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Abstract
Large scale, high-resolution global data on farm animal distributions are essential for spa-

tially explicit assessments of the epidemiological, environmental and socio-economic

impacts of the livestock sector. This has been the major motivation behind the development

of the Gridded Livestock of the World (GLW) database, which has been extensively used

since its first publication in 2007. The database relies on a downscaling methodology

whereby census counts of animals in sub-national administrative units are redistributed at

the level of grid cells as a function of a series of spatial covariates. The recent upgrade of

GLW1 to GLW2 involved automating the processing, improvement of input data, and down-

scaling at a spatial resolution of 1 km per cell (5 km per cell in the earlier version). The

underlying statistical methodology, however, remained unchanged. In this paper, we evalu-

ate new methods to downscale census data with a higher accuracy and increased process-

ing efficiency. Two main factors were evaluated, based on sample census datasets of cattle

in Africa and chickens in Asia. First, we implemented and evaluated Random Forest models

(RF) instead of stratified regressions. Second, we investigated whether models that pre-

dicted the number of animals per rural person (per capita) could provide better downscaled

estimates than the previous approach that predicted absolute densities (animals per km2).

RF models consistently provided better predictions than the stratified regressions for both

continents and species. The benefit of per capita over absolute density models varied

according to the species and continent. In addition, different technical options were evalu-

ated to reduce the processing time while maintaining their predictive power. Future GLW

runs (GLW 3.0) will apply the new RF methodology with optimized modelling options. The

potential benefit of per capita models will need to be further investigated with a better dis-

tinction between rural and agricultural populations.
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Introduction
Current and spatially detailed assessments of the various impacts and benefits of livestock pro-
duction in terms of human and animal health, environment and livelihoods rely heavily on
reliable high-resolution data on the distribution of farm animals. The distribution of animal
hosts is also key to veterinary epidemiology as it provides the denominator for any prevalence
measure, and provides a framework for prioritising surveillance, prevention and control of live-
stock diseases. In many countries, livestock census data are available, but their quality, resolu-
tion and timeliness are highly variable and require harmonization and standardization. The
Gridded Livestock of the World (GLW) project initiated by Food and Agriculture Organization
(FAO) in the early 2000s aimed to address these needs by providing estimates of livestock and
poultry numbers as raster Geographical Information System (GIS) layer, where a measure of
density is provided for each square pixel, for example with a resolution of 10 km, instead of
one measure by administrative unit. The initiative involved the compilation and geo-referenc-
ing of sub-national livestock survey and census data from diverse sources, and the downscaling
of these numbers to the pixel level based on a set of spatial covariates available at high spatial
resolution and with global coverage [1]. Recent examples of uses of these data are a global
assessment of antimicrobial usage in food animals [2], spatial predictions of avian influenza
H7N9 risk in Asia [3], revised assessments of green house gas emissions due to livestock [4,5],
and estimates of poor livestock keepers potentially affected by zoonotic diseases [6]. The
importance of accurate, detailed and timely estimates of global livestock distributions is further
enhanced by the rapid changes in transition economies, where intensification of livestock pro-
duction is changing their distribution in space and time [7], with substantial potential human
and animal health implications [8,9].

