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Abstract
Sensorineural hearing loss occurs due to damage to the inner and outer hair cells of the

peripheral auditory system. Hearing loss can cause decreases in audibility, dynamic range,

frequency and temporal resolution of the auditory system, and all of these effects are known

to affect speech intelligibility. In this study, a new reference-free speech intelligibility metric

is proposed using 2-D neurograms constructed from the output of a computational model of

the auditory periphery. The responses of the auditory-nerve fibers with a wide range of char-

acteristic frequencies were simulated to construct neurograms. The features of the neuro-

grams were extracted using third-order statistics referred to as bispectrum. The phase

coupling of neurogram bispectrum provides a unique insight for the presence (or deficit) of

supra-threshold nonlinearities beyond audibility for listeners with normal hearing (or hearing

loss). The speech intelligibility scores predicted by the proposed method were compared to

the behavioral scores for listeners with normal hearing and hearing loss both in quiet and

under noisy background conditions. The results were also compared to the performance of

some existing methods. The predicted results showed a good fit with a small error suggest-

ing that the subjective scores can be estimated reliably using the proposed neural-

response-based metric. The proposed metric also had a wide dynamic range, and the pre-

dicted scores were well-separated as a function of hearing loss. The proposed metric suc-

cessfully captures the effects of hearing loss and supra-threshold nonlinearities on speech

intelligibility. This metric could be applied to evaluate the performance of various speech-

processing algorithms designed for hearing aids and cochlear implants.

Introduction
Performing listening tests with real subjects is a complex and time consuming process. It is also
often difficult to measure the benefit of hearing aids which are intended to improve speech
intelligibility for people with hearing loss. Speech intelligibility is reduced not only by the hear-
ing loss, but also by environmental noise, room reverberation, speed of the speech by a speaker,
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distance from the speaker, intrinsic distortions within the auditory system including decreased
frequency and intensity resolution at high presentation levels, central auditory nervous system
dysfunction, and the nonlinear distortions introduced by the hearing aids. The assessment of
speech intelligibility under adverse conditions has led to the development of several measure-
ments and prediction procedures. The subjective scores could be predicted by replacing the
human listener with a reliable model of the auditory system. A model that can predict the
speech intelligibility scores for a given people with hearing loss would be an important tool for
hearing-aid fitting or development of hearing-aid algorithms.

Objective measurements of speech intelligibility are calculated from original and distorted
acoustic signals using a number of mathematical formulas. The articulation index (AI) [1],
speech intelligibility index (SII) [2], speech transmission index (STI) [3, 4], and their variant
methods are the common examples of objective measures that are applied directly to the acous-
tic stimulus waveform. In addition, an objective measure was proposed based on the signal-to-
noise ratio in the modulation domain [5]. Also, the short-time objective intelligibility measure
(STOI) using the ideal time frequency segregation method [6] was developed to predict the
intelligibility of noisy and time-frequency weighted noisy speech. In contrast, the spectro-tem-
poral modulation index (STMI) [7], neural articulation index (NAI), mean structural similarity
index (MSSIM) [8], and neurogram similarity index measure (NSIM) [9] aim to predict speech
intelligibility using computational models of the peripheral and/or central auditory system.
Typically, all of these metrics, based on the property of the acoustic signal as well as the
responses of the computational model, were developed using the full-reference method in
which the features or responses of an original speech signal are compared to the features or
responses to a distorted speech signal. In the present study, a reference-free metric is proposed
based on the extraction of third-order statistical features from the responses of a computational
model of the auditory periphery, i.e., the responses to an original (clean) acoustic signal are not
required to estimate the speech intelligibility score, and thus the metric will be useful in situa-
tions where the access to the clean signal is either limited or impossible. Previously, an adaptive
reference-free metric was proposed using speech-to-reverberation modulation energy ratio
(SRMR) for predicting the subjective quality of reverberant and de-reverberated (reduced
reverberation by algorithms) speech [10].

The responses of a population of model auditory-nerve (AN) fibers can be represented as a
“neurogram”, in which the spike counts for AN fibers tuned to different characteristic frequen-
cies (CFs) are plotted as a function of time. The features are extracted from the neurogram to
estimate the intelligibility score. For example, in STMI [7], the joint spectro-temporal modula-
tion information is extracted from the simulated neural responses. Similarly, the MSSIM [8]
measures the mean similarity index between the unimpaired (reference) and impaired images.
In this study, the proposed metric uses the bispectrum [11, 12] as a feature extractor from the
auditory neurograms. The bispectrum is a third-order spectral representation of moments and
cumulants of the signal and has been widely used in signal processing [12]. Computationally,
bispectrum is a 2-D Fourier transform of third-order cumulants or moments of the signal. It
can detect the phase coupling between the frequency components in a signal and thus provides
more information about the signal than the second-order statistics such as power spectrum
and autocorrelation function. Phase coupling indicates both frequency and phase coupling, in
which the third frequency peak and its phase are the sum of the first two frequency peaks and
phases, respectively.

