) must not be statistically different from the estimations l̂ðlÞest
obtained from linear regression analyses �̂lðlÞ versus l. This regression analysis yields the equa-

tion of a straight line l̂estðlÞ ¼ â 0 þ b̂ 0l (19), where â 0 ¼ ð1�b̂Þ
ln 2

and b̂0 ¼ b̂
L̂pln 2

. An estimation of

the DNA persistence length L̂p from the experimental data can be obtained combining the last

two equations L̂p ¼ 1�â 0 ln 2
b̂ 0 ln 2 (20).

For short genomic regions, with sizes on the order of Lp, a DNA fragment is bent only by a
small amount, while for l<< Lp it is essentially straight. However, dsDNA behaves as a linear

entropic spring with a Hooke’s constant kDNA ¼ 3kBT
2Lpl

[25]. Once compressed by thermal forces,

the DNA can be stretched to a distance close to l. The spring energy that equates to this thermal

energy is given by EðlÞ ¼ 1
2
kDNA l

2, or more precisely, EðlÞ ¼ 3kBT
4Lp

l (21). The substitution of the

last equation into Eq 15 yields: lðlÞ ¼ ae
3
2
l
Lp (22). Thus, under Landauer’s principle, for short

DNA fragments, the nonlinear regression analysis �̂lðlÞ versus l yields the exponential equation:
l̂estðlÞ ¼ â ed̂ l (23), where d̂ ¼ 3

2L̂p
, providing another means for experimental estimation of the

DNA persistence length: L̂p ¼ 3
2d̂
(24).

To estimate the parameters from experimental data in Arabidopsis ecotypes and human tis-
sues, each methylome was split into genomic regions of fixed length l, from 2000 to 5000 bp
(this can be done, for example, with the R function “tileGenome” from the R package “Genomi-
cRanges”). In the case of Arabidopsis trans-generational samples, PWFs (short DNA regions,
see below) were used as the genomic intervals.

Divergence between the methylation levels
According to Eq 3, the uncertainty variation at a single cytosine position is zero when methyla-
tion levels go from 0 to 1 (or vice versa). At a tissue level, there is no gain or loss of information,
and all cells in the tissue are synchronized for epigenetic response. However, we seek to dis-
criminate between these methylation levels and to evaluate whether or not a cytosine position
would be linked to a specific epigenetic response.

Alternative information-theoretical measures can be applied to estimate divergence between
methylation levels from two samples. Three additional information-theoretic measures were
considered: Total-variation (TV), Kullback–Leibler (KL) and Hellinger (HD) divergences. TV is
the absolute value of the difference of methylation levels. KL gives the maximum information
one might gain by observing a system [22], although the extreme methylation change from 0 to
1 (and vice versa) has zero gain or loss of information. HD is able to discriminate between all
methylation levels. At a single cytosine position, TV, KL andHD are computed by the expres-

sions TV(p, q) = |p − q| (25), KLðp; qÞ ¼ plog p
q
þ ð1� pÞ log 1�p

1�q
(26) andHDðp; qÞ ¼

ð ffiffiffi
p

p � ffiffiffi
q

p Þ2 þ ð ffiffiffiffiffiffiffiffiffiffiffi
1� p

p � ffiffiffiffiffiffiffiffiffiffiffi
1� q

p Þ2 (27), where p and q are the methylation levels of the

samples under comparison. It is known that TV� HD � KL� χ2, where χ2 is the chi-squared
divergence, also known as Pearson's chi-squared statistic. That is, HD provides a conservative
criterion for the divergence between the methylation levels.

A definition of DR can be given as in the case of IR in Eq 3: DR = ∑k2R Dk (28).
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Next, let ED
R be the energy dissipated to create the observed divergence DR between methyla-

tion levels at the genomic region R. All the assumptions and constraints applied to deduce the
PDF of ER given by Eq 10 hold for ED

R . Thus, E
D
R must follow a GG distribution or a Weibull dis-

tribution or some distribution from the GG distribution family. In consequence, an informa-
tion-theoretical measure DR applied to express divergence between the methylation levels will
followWeibull distributions, provided that DR is proportional to ED

R . Therefore,

FðDRj a; m; lðlÞ;cÞ ¼

1

GðcÞ g c;
DR � m

l̂ðlÞ

 !a !
a > 0 and DR > m > 0

1� 1

GðcÞ g c;
DR � m
lðlÞ

� �a� �
a < 0 and DR > m > 0

ð29Þ

8>>>><
>>>>:

From where we could derive the CDF of any member of the GG distribution family, i.e., for

the Weibull distribution FðDRj a; l; mÞ ¼ 1� e
� DR�m

lðlÞ

� �a

(30), where the parameters λ, α and μ
play analogous role to those found in Eq 14.