In 2007, the first version of the GLW database (GLW 1.0) was produced [10] and dissemi-
nated through the FAO Geonetwork spatial data repository (http://livestock.geo-wiki.org/) at a
spatial resolution of 0.05 decimal degrees (about 5×5 km at the equator) based on census data
of the late 90's and early 2000’s. This first version of GLW included distribution maps of cattle,
buffalos, sheep, goats, pigs and poultry (chicken, ducks and geese pooled together), with mod-
elled country totals adjusted to match the official FAOSTAT national estimates for the refer-
ence year 2005. The statistical method employed to downscale census data consisted of linear
multiple regressions stratified by zones sharing similar eco-climatic conditions [10], and the
processing was labour intensive. In recent years, the methodology has been standardized and
automated as a series of scripts performing the sequential processing steps. These were initially
evaluated for poultry data in Asia [11,12]. In parallel, other authors evaluated different down-
scaling techniques and confirmed the value of regression-based methods over simpler land-use
based models [12,13]. At the same time, contemporary livestock data were being collected by
FAO for more species with much higher levels of spatial detail, and higher resolution spatial
covariates were assembled. The integration of these new data sets with streamlined processing
and improved spatial predictors lead to the publication and dissemination of the second ver-
sion of the GLW database (GLW2) in 2014, which included 30 arc-second (c. 1 km) resolution
distribution data for cattle, pigs, chickens, ducks, and later, sheep and goats [14]. The GLW2
processing also included a bootstrapping procedure to assess internal variability of the predic-
tions, though the underlying methodology remained similar to that used to develop GLW 1.0,
i.e. linear multiple regressions stratified by eco-climatic zones or livestock production systems.
Though these represented significant methodological advances producing the GLW2 maps
was extremely computationally-intensive, posing a significant constraint to providing regular
updates as new census data became available.
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In recent years, machine-learning techniques such as Boosted Regression Trees (BRT), Ran-
dom Forest (RF), Neural Networks or Maxent have been shown to yield better predictions than
linear modelling methods in species distribution modelling [15–17]. RF has also been shown to
give better predictions than previous methods in downscaling human population census data
to pixel level [18,19], which is very similar in its objectives to downscaling livestock census and
survey data. The main objective of this study was therefore to test and evaluate RF models in
comparison to the stratified regressions used for GLW2.

Livestock distributions are strongly related to those of stockholders. So, in contrast to wild-
life species, farm animals cannot be found in remote areas where no people live. Even in the
rare circumstances where they are raised as freely grazing herds the animals generally remain
close to settlements especially when considered at the regional or country scale. Even nomadic
livestock production systems in sub-Saharan Africa are not totally independent from settle-
ments or locations with water access where populations are present.

A potential drawback of the GLW2 methodology, where livestock densities are expressed
and modelled per unit of land, is that nothing prevents the model from predicting non-zero
livestock numbers in areas where people are absent. An alternative approach, that we evaluated
here, was to model animals per capita, based on recently available high resolution human pop-
ulation data [20–22], with a view to intrinsically constraining livestock predictions to areas
where there is human activity.

Finally, some of the modelling options in GLW2, such as the spatial resolution of the model-
ling, the number of bootstraps and the selection of predictor variables, had been chosen rather
arbitrarily. The comprehensive assessment undertaken here offered the opportunity to care-
fully examine some of these, with the aim of simplifying the procedure whilst maintaining the
predictive capacity.

In summary this study examines whether the GLW2 downscaling methodology could be
improved by i) the use of RF models, ii) a change in the dependent variable from livestock
number per unit of land to numbers per capita, and iii) adjusting some of the modelling
options.

Materials and Methods

GLW 2methodology
The GLW2 methodology is fully described in Robinson et al. [14] and is only briefly summa-
rized here, with more emphasis on the parts of the processing that we aimed to improve. The
methodology relies on several sequential steps:

1. the density of animals per km2 of suitable land is estimated in all polygons corresponding to
the sub-national livestock data and transformed to its logarithmic value (base 10);

2. a large set of sample points is built to cover the modelling extent (a minimum number of
one point per input polygon with non-zero data, with a minimum density of 30 points per
10,000 km2 of land in large polygons) and values for observed densities, predictor variables
and stratification (the global livestock production systems (GLPS version 5) [23], biomes
stratification [24] and 25 discrete ecological zones (EZ25) [25]) are extracted from their
respective polygons (census data) or pixels (predictor variables);

3. the sample file is divided into n sub-samples for bootstrapping the analysis;

4. each sub-sample is used to build a series of multiple regressions, with one multiple regres-
sion per stratum.
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5. the models for each stratum are evaluated, and the best applied to the predictor variables to
obtain the single best predicted value for each pixel;

6. the predicted values are averaged over the n bootstraps;

7. post-processing is carried out to correct polygon totals (to make sure that the sum of the
grid cell values within a polygon is equal to the observed totals) and then by country totals
(to make sure that the sum of grid cell values in a country matches the FAOSTAT official
total for a specified base year).