In general, the second-order statistical measures, such as the autocorrelation function and
power spectrum, work well for signals having a Gaussian (normal) probability density function.
For many decades, the estimation of the power spectrum of discrete-time deterministic or sto-
chastic signals has been a primary tool for digital signal processing applications, including
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radar, sonar, communication, speech, biomedical, geophysical, and imaging systems [13–15].
In power spectrum estimation, the signal under consideration is processed as a superposition
of statistically uncorrelated harmonic components [16]. The information included in the
power spectrum is essentially that which is present in the autocorrelation sequence and is suffi-
cient to describe a Gaussian signal completely. The power spectrum (autocorrelation) can only
represent Gaussian and stationary signals. However, most biological signals are non-Gaussian
and non-stationary in nature. There are situations in which quadratic nonlinearity results
phase coupling between two frequency components of a process through a contribution to the
power at a frequency equal to their sum. Such coupling affects the third moment sequence and
thus the bispectrum can be used in detecting such nonlinear effects. The power spectrum can-
not be used for this purpose, because it suppresses the phase relations. The application of
higher-order statistics (HOS) includes 1D pattern recognition [17, 18], chaotic signal charac-
terization [19], telecommunication [20], analysis of bio-signals such as the ECG [21] and EEG
[22]. The motivation to use higher-order spectra in signal processing is to derive information
due to deviations from Gaussian statistics (normality), to determine the phase of non-Gaussian
parametric signals, and to detect and characterize nonlinear mechanisms which generate time
series via the phase relations of their harmonic components [23].

In this study, the proposed method is motivated by the above-mentioned applications of
HOS in the field of signal processing. Also, most of the existing acoustic signal property-based
speech intelligibility metrics such as the AI, SII, STI, SRMR, and STOI use information mainly
related to the second-order statistics of the signal. However, it is well-known that most auditory
processing stages respond in a nonlinear way. As the auditory periphery is the sole conduit for
acoustic information to reach the higher auditory centers, the inclusion of nonlinear transfor-
mation of acoustic signals in the model of the auditory periphery is necessary to determine
how changes or deficits in certain underlying mechanisms in the healthy or impaired ear may
affect perception. In this study, an auditory-nerve (AN) model developed by Zilany and col-
leagues [24, 25] has been employed to simulate the neural responses to speech signals. This
model incorporates most of the nonlinearities observed at the level of the AN, such as nonlin-
ear tuning, level-dependent phase, compression, suppression, shift in the best frequency as a
function of level, adaptation, as well as some other nonlinearities seen at high sound pressure
levels [26, 27]. The application of HOS to the simulated neural responses (with all nonlineari-
ties) is expected to provide results that reflect the pattern of human behavioral performance
(subjective scores) in response to acoustic stimuli. To our knowledge, there is no previous work
that uses the bispectrum as a feature extractor from auditory neurograms. The proposed metric
is used to predict speech intelligibility for normal-hearing listeners under diverse background
conditions. As the AN model used in this study can successfully simulate neural responses for
listeners with hearing loss [28, 29], the metric is extended to predict intelligibility for people
with different degrees of hearing loss.

When a complex broadband sound is analyzed in the cochlea of a normal ear, the result is a
series of bandpass-filtered signals, each corresponding to one position on the basilar mem-
brane. Each of the band-passed signals can be considered as a slowly varying envelope (ENV)
superimposed on a more rapid temporal fine structure (TFS). Both ENV and TFS information
are represented in the timing of neural discharges, although TFS information depends on
phase locking to individual cycles of the stimulus waveform [30]. Thus, two types of neuro-
grams were considered in this study. It has been reported in the literature that ENV is responsi-
ble for speech perception, whereas TFS is associated with melody and pitch perception as well
as sound localization [31]. The features of the bispectrum are computed from the ENV and
TFS neurograms in order to determine an objective measure of speech intelligibility.
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Methods
The following section describes the computational procedure of the proposed method. In addi-
tion, a brief description of the computational model of the auditory periphery is provided.

Model of the Auditory System
Zilany and colleagues developed a computational model of the auditory periphery, and the
responses of the model were validated against a wide range of physiological responses of AN
fibers from the literature [25]. The AN model consists of several stages, each providing a
phenomenological description of a major functional block in the auditory periphery, from the
middle ear to the AN fiber. The schematic diagram of the AN model is given in Fig 1 of Zilany
et al. [28]. The input to the model is an instantaneous pressure waveform of the stimulus which
is passed to the middle-ear filter (ME). The output of ME filter is passed to a basilar membrane
(BM) filter. The feed-forward control path controls the gain and bandwidth of the basilar
membrane (BM) filter to account for several level-dependent properties in the cochlea. The sig-
nal is then passed through a model of the inner-hair-cell (IHC), which transduces the mechani-
cal responses of the BM to an electrical potential. The output of the IHC low-pass filter is
passed to the IHC-AN synapse model which determines the spontaneous rate, adaptation
properties, and rate-level behavior of the AN model. Finally the discharge (spike) times are
produced by a non-homogenous Poisson process that includes refractory effects.