Detection of Potential Word Frameworks (PWFs)
To detect PWFs, a long string of zeros and ones was derived from the GRanges object in R [54]
containing the methylome samples. This string was built according to the following criterion: if
the methylation level for a given cytosine position was greater than zero in at least one methy-
lome, then a numerical value of 1 was assigned to that position, otherwise, the value 0 was
assigned. The string was divided into clusters taking into account that the value 1 must be
found at the beginning and end of a PWF, and Sd denotes the partition of the methylome into
clusters derived after fixing threshold d with a particular value.

Any cluster from Sd will be a PWF or a string integrated only by zeros. We use the symbols
s0l and PWFd

l to denote a string with l zeros and a PWF of length l from partition Sd, respec-
tively. As a result, for any partition Sd with d� 2, a PWFd

l is the union of PWFk
i from partitions

Sk and strings s0l for which k< d − 1 and l = d − 1. That is, a PWFd
l from partition Sd can be

considered as a sentence formed by words from partitions Sk<d−1 and strings s0l¼d�1. For exam-
ple, PWF7

28 ¼ 10011|fflffl{zfflffl}
PWF3

5

000000|fflfflfflffl{zfflfflfflffl}
s0
6

100000111|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
PWF6

9

000000|fflfflfflffl{zfflfflfflffl}
s0
6

11|{z}
PWF1

2

denotes a sentence integrated by PWFs

from S3, S6, and S1 and two strings of zeros s06. A value zero at a given cytosine position does
not mean that the cytosine cannot be methylated, but that the frequency is very low. The bias
originating from cytosine sites with low methylation frequencies is adjusted by increasing the
number of methylomes included in the analysis. Our present analyses were limited to two inde-
pendent datasets: 40 trans-generational methylome variations of Arabidopsis and 152 methy-
lomes from Arabidopsis ecotypes.

The amount of information IR was estimated for each PWFd
l of length l from partition Sd.

The corresponding PWFd
l from different methylomes were pooled to one set. The algorithmic

approach used here is simple, but does not preclude alternative approaches. Next, a non-linear
fit of Eq 14 was performed with the set of PWFd

l from each methylome and the estimations of

l̂ðlÞ were used to compute L̂p according to Eqs 23 and 24, as described above.

Relationship between the genomic frequency and the length of PWFs
We denote by Cl the energetic cost of establishing a PWFl of length l, and let C = ∑l pl Cl (31)
represent the average energetic cost per PWF, where P = {pl} is the probability distribution of
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Cl. The distribution P = {pl} can be determined that satisfies the constraint given by Eq 31 and
has the highest Gibb-Shannon’s entropy. This solution minimizes the average cost per average
bit of information contained in the PWFls detected by the regulatory methylation machinery:
γ = C/H, whereH =H(PWFl) is given by Eq 1. Under these assumptions, the only solutions are
the Boltzmann distributions p �

l ðb0Þ ¼ e�b0 Cl=Zðb0Þ (32) with parameter β0 and canonical par-

tition function of the system Zðb0Þ ¼
X

l
e�b0 Cl [44]. The frequencies fl of PWFl follow an

exponential decay law with the increment of length l, provided that Cl = cl, where c is a constant
of proportionality, i.e., fl(l/γ, N0) = N0e

−γl/Z(γ) or fl(l/γ, ϕ) = ϕe−γl (33), where ϕ = N0/Z(γ), γ =
β0c, and N0 is the total number of PWFs in a given partition Sd of the methylome. Since the
value of N0 can be estimated from the experimental data, we can estimate the value of lnZ(γ),
where β0 = (kBT)

−1 (or β0 = (RT)−1 and R is the gas constant) leads us to an estimation of the
Helmholtz free energy ΔF = kBT ln Z(γ) or ΔF = RT ln Z(γ) (34) that measures maximum “use-
ful” work obtainable from the closed thermodynamic system at a constant volume and temper-
ature. In the present case, ΔF = RT ln(N0/ϕ) (35).

Arabidopsis methylation data
According to Eq 3, IR is computed for a subject sample with respect to a given reference sample.
The IR values were computed for 150 Arabidopsis ecotypes [41]. The TSV files taken from
NCBI GEO under accession GSE43857 [41] were read and transferred to R software version
3.2.1 [54] by using the Bioconductor (version 2.14) R-package GenomicFeatures [55]. Ecotype
Col-0 was used as reference (151 ecotypes including Col-0). In addition, forty BS-seq samples
from Schmitz et al. [19] and Becker et al. [35] trans-generational studies were analyzed. For
these samples, the BS-seq reads from Fastq files were aligned to the TAIR10 genome with
BSMAP allowing two mismatches. Methylation ratios were determined using a Python script
(methratio.py) distributed together with the BSMAP software [56]. In the last case, a sample
from the third generation from each study was taken as reference to compute IR.