The spatial covariates used to make the predictions include Fourier-transformed remotely
sensed variables (two vegetation indices, the day and night land surface temperature and the
band 3 middle-infra-red) [26], eco-climatic variables (length of growing period and annual
precipitation), topographic variables (elevation and slope) and anthropogenic variables
(human population density and travel time to major cities). Altogether, the full list of spatial
predictor variables amounts to 72, detailed in Table 1.

Training data
The livestock data sets used in this evaluation were cattle in Africa and chickens in Asia; both
previously described in Robinson et al. (2014). Cattle in Africa were chosen in order to be rep-
resentative of comparatively extensive ruminant farming, strongly linked to the land resource
for which they are dependent for fodder, whilst still presenting a wide range of cattle farming
systems and densities. Chickens in Asia were chosen to represent monogastric species (poultry

Table 1. Summary of predictor variables.

Type of variable Predictor variables Ap Fp Source

Vegetation and climate 12 Fourier-derived variables from MIRa x x [26]

12 Fourier-derived variables from LSTb

day x x

night x

12 Fourier-derived variables from

NDVIc x x

EVId x

Green-up (annual cycle 1 and 2) x [27]

Senescence (annual cycle 1 and 2) x

Length of Growing Period (LGP) x x [28]

Precipitation x x [29]

Cropping intensity x x [30]

Forest Cover x x [31]

Topography GTOPO30 Elevation x x

GTOPO30 Slope x x

Demography Human population in 2010e x x Worldpop [18]

Travel time to places with > 50,000 inhabitants x x [32]

a Middle Infra-Red
b Land Surface Temperature
c Normalized Difference Vegetation Index
d Enhanced Vegetation Index
e Country totals adjusted to UN values in 2006 (http://www.un.org/esa/population/)

Ap: all predictors of GLW2; Fp: reduced set of predictor variables

doi:10.1371/journal.pone.0150424.t001
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and pigs), which can be raised at varying degrees of intensity and are less closely associated
with specific environmental drivers but probably more with demographic variables. The ratio-
nale for considering both of these very different species and continents was to include a wide
variety of agro-ecological situations in which to test the proposed methodological improve-
ments, and so provide general rules that would be applicable to other livestock species and
regions, though this remains to be confirmed by future work.

Evaluation procedure
We used two approaches to evaluate the different methods. The first, termed “downscaling”
aimed to quantify the capacity of the algorithm to spatially disaggregate the observed livestock
data. We artificially degraded the spatial resolution of the input data by randomly distributing
circles with three different radii (100 km, 200 km and 500 km) over the two regions, summing
the values of animal census count of all administrative unit polygons falling within each circle.
These radii were chosen by analogy with a situation where only one animal value would be
available for a spatial unit with the size of an entire province or country. This provided a
degraded data set, with many large circles each with a single average value of livestock density,
instead of different values for several smaller polygons. This degraded data set was used to
train the model, and the evaluation was carried out by comparing the values predicted by the
model with those of the original detailed polygons located within the circles. The second
approach, termed “gap-filling” simply aimed to evaluate the capacity of the model to predict
values in areas with no census data. A set containing 30% of the administrative unit polygons
with known animal densities was taken out from the training set, and the values predicted by
the model were compared to the observed densities. Fig 1 presents an illustration of a typical
training and evaluation set for both approaches in India. Since both approaches involved the
random distribution of polygons for model evaluation, they were repeated to ensure that the
result would not be influenced by a particular random sample. The random distribution of cir-
cles and the merging of polygons was repeated three times for each circle size, resulting in 3 x 3
runs for each combination of species and continent. The simpler gap-filling procedure, requir-
ing the random selection of polygons to be excluded from the processing, was repeated 25
times. Two metrics were used to quantify the goodness of fit between observed and predicted
densities: the correlation coefficient (COR) and the root mean square error (RMSE). A correla-
tion coefficient provides an indication of precision, i.e. how closely the observed and predicted
values agree in relative terms, with a perfect correlation equal to one [33]. RMSE provides an
estimate of accuracy based on the discrepancy between the observed and predicted values [33].
COR and RMSE for both downscaling and gap-filling were estimated for different polygon-size
bins, so as to be able to measure the accuracy associated with predictions aggregated at different
polygon sizes. So, the full evaluation of each method involved 18 runs (9 for gap-filling and 9
for downscaling) for each species leading to a total of 36 different runs.