It has been reported in the literature that the IHC and outer-hair-cell (OHC) stereocilia are
damaged by noised-induced impairment in the cochlea [32–34]. The damage in the OHC
stereocilia causes both elevated threshold and broadened tuning of the AN-fibers, whereas
damage in the IHC stereocilia results in only an elevation of the tuning curve without any sub-
stantial broadening of the tuning. The nonlinear phenomena observed in the cochlea such as
the compressive changes in gain and bandwidth as a function of stimulus level, the associated
changes in the phase of phase-locked responses, and two-tone suppression have all been related
to a single mechanism in the inner ear, referred to as the cochlear amplifier [26, 27]. It has been
reported that the damage to the OHC is also related to the reduction in the compressive non-
linearities in the BM responses [35] as well as to the reduction in the two-tone suppression of
the auditory-nerve fiber responses [36]. Thus the outer hair cells perform an amplifying role,
and it is the inner hair cells that detect the sound and transmit it to the brain via the auditory
nerve. The IHC and OHC status are incorporated in the model by introducing scaling factors,
0� CIHC� 1 affects IHC transduction function and 0� COHC� 1 affects the control path out-
put [28, 29, 37].

The tuning characteristics of an auditory-nerve fiber at threshold are represented by the fre-
quency threshold curve. The tuning parameters of the model AN fibers (Zilany and Bruce,
2006) are initially adjusted based on the Q10 values recorded from the cat AN fibers [38]. In
light of the current debate on human cochlear tuning [39, 40], some parameters of the updated
version of this model (employed in this study) are modified to better match human anatomy
and physiology. These modifications include the middle-ear filtering, the cochlear place-fre-
quency map, and the sharpness of cochlear frequency tuning [41].

Neurogram
A neurogram is a two-dimensional representation in which neural responses of a wide range of
characteristic frequencies (CFs) are displayed as a function of time. In this work, neurograms
were created by simulating the responses of 32 AN fibers with CFs logarithmically spaced from
250 to 8000 Hz. The responses of three types (high, medium, and low spontaneous rates) of
AN fibers were simulated. Final responses were weighted by the reported distribution of
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spontaneous rates (SR) of AN fibers (60% high, 20% medium, and 20% low) [33]. Based on res-
olution, two neurogram representations were created by averaging the neural responses of each
CF with a bin size of 10 μs for TFS and 100 μs for ENV. Then the neural responses of each CF
were divided into frames using a Hamming window (50% overlap) of 32 samples for TFS and
128 samples for ENV [42]. The combination of binning to 10 μs and smoothing with the
32-sample Hamming window accounted for spike synchronization to frequencies up to ~6.25
kHz, whereas the binning to 100 μs and smoothing with a 128-sample Hamming window
resulted in synchronization frequencies that were limited to ~160 Hz. Thus the ENV neuro-
gram excludes spike timing information about the temporal fine structure, but the TFS neuro-
gram includes it. However, it is to be noted that when acoustic signals are passed through
cochlear filters to get the corresponding neural responses, there is not a one-to-one mapping
between acoustic and neural ENV or TFS information [43].

Higher Order Statistics: Bispectrum
The HOS are spectral representations of moments and cumulants that are defined for deter-
ministic signals and random processes. In this study, the features related to the third order sta-
tistics of the signal, referred to as the bispectrum, were considered. The bispectrum is the
Fourier transform of the third order cumulant sequence of a stationary random process and is
given by [11, 12]

B ðf1; f2 Þ ¼ E ½Xðf1Þ Xðf2Þ X�ð f1 þ f2Þ� ð1Þ
where X(f) is the Fourier transform of the random signal x(nT), n is an integer index, T is the
sampling interval, E[.] stands for the expectation operation, and � represents the complex
conjugate.

The bispectrum is a complex-valued function of two frequencies (f1, f2). The frequency is
normalized by the Nyquist frequency to be between 0 and 1. The range of frequency indicates
the extent of phase coupling between frequency components [23]. Generally, phase coupling
occurs because of the nonlinear interaction between harmonic components. The signal consist-
ing of three sinusoids [with frequencies and phases (f1, ϕ1), (f2, ϕ2) and (f3, ϕ3)] is said to be
quadratic phase coupled if and only if f3 = f1 + f2 and ϕ3 = ϕ1 + ϕ2. The phase relations are easily
investigated by the quadratic phase coupling. The power spectrum cannot explain the phase

Fig 1. Non-redundant area of computation of the bispectrum for real signals. The features of the
bispectrum are calculated within the triangular areaΩ.

doi:10.1371/journal.pone.0150415.g001
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relations between harmonic components whereas the bispectrum is suitable for detecting the
phase relations in many applications [44].

B(f1, f2) is a symmetric function. For real processes, there are 12 symmetry areas in the bispec-
trum. The bispectrum in the triangular area (O) is calculated by the conditions, f2� 0, f1� f2,
and f1 + f2� 1. The triangular area can describe the whole bispectrum as shown in Fig 1. The
features are calculated within the triangular area (O).