Human cell tissue methylation data
The IR values were computed for 94 methylomes of human cell tissues taken from the NCBI
GEO database. Data samples in “wig” format were read and processed by R software version
3.1.1 [54] with the Bioconductor R-packages rtracklayer and GenomicFeatures [55,57]. GEO
accession numbers are given in S2 Table. The methylome of the undifferentiated embryonic
stem cell line UCSF-4 (A21771-1, GSM1127122) was used as reference.

When multiple methylome data are analyzed simultaneously, coverage (#Ci +#nonCi) for
the same cytosine site across the samples is not always available. Normally, missing data arise
during the experimental workflow. Some samples were missing data at a given position while
remaining samples preserved the information. We did not consider it advisable to remove
these sites from our analysis. Since, by definition the entropy of zero is considered zero,
replacement of the missing data by zero does not affect the calculus performed using Eq 3. So,
for each set of methylomes (Arabidopsis and humans) samples were arranged into a unique
GRanges object (R-package GenomicFeatures) used as the starting dataset of our computations.

Statistical analyses
Statistical analyses were performed with R [54]. For each methylome, the parameters of Eq 5
were estimated by applying the Levenberg-Marquardt nonlinear least-squares algorithm avail-
able in R-packageminpack.lm. Cross-validations for the nonlinear regressions were performed
in each methylome as previously described [58]. In addition, Stein’s formula for adjusted R
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squared (R2
Adj) was used as an estimator of the average cross-validation predictive power [58].

The main results from the statistical analyses are available as Supporting Information (S1–S6
Datasets).

Supporting Information
S1 Appendix. Alternative derivations of Weibull PDF and CDF for energies ER and infor-
mation IR.
(PDF)

S1 Dataset. Coordinates of the PWFs from partitions S6.
(ZIP)

S2 Dataset. Coordinates of the PWFs from partitions S7.
(ZIP)

S3 Dataset. Annotation of the PWFs from partitions S6.
(ZIP)

S4 Dataset. Annotation of the PWFs from partitions S7.
(ZIP)

S5 Dataset. Non-linear regression results for PWFs.
(ZIP)

S6 Dataset. R-scripts used in S1 Appendix.
(ZIP)

S1 Fig. Histograms, density plots and PP-plots for the Arabidopsis ecotypes Seattle-0 and
Fr-2 at two different genomic region sizes. The empirical CDF of IR departs from the theoret-
ical CDF given in Eq 14 for genomic region sizes l below 2 Kb. The analysis of the PDFs and
the CDFs reveals a significant increase in the frequency of genomic regions with very small
information changes (IR values close to zero) as the methylome is split into regions with sizes
l< 2 Kb. PDF curves corresponding to the theoretical parameters estimated from Eq 14 (blue),
and kernel density estimations (e.g.,“empirical” estimations that depend on the algorithm, ker-
nel and bandwidth used) are also shown (black).
(TIF)

S2 Fig. Statistical trends of l̂ðlÞmean and PWF frequencies from partitions S6 and S7. Sta-
tistical trends were estimated in 150 Arabidopsis ecotypes [41] considering all CDM contexts.

(A) and (B), exponential region of the relationship l̂ðlÞ vs l in the range of PWF from 5 to 70

nm for the partitions S6 and S7, respectively. (C) and (D), exponential regions of l̂ðlÞ vs l in the
range of PWF from 5 to 80 nm for the partitions S6 and S7, respectively. The exponential behav-
ior is consistent with Eq 22 (23), which permits the estimation of the DNA persistence length
Lp by means of Eq 24. The exponential decay law predicted by Eq 33 was verified (subplots
mean of PWF-frequency (f) vs l in panels A to D). The estimated value of the Helmholtz free
energy ΔF = RT ln Z(γ) (Eq 34) at 298.15 K of temperature is indicated.
(TIF)

S1 Table. Results of the non-linear fit of Eq 14 for 150 methylomes of Arabidopsis ecotypes.
The non-linear fit was performed for the genomic regions from 2, 2.5, 3, 3.5, 4, 4.5, and 5 Kb
(CG methylation context).
(XLSX)
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S2 Table. Results of the non-linear fit of Eq 14 for the sets of 80 human cell tissues. The
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