Evaluated factors
First, we compared stratified regression (used in GLW 2) against RF as the statistical modelling
method. Statistical approaches start the model fitting by assuming an appropriate data model,
and related model parameters are then estimated from the data. By contrast, RF is a machine
learning technique, which avoids starting with a data model but rather uses an algorithm to
learn the relationship between the response and its predictors. RF combines the prediction of a
high number of classification trees in an ensemble, non-parametric approach [17]. The RF
algorithm for regression works by: i) drawing n bootstrap sub-samples from the original data;
ii) growing unpruned regression trees by randomly samplingm variables out of the list of
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predictors and choosing the best split from those predictor variables for each of the bootstrap
samples (i.e. each tree) and iii) generating a final predicted value by averaging the prediction of
the n trees. Compared to other methods, RF is able to model complex interactions among pre-
dictors [34] and was recently shown to provide highly accurate results when modelling human
population densities [19]. Another reason for choosing RF over other machine learning tech-
niques, such as BRT for example, is that RF predictions are less sensitive to variations in the
selected initial parameters. The RF models were implemented with the following arbitrarily set
parameters: i) a third of the number of variables were randomly selected for building each tree;
ii) the number of trees was estimated as the number of sample points divided by 20, with a

Fig 1. Illustration of training polygons (grey polygons in a and c) and test polygons (grey polygons in b and d) used to evaluate the goodness of fit
with the downscaling (a—b) and gap-filling (c—d) methodology.

doi:10.1371/journal.pone.0150424.g001
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minimum of 100; iii) the node size was estimated as 1/1,000th of the number of sampling
points, with a minimum node size of 5. Explanatory tests indicated that the predictive perfor-
mances had a fairly low sensitivity to these parameters. The entire processing was carried out
using R 3.2.1, using the randomForest package 4.6–10 [35] for building the RF models and the
doParrallel package of parallelisation [36].

Secondly, we evaluated the predictive accuracy of both SR and RF models when the depen-
dent variable was the number of animals per capita (PC) rather than absolute densities (DN).
In each input polygon, we divided the animal count by the summed rural population to get the
observed number of animals per capita. At the end of the modelling process, we back-trans-
formed predicted per capita pixel values into densities by multiplying them by the rural popu-
lation and dividing the result by the pixel area. As input data for rural population, we simply
applied the Global Land Cover GLC2000 urban mask [37] over the human population World-
Pop database of Africa and Asia [18,20] so as to exclude urban populations.

Thirdly, we evaluated the impact of spatial modelling resolution by running models at two
spatial resolutions: 0.0083333 and 0.083333 decimal degrees per pixel, which were termed 1k
or 10k models, respectively. These two resolutions are typically used for country-scale and
global-scale analyses, respectively.

The fourth comparison made related to the number of predictor variables used. The initial
GLW2 procedure used 72 predictor variables as potential inputs for the model. We investigated
whether a reduced set of predictor variables could perform equally well for a given modelling
method. The set with all predictor variables (AP) included all those in the original GLW2 pro-
cedure, as well as cropping intensity and forest cover [27] [28]. The set with fewer predictor
variables (FP) excluded the Fourier-transformed night Land Surface Temperature (12 vari-
ables), Enhanced Vegetation Index (12 variables) and the vegetation phenology variables (4
variables). These were removed as being potentially redundant with Fourrier-transformed day
Land Surface Temperature (12 variables), Normalized Difference vegetation Index (12 vari-
ables) and length of growing period (4 variables). The reduced list included 36 spatial predictor
variables.

Finally, to explore the effect of the number of bootstraps on the prediction accuracy we sim-
ply assessed the goodness of fit of the predictions made with 1, 5, 10, 15, 20 and 25 bootstraps
using the standard GLW2 procedure. All other comparisons of modelling options (SR vs RF,
DN vs PC, etc. . .) were then made with a constant, but reduced number of bootstraps (see
results) with a training set comprising 70% of the input polygons being randomly selected
from the full data set; the other 30% being used for evaluation.