In this study, the features of the bispectrum were used to develop the proposed metric. It
has been reported in the literature that different types of features can be extracted from bispec-
trum. These features include mean magnitude (Mave) and phase entropy (pe) [45], the weighted
center of bispectrum (f1m, f2m) [46], and the normalized bispectral entropy (p1, p2) [11].
Entropy is used to characterize the regularity or irregularity of the signal and is defined as the
expected value (i.e. the average amount) of the information from the bispectrum plot. Also,
several other features related to the moment were considered to extract information from the
bispectrum [47] such as the sum of logarithmic amplitudes (H1), the sum of logarithmic ampli-
tudes of diagonal elements (H2), and the first-order spectral moment of amplitudes of diagonal
elements in the bispectrum (H3). All the features were calculated in this work. However, the
magnitude of some features did not change consistently as a function of hearing loss. This
study only considered theH1, H2, and H3 features, because the magnitude of these features
either increased or decreased consistently as a function of the degree of hearing loss.

The features H1, H2, and H3 are defied as:

H1 ¼
P

OlogðjB ðf1; f2ÞjÞ ð2Þ

H2 ¼
P

OlogðjB ðfk; fkÞjÞ ð3Þ

H3 ¼
PN

k¼1 k logðjB ðfk; fkÞjÞ ð4Þ

Test Corpora
Two standard speech databases, Texas Instrument and Massachusetts Institute of Technology
(TIMIT) [48] and Northwestern University Auditory Test No. 6 (NU6) [49]), were used in this
study to evaluate the performance of the proposed method. It is to be noted that no behavioral
study using human subjects was performed as part of the present study, rather the subjective
scores collected by Studebaker et al. [50] were used to validate the proposed metric. Speech
intelligibility was predicted for listeners with different degrees of hearing loss using a wide
range of phoneme utterances from TIMIT [48]. TIMIT is a corpus of phonemically and lexi-
cally transcribed speech of American English speakers of different sexes and dialects. The
speech signal of TIMIT is sampled at 16 kHz. The TIMIT data set consists of fifty eight differ-
ent types of phonemes and six phonemes groups. The total phoneme utterance in the core test
set is 7753. All of these phonemes were used in this study.

The NU6 [49] database was used to validate the proposed metric by comparing the perfor-
mance of the proposed method to the subjective scores from behavioral studies by Studebaker
et al. [50]. NU6 is a corpus of 200 monosyllabic words from a male speaker recorded by Audi-
tec of St. Louis, sampled at 44.1 kHz.

Procedure
The input to the AN model was the speech signal from TIMIT or NU6. The speech token was
resampled at 100 kHz, as required by the AN model [25]. In this study, five different types of
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hearing loss profiles such as flat10, flat20, mild, moderate, and profound hearing loss were con-
sidered and are shown in Fig 2. The audiograms were taken from Dillon [51] to illustrate the
typical hearing losses at six different frequencies, and thus the threshold shifts at other CFs
were estimated by interpolating between the values at two adjacent frequencies. It has been
reported that for an average listener, approximately two-thirds of the threshold shift measured
in the audiogram can be attributed to OHC impairment and one-third to IHC impairment
[52]. Accordingly, to simulate the responses of impaired AN fibers, the model parameters for
inner hair cell (CIHC) and outer hair cell (COHC) were adjusted to account for one-third and
two-third of the threshold shift, respectively, for each CF. Both parameters were set to 1 for
normal hearing and to 0 for complete impairment. The ENV and TFS neurograms were con-
structed using the output of the synapse model. The bispectrum was then estimated from the
neurograms to predict intelligibility scores. The complete procedure of the proposed method is
illustrated in Fig 3.

To estimate bispectrum, the direct FFT-based method implemented in the higher order
spectral analysis (HOSA) Matlab toolbox [53] was employed in this study. In the direct
method, the bispectrum was estimated as an average biperiodogram using Eq 1 for the neural
responses of each CF. The number of fast Fourier transform (FFT) point was set to 256 points
for ENV and 512 points for TFS without overlap. In this case, the size of the bispectrum array
for each CF of ENV is 256 × 256 whereas the corresponding bispectrum array size for each CF
of TFS is 512× 512. A Rao-Gabr window [23] with a size of 3 × 3 was used for the frequency-
domain smoothing. Different features were calculated within the triangular area O:Mave, f1m,
f2m, p1, p2, H1, H2, and H3 [11, 45–47] of the bispectrum estimated for each of the CF responses
in the neurogram. Thus for each neurogram, 32 values (each neurogram was constructed using

Fig 2. Profiles of hearing loss.

doi:10.1371/journal.pone.0150415.g002
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the neural responses of 32 CFs) of each feature were computed and averaged across them to
provide an overall feature value.

It was found that the magnitude of three features (H1, H2, and H3) in the bispectrum was
relatively constant for two extreme conditions (normal-hearing and profound hearing loss)
irrespective of the input speech token, as shown in Fig 4. For the rest of the features, the magni-
tude was either not consistent as a function of hearing loss or not constant for two extreme
conditions in response to phonemes and words, and thus they were not considered in this
study to estimate speech intelligibility scores.

Fig 4 shows the dynamic range ofH3magnitudes calculated from the bispectrum of the pho-
neme neurograms (panels A and C) for each of two phoneme groups (nasal and vowel) as well
as from the neurograms of words (panels B and D). The results are shown for 100 samples
(randomly chosen) in all cases. The upper panels (A, B) show the result for ENV neurograms,
and the lower panels (C, D) represent the responses from the TFS neurogram. The results are
shown for speech signals presented at a conversational speech level of 65 dB SPL.

It was observed that the magnitude of H3 for profound hearing loss (in quiet) was compara-
ble to the values estimated under noisy condition (at an SNR of -100 dB) for listeners with nor-
mal hearing, which allowed the same normalization to be applied to estimate speech
intelligibility under noisy conditions. Also the magnitude of the bispectrum features consis-
tently changed for people with hearing loss under noisy conditions. Thus, the behavioral results
were compared to the predicted scores in quiet and under noisy conditions for listeners with
and without hearing loss.

To obtain speech intelligibility scores between 0 and 1, the magnitude of a feature was nor-
malized by the corresponding feature values for two extreme conditions (normal hearing and
profound hearing loss). The score was computed using the following equation:

Normalized Score ¼ max min
Y � Ymin

Ymax � Ymin

; 1

� �
; 0

� �
ð5Þ

where Y is the magnitude of the feature in the bispectrum of responses for listeners with a

Fig 3. Block diagram of the proposedmethod. The speech signal was applied as an input to the model of the auditory-nerve (AN) fibers, and responses of
the normal or impaired auditory systems were simulated for a wide range of characteristic frequencies to construct neurograms. The neurogram responses
were smoothed to reflect envelope information (ENV) or all information temporal fine structure (TFS), and the bispectrum was estimated from the ENV or TFS
neurogram. Finally the features were computed from the triangular area and normalized in order to estimate speech intelligibility score.

doi:10.1371/journal.pone.0150415.g003
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given hearing loss profile, and Ymax and Ymin are the values of the feature in the bispectrum of
response for listeners with normal-hearing and profound hearing loss, respectively. The magni-
tude of Ymax and Ymin (averaged across all samples) for the features (H1, H2, andH3) is pro-
vided in Table 1 for different conditions (TFS vs. ENV neurogram, and phoneme vs. word).

Simulation Results
This section describes the behavior of different bispectrum features as a function of hearing
loss. In addition, the performance of the proposed method is evaluated and compared to the
subjective scores from behavioral studies as a validation of the proposed metric.

Fig 4. Themagnitudes of H3 for normal-hearing and profound hearing loss are shown in response to
100 samples of phonemes (nasals and vowels) and words in quiet. (A, C): ENV and TFS responses for
phonemes; (B, D): ENV and TFS responses for NU6 words.

doi:10.1371/journal.pone.0150415.g004

Table 1. The reference values of three features (H1,H2, andH3) for ENV and TFS. Two types of signals were considered, phonemes and words.

Feature ENV TFS

Phoneme Word Phoneme Word

H1: Ymax(×10
5) 2.02 1.77 7.25 7.14

H1: Ymin(×10
5) 1.69 1.48 5.19 5.22

H2: Ymax(×10
3) 3.12 2.90 5.90 5.77

H2: Ymin(×10
3) 2.60 2.50 4.44 4.48

H3: Ymax(×10
6) 1.84 1.69 7.05 6.97

H3: Ymin(×10
6) 1.59 1.61 5.58 5.61

doi:10.1371/journal.pone.0150415.t001
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Intelligibility Scores for Different Phoneme Groups
Fig 5 shows the normalized predicted scores as a function of hearing loss using the features
(H1, H2, andH3) computed from the bispectrum of neural responses for different groups of
phonemes. The phonemes were taken from TIMIT database, and the responses are shown for
six phoneme groups (fricatives, affricates, nasals, svglides, stops, and vowels). The phonemes
were presented at 65 dB SPL. The normalized scores (Eq 5) are shown for ENV responses in
the left panels (A, C, E), and the right panels (B, D, F) show the predicted score from the bis-
pectrum of TFS responses. The score at any point represents the mean value of normalized

Fig 5. Normalized scores as a function of hearing loss for all phoneme groups from TIMIT database.Neurograms were constructed for the signals
presented at 65 dB SPL, and the features (H1, H2, andH3) were computed from the ENV and TFS bispectrum responses. (A, C, E): Normalized score using
ENV responses. (B, D, F): Normalized score using TFS responses.

doi:10.1371/journal.pone.0150415.g005
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scores for a listener with a particular profile of hearing loss in response to a phoneme group,
and the error bars show the standard deviation of the scores.