Training data and factors tested in the different evaluations are summarized in Table 2.

Table 2. Training data and factors tested in the different evaluations.

Training data n Description

Training dataset 9 3 radius sizes, 3 replicates for each

Continent/species 2 cattle in Africa, chickens in Asia

Factor n Description

Modelling technique 2 Stratified Regression (SR) / Random Forest (RF)

Dependent variable 2 Suitability corrected livestock density (DN) / Animals per rural person (PC)

Resolution 2 0.0083333 (1 km) / 0.083333 (10 km) dec. degrees

Predictors 2 Full set (AP) / Reduced set (FP)

Number of bootstraps 6 1, 5, 10, 15, 20 or 25 bootstraps

doi:10.1371/journal.pone.0150424.t002
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Results
Throughout the analysis of our results, we found extremely similar results between the good-
ness of fit metrics provided by COR and RMSE. Runs with highest COR corresponded to low
RMSE values and vice-versa. We therefore chose to illustrate the results only using the COR
between observed and predicted densities. In addition, although there was somewhat more var-
iation, the results of the downscaling and gap-filling comparisons were also similar so we chose
only to present the results of downscaling evaluation in the main text of the paper, and con-
signed the equivalent results for gap-filling assessments to supplementary information (S1
File).

We first established that the standard GLW2 could be implemented using fewer bootstraps
at no significant predictive cost. Fig 2 shows that for all sizes of polygons, and for both Asia
and Africa, there was no real gain in predictability beyond 10 bootstraps. Therefore, the effect
of all other factors outlined in Table 2 was assessed using 10 bootstraps only.

As a second stage, and using the GLW2 methodology, we compared the goodness of fit of
runs carried out at the two spatial resolutions of 1 km and 10 km. As expected, and highlighted
in Fig 3 (gap-filling method in Fig A in S1 File), the main benefit of the high resolution model-
ling was obtained for the smallest polygons, with sizes lower than 100 km2. More surprisingly,
the largest polygon values appeared to be slightly better predicted by the 10 km models. How-
ever, since the primary objective of the GLW algorithm is to downscale the available census
data, the benefit of high resolution modelling was considered more important. The following
sequence of statistics were therefore estimated based on the high resolution models.

A considerable improvement in predictive power was observed when RF was used instead
of SR (Fig 4) and the gains were more evident for gap-filling than downscaling (Fig B in S1
File).

In comparing predictions based on the number of animals per capita against those per unit
of land area there was no consistent improvement in predictive power (Fig 5) and different
results were obtained for the two species and regions and for downscaling compared to gap-

Fig 2. Number of bootstraps. Correlation coefficients between log-transformed observed and predicted densities evaluated through downscaling, using the
stratified regression modelling method, density as dependent variable, the full set of predictor variables, the 1 km resolution models, and varying the number
of bootstraps. The correlation coefficient is estimated by breaking down evaluation polygons by their size, and for both species and continents.

doi:10.1371/journal.pone.0150424.g002
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filling (Fig C in S1 File). There was a marked increase in accuracy for cattle in Africa and for
the smallest polygon size class, but this result was not apparent for the other size classes, nor
for chickens in Asia.

Finally, using a reduced set of predictor variables did not lead to any important reduction in
predictive power (Fig 6 and Fig D in S1 File).

Fig 3. Resolution. Correlation coefficients between log-transformed observed and predicted densities evaluated through downscaling, using the stratified
regression modelling method, density as dependent variable, the full set of predictor variables, 10 bootstraps, and varying the spatial resolution of the
modelling process (1 km: 0.0083333 decimal degrees resolution; 10 km: 0.083333 decimal degrees resolution). The correlation coefficient is estimated by
breaking down evaluation polygons by their size, and for both species and continents.