It is clear that the scores for both ENV and TFS responses consistently declined for all pho-
neme groups as a function of the degree of hearing loss. Although the dynamic range of pre-
dicted scores was approximately same for both ENV and TFS responses, the normalized score
from the ENV bispectrum showed a gradual roll-off with varying degree of hearing loss. On
the other hand, the magnitude of normalized features (H1, H2, and H3) from the TFS bispec-
trum did not show any substantial change from completely unimpaired to mild hearing loss.
This effect can be explained primarily by audibility, because ENV cues are more prominent in
higher CFs [43], and there was significant high frequency hearing loss (40–50 dB) even in the
mild case (Fig 2). In contrast, TFS cues are more prominent at lower frequencies [43], where
the significant hearing loss was not shown until the moderate or profound cases (Fig 2).

In general, the predicted scores for fricatives and affricates dropped more quickly as a func-
tion of hearing loss compared to the scores for other phoneme groups. A similar observation
was reported in [54] that the recognition performance of fricatives for listeners with steeply
sloping hearing loss is lower compared to the scores for those with gradual or flat hearing loss.

Overall, it is clear that the normalized magnitude of features (H1, H2, andH3) for both ENV
and TFS responses changed as a function of hearing loss, which enables the proposed metric to
predict speech intelligibility as a function of hearing loss. If hearing thresholds of the listeners
are within 10–15 dB of the normal hearing, most behavioral studies treat them as normal lis-
teners [55, 56], and thus the recognition score for listeners with flat 10 dB hearing loss would
be very close to that of normal hearing (very slower roll-off). On the other hand, the recogni-
tion score for listeners with profound hearing loss (more than 70–90 dB hearing loss in octave
frequencies ranging from 250 Hz to 8 kHz) would be very low at a conversational speech level
(~65 dB SPL), because the signal would be inaudible for most frequencies. The recognition
score for listeners with mild and moderate hearing loss is expected to be in between the values
for these two extreme conditions [54, 57]. Thus, it is required that the objective score from a
metric should gradually decline or increase as a function of hearing loss. In general, the magni-
tude of three features (H1, H2, and H3) declined consistently as a function of the degree of hear-
ing loss, and the results were comparable to each other. In this study, the feature H3 estimated
from the ENV bispectrum was chosen for all subsequent analysis, because the result using H3

reflected the representative behavior of normalized scores for all three features, and the scores
from the ENV responses declined more gradually than the scores from the TFS responses as a
function of the degree of hearing loss. To test the statistical significance of predicted scores, the
level of significance (p) was calculated by using a pair wise (two adjacent hearing loss-profile)
t-test for all phoneme groups. The level of significance was found to be less than 0.01 (p<0.01)
for all cases.

Effects of SPL on Predicted Score
In general, speech intelligibility is decreased even for listeners with normal hearing when
speech is presented at higher-than-normal levels (above about 80 dB SPL) [50]. Depending on
the degree of hearing loss, the decrease in speech understanding is also observed under noisy
conditions for people with hearing loss when the speech level is increased beyond conversa-
tional speech level [50, 58]. In the literature, this phenomenon is referred to as the roll-over
effect. In order to analyze the effects of SPL on the predicted score, this study computed the
normalized scores using H3 for two representative phoneme groups (vowels and stops) from
TIMIT database and words from NU6 database. The scores were predicted for sound levels at
65, 85, and 95 dB SPL as a function of hearing loss, and the results are shown in Fig 6. It was
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observed that the estimated speech intelligibility score slightly decreased for words and was
almost same for phonemes for listeners with normal hearing as well as for listeners with flat 10
and flat 20 dB hearing loss when speech was presented at higher levels (due to test variability
and normative differences, 10–15 dB hearing loss can be treated as normal hearing). This is
consistent with the roll-over effect observed for people with normal hearing, indicating that the
effects of supra-threshold nonlinearities responsible for this decline was successfully captured
by the bispectrum features. However, the predicted score increased substantially for listeners
with mild, moderate, and profound hearing loss when speech level was higher than 65 dB SPL.
This could be attributed to the increased audibility of the signal (in quiet condition) at higher
levels for listeners with hearing loss [59].

Comparison to the Results from a Behavioral Study
To validate the proposed metric, the subjective speech intelligibility scores from a behavioral
study by Studebaker et al. [50] were compared to the scores predicted by the proposed method
using the same experimental conditions (for listeners with and without hearing loss both in
quiet and under noisy conditions).

Speech intelligibility for listeners with hearing loss. Fig 7 shows the word-recognition
(NU6 database) scores of a listener with hearing loss (mild to moderate) plotted against pre-
dicted scores by the proposed method using ENV responses (open symbols). The performance
of a full-reference-based metric, NSIM, has also been shown (filled symbols) for the same condi-
tions. It is to be noted that the acoustic signal property-based methods (e.g., STOI and SII) can-
not take into account the effects of hearing loss directly and thus may use an ad-hoc method to
predict speech intelligibility scores. For this reason, the scores for listeners with hearing loss
were computed using methods based on the responses of the model of the auditory system only.

Fig 6. Effects of SPL on the predicted score using the proposedmetric. The mean scores for phonemes
and words are shown for ENV responses (using H3 feature) at 65, 85, and 95 dB SPL.

doi:10.1371/journal.pone.0150415.g006
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The audiogram of the hearing-impaired group was described by pure-tone hearing levels of
13, 15, 23, 40, 53, and 52 dB at the octave frequencies of 250, 500, 1000, 2000, 4000, and 8000
Hz, respectively. The parameters of the ANmodel (COHC and CIHC) were adjusted to match
the average hearing loss profile of the listeners who participated in the experiment. Scores were
estimated using the proposed method and NSIM for 200 words from the NU6 database in
quiet (clean) and under speech-shaped noise at SNRs of -1, 5, and 12 dB with a sound presenta-
tion levels of 69, 79, 89, and 99 dB SPL. The mean scores are shown in Fig 7. The relationship
between the subjective and predicted (x) scores was fitted by a linear function,

f ðxÞ ¼ a � x þ b ð6Þ

where a = 91.17 and b = 1.25 for the proposed metric, and a = 167.56 and b = -43.42 for NSIM.
As shown in the figure, the predicted scores for the proposed metric and NSIM increased as

the sound presentation level was increased from 69 to 99 dB SPL in quiet condition, consistent
with the recognition scores for the listener with mild to moderate hearing loss from the respec-
tive behavioral study. However, the scores for both metrics slightly increased or decreased as a
function of SPL under noisy conditions. The dynamic range of subjective scores (~0.03–0.7)
was also comparable to that of predicted scores (~0.15–0.8) for the proposed metric. However,
the dynamic range of NSIM scores (~0.3–0.7) was lower than the range of subjective scores.
Although a function could be applied to extend the dynamic range, a metric with a dynamic
range comparable to that of behavioral responses may indicate a plausible strategy employed
by the human auditory system to generate those responses.

Fig 7. Comparison of subjective scores to the predicted scores for a listener with mild to moderate
hearing loss. Responses were simulated in quiet and under noisy conditions using the proposed method
(ENV responses usingH3 feature) and the full reference NSIMmetric. The results are shown for four sound
presentation levels (69, 79, 89, and 99) and four SNRs (-1, 5, 12, and in quiet condition). Each point
represents the mean score for NU6 words at a particular sound presentation level. The linear regression
coefficient between subjective and predicted scores for both the proposed metric and NSIM was found as
~0.92.

doi:10.1371/journal.pone.0150415.g007
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The linear regression coefficient for both metric was found to be same (~0.92). The root-
mean-square error (RMSE) between the behavioral scores and the scores predicted by the fitted
function was found to be 7.82 and 7.74 for the proposed metric and NSIM, respectively. The
solid line indicates the linear fit, and the dotted lines represent the 95% confidence interval (C.
I.) computed for 200 predicted intelligibility scores. All of the data fall within the confidence
interval, meaning that the subjective scores can be reliably estimated using the proposed metric.

Speech intelligibility for listeners with normal hearing. Fig 8 shows the relationship
between behavioral (subjective) scores from a study by Studebaker et al. [50] and predicted
scores for a listener with normal hearing. The scores were predicted using the proposed
method as well as two traditional (based on the properties of the acoustic signal) full reference
metrics, STOI, and SII [60], for the NU6 words in quiet and under speech-shaped noise at
SNRs of -4, -1, 2, 5, 8, 12, 16, 20, 24, and 28 dB for each of the eight speech presentation levels
(64, 69, 74, 79, 84, 89, 94, and 99 dB SPL) to match the corresponding behavioral study. In this
experiment, the neurograms were constructed by simulating responses of AN fibers for normal
hearing, and the scores were estimated using ENV responses (H3) only. The mean subjective
and predicted scores were computed across 200 NU6 words for each condition. For SII and the
proposed method, the best fit between the subjective and predicted scores was achieved by a
sigmoid rather than a linear function, which is described by the following equation:

f ðxÞ ¼ c
1þ e�dðm�x�kÞ ð7Þ

Fig 8. Comparison of subjective scores to the predicted scores for listeners with normal hearing.
Three objective measures were considered: the proposed method (ENV responses), SII, and STOI. The
scores were estimated and averaged across 200 NU6 words in quiet and under the speech-shaped noise.
The results are shown for ten SNRs ranging from -4 to +28 dB and eight different sound pressure levels
ranging from 64 to 99 dB SPL. Transfer functions (T. F) with 95% confidence intervals are also shown in the
figure for all metric.

doi:10.1371/journal.pone.0150415.g008
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For the proposed method, the parameters were found to be c = 89, d = 3, m = 10, and
k = 4.1, and for SII, the best fit was obtained for c = 92, d = 0.9, m = 10, and k = 4.8. However,
the best fit for the STOI scores were achieved by a linear equation (as in Eq 6) with the parame-
ters a = 217.06 and b = -133.56. It is to be noted that the current implementation of the STOI
did not take into account the effects of sound presentation level on the score, and thus the esti-
mated scores were same at a particular SPL.