doi:10.1371/journal.pone.0150424.g003

Fig 4. Methods. Correlation coefficients between log-transformed observed and predicted densities evaluated through downscaling, using density as
dependent variable, the full set of predictor variables, 10 bootstraps, 1 km resolution modelling and varying the modelling method (SR: Stratified regression
corresponding to GLW2; RF: Random Forest). The correlation coefficient is estimated by breaking down evaluation polygons by their size, and for both
species and continents.

doi:10.1371/journal.pone.0150424.g004
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Pulling these results together, Figs 7 and 8 illustrate the areas where the GLW2 methodology
can be improved, towards a new, third version (GLW3): i) reducing the number of bootstraps
to 10, ii) replacing SR with RF, and iii) using a reduced set of predictor variables. Together,
these changes result in considerable predictive benefits for the proposed GLW3 methodology
(Fig 7). The collective benefits are more apparent when evaluated through gap-filling than

Fig 5. Dependant variable.Correlation coefficients between log-transformed observed and predicted densities evaluated through downscaling, using
Random Forest as modelling method, the full set of predictor variables, 10 bootstraps, 1 km resolution modelling and varying the dependent variable (Dn:
suitability-corrected density corresponding to GLW2; Pc: number of animals per capita). The correlation coefficient is estimated by breaking down evaluation
polygons by their size, and for both species and continents.

doi:10.1371/journal.pone.0150424.g005

Fig 6. List of predictors. Correlation coefficients between log-transformed observed and predicted densities evaluated through downscaling, using Random
Forest as modelling method, density as dependent variable, 10 bootstraps, 1 km resolution modelling and varying the set of predictor variables variable (Ap:
all predictors corresponding to GLW2; Fp: reduced set of predictor variables). The correlation coefficient is estimated by breaking down evaluation polygons
by their size, and for both species and continents.

doi:10.1371/journal.pone.0150424.g006
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through downscaling. Other factors tested here that could have potentially reduced processing
time (e.g. modelling a lower spatial resolution) or improved accuracy (e.g. modelling per capita
instead of absolute densities) were dismissed for integration into the GLW3 methodology.

Fig 8 shows the mapped outputs of GLW2 and GLW3 for cattle in Africa and chickens in
Asia. The mapped output of GLW3 applied to the number of animals per capita is also pre-
sented for comparison.

Fig 7. GLW2 vs GLW3.Correlation coefficients between log-transformed observed and predicted densities evaluated through downscaling (top) and gap-
filling (bottom) for both the GLW2methodology (stratified regression modelling, density as dependent variable, 25 bootstraps, 1 km resolution modelling, full
set of predictor variable) and the proposed GLW3methodology (random forest modelling, density as dependent variable, 10 bootstraps, 1 km resolution
modelling, reducted set of predictor variables). The correlation coefficient is estimated by breaking down evaluation polygons by their size, and for both
species and continents.

doi:10.1371/journal.pone.0150424.g007
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Fig 8. Predicted distribution of cattle in Africa (top) and chickens in Asia (bottom) from the GLW2methodology (a and d), the proposed GLW3
methodology (b and e) based on random forest, and of GLW3methodology using animals per capita instead of absolute density (c and f). The data
used to produce these maps were all from public sources, and the country limit data are from the FAOGlobal Administrative Unit Layers (GAUL) database.

doi:10.1371/journal.pone.0150424.g008
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Discussion
Many methodological choices made in the GLW2 were based on logical assumptions, experi-
ence and on published information, but their merits were never systematically evaluated. Sev-
eral results outlined here simply allowed us to refine some of the initial GLW2 options, such as
the number of bootstraps, the spatial resolution of the modelling and the set of predictor vari-
ables offered. We found that we were able to produce models with equivalent levels of predic-
tive power using fewer bootstraps (10 instead of 25), we confirmed the expected benefit of high
resolution modelling in further downscaling small spatial units, and we were able to reduce the
set of predictor variables included in the modelling. The result on the modelling resolution
assessments also indicates that runs carried out at 10 km resolution provide perfectly suitable
outputs as long as the size of the unit is not too small, i.e. accurate 10 km resolution continental
scale outputs could be achieved through modelling at 10 km rather than aggregating 1 km
models to 10 km outputs. These results can lead to dramatic reductions in processing time.

We also evaluated two more fundamental changes to the modelling approach. Firstly, RF
models clearly outperformed SR, for all size classes of polygons, and regardless of whether the
objective was downscaling or gap-filling. This is perhaps the most important result of this
study and will result in the most profound change to the GLWmethodology since its inception.
Machine learning techniques such as RF have been shown to be particularly efficient at predict-
ing spatial patterns in species distribution models compared to more traditional linear models
[15]. In downscaling applications, machine learning has been used to process climate [38] and
vegetation [39] data. The closest parallel to this study is the work made on improving methods
for downscaling human population census made by the Worldpop consortium, who recently
found RF models to provide better predictions than previous land-use based downscaling
modelling approaches [19]. These findings were corroborated in a separate, unrelated study
[16]. We found similar results for both cattle in Africa and chicken in Asia species and conti-
nents, and future work should confirm this increased accuracy for other species and at a global
scale.

Secondly, made possible by the growing availability of high quality and spatially detailed
human population distribution data, we could test the possibility of modelling animals per cap-
ita instead of animals per unit of land area. This would have the benefit of intrinsically prevent-
ing the model from predicting non-zero densities in unpopulated areas. However, our analyses
found no systematic improvements to result from per capita models. Interesting results were
observed in Africa using the gap-filling evaluation method, but this was not replicated in the
downscaling evaluation, nor apparent for all size classes or for chickens in Asia. However, the
spatial pattern of density calculated from per capita models differed (Fig 8) with more con-
trasted patterns for the per capita model outputs. We therefore feel that this approach has
potential and will continue to investigate it. A possible explanation for these variable results is
that we currently have a fairly blunt distinction between urban and rural areas, based on the
urban class of a global land use map. However, the number of animals per capita is likely to
show a more gradual gradient from the most rural areas to the urban centres so the outputs of
the current per capita models tend to overestimate animals in the -highly populated peri-urban
areas and to underestimate them in the most sparsely populated rural areas. Future attempts to
model animals per capita should use more refined definitions of population as denominator. A
further caveat to this is that we are using rural population, which does not equate directly to
the agricultural population, which is what we really want to get at. There is a number of
approaches to estimating agricultural population that we are exploring to this end.

Although not the primary purpose of this study, we observed an overall higher accuracy in
predictions of chickens in Asia than of cattle in Africa. This reiterates the findings of Robinson
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ET AL. (2014) and probably relates to the stronger anthropogenic determinants of chicken dis-
tribution, as compared to cattle.

The new Version 3 of GLW will therefore include RF as the modelling method, with 10
bootstraps and a reduced set of predictor variables. The evaluations carried out in this study
necessitated moving the processing from desktop computers to a cluster where we could take
advantage of parallel computing. This, together with changes in the methodology, has reduced
the processing time from 7 days to 17 hours for a run over Asia at 1 km resolution. This pres-
ents the possibility to implement global runs at 1 km in less than 24 hours for each species that
can be updated any time that new subnational data become available.

Several further tests and developments of GLW3 are envisaged in the short term.
First, some modelling options have not yet been fully evaluated, and will be studied includ-

ing i) the sampling strategy, ii) adjustment of the number of variables used for building each
RF tree, and iii) a further-revised set of predictor variables. Regarding the latter, the inclusion
of additional of socio-economic and anthropogenic variables may be important, especially for
the monogastric species of chickens, ducks and pigs, for which production is more detached
from land constraints and where anthropogenic factors have been shown to be relatively more
important [40]. Moreover, the inclusion of different anthropogenic, environmental and land
use variables needs to be evaluated species by species.

Second, the benefit of the revised methodology will need to be confirmed for other species
and continents and we aim to assess the feasibility and accuracy of producing global runs
instead of processing in continental tiles and then merging these to produce global maps.

Third, improvements need to be implemented in i) the automated generation of metadata,
ii) the semi-automated updating of inputs (training census data and predictor variables),iii)
quality checks on the outputs, especially for anomalous values and iv) the dissemination of out-
puts for different extents and at different spatial resolutions as required by the users.

Supporting Information
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(DOC)
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