In general, the predicted scores progressively declined as the more noise was added to the
original signal (in quiet), consistent with the subjective scores observed in the behavioral study.
However, the dynamic range of subjective scores (~0–0.94) and SII scores (~0.1–0.96) was sub-
stantially higher than the dynamic range of scores for the proposed method (~0.3–1.0) and the
STOI (~0.6–1.0). It is clear that the predicted scores using the proposed method fell within the
95% confidence interval of the fitted function, which indicates that the subjective scores could
be predicted reliably using the proposed method. However, some of SII scores fell outside the
95% confidence interval of the fitted function. The (RMSE) between the subjective scores and
the scores predicted by the fitted functions was found to be 8.14, 19.16, and 13.76 for the pro-
posed method, SII, and STOI, respectively.

Discussions
In this section, the effects of the degree of hearing loss, noise, audibility, and sound presenta-
tion level on the bispectrum (i.e., phase coupling) are presented in order to illustrate how the
proposed metric works. The distribution of predicted scores across phonemes and subjects is
also described.

Effects of Hearing Loss on Phase Coupling
As mentioned earlier, the bispectrum is a method to detect the presence of quadratic phase
coupling among different frequency bands in a signal. To study how the distribution of phase
coupling of a clean signal changes as a function of the degree of hearing loss, the contour maps
of the bispectrum for a typical speech word (such as /use/ taken from NU6) are shown in Fig 9.
The word was presented at a 65 dB SPL.

The bispectrum was calculated after simulating the ENV responses of the ANmodel as a
function of hearing loss. The bispectrum contour maps for listeners with normal hearing and
profound hearing loss are shown in the panels A and B, respectively. The presence of phase
coupling was indicated by the peaks in the bispectrum of the signal. It is clear that the extent
(range of frequencies) and magnitude of phase coupling degraded substantially in the case of
profound hearing loss as the signal is inaudible in most frequencies. For other intermediate
profile of hearing loss, the feature values fell within these two extreme cases (Fig 5). Thus the
features extracted from the bispectrum were able to estimate speech intelligibility scores for
people with different degree of hearing loss.

Effects of Noise on Phase Coupling
Fig 10 shows the bispectrum contour map from the ENV neurogram responses (for listeners
with normal hearing) of a typical speech word (/use/ taken from NU6 database) presented at a
65 dB SPL in quiet (panel A) and under noisy condition at an SNR of -5 dB (panel B). The
peaks in the bispectrum represent the phase coupling among frequency components. It is obvi-
ous that the phase coupling in quiet condition occurred to a smaller frequency range with rela-
tively higher magnitudes. However, when noise was added to the original signal, the magnitude
of phase coupling decreased substantially, and the frequency range over which phase coupling
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was observed increased (in Fig 10B). Thus the predicted score changed systematically as a func-
tion of SNR, and the results were described in Fig 8.

In order to illustrate the effect of noise on phase coupling for acoustic signal in the time
domain (i.e. without using AN model responses), the bispectrum was calculated for the same
word (/use/) under clean and noisy conditions (as used in Fig 10), and the contour plots are
shown in Fig 11. The same technique and parameters were used to estimate the bispectrum
coefficients for the acoustic signal. As shown in the figure, the frequency range and magnitude
of phase coupling increased when noise was added to the clean signal, in contrast to the pattern
observed for the neural responses (in Fig 10). This was due to the fact that neurogram
responses were constructed from the responses of a bank of band-pass (i.e., basilar membrane)
filters, and thus only the interaction among the frequency components within the filter was

Fig 9. Illustration of the effect of hearing loss on bispectrum. The bispectrum contour map was derived
from the ENV responses for listeners with normal hearing (A), and profound hearing loss (B). The range of
frequencies over which phase coupling was observed and also the maximummagnitude changed as a
function of hearing loss.

doi:10.1371/journal.pone.0150415.g009

Fig 10. Illustration of the effect of noise on the bispectrum. The bispectrum contour maps were estimated
from the ENV neurogram responses (for a listener with normal hearing) to a typical word /use/: (A) in quiet,
and (B) under speech-shaped noise at an SNR of -5 dB. The presentation level of the signal was at 65 dB
SPL.

doi:10.1371/journal.pone.0150415.g010
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considered, whereas the interaction among all frequency components was captured in the bis-
pectrum for the signal in the time domain. Again, the clean signal showed a restricted region of
phase coupling, whereas the noisy signal showed phase coupling over a larger range of fre-
quency components.

Effects of SPL on the Bispectrum
In order to illustrate the effect of speech presentation level on the features of the bispectrum,
Fig 12 shows the bispectrum calculated from the ENV responses to a typical speech word
(/use/) taken from NU6 database. The results are shown for two different speech presentation
levels such as 30 and 80 dB SPL. It is clear that the magnitudes of the bispectrum peaks for 80
dB SPL (panel B) are higher than the magnitudes of the bispectrum for 30 dB SPL (panel A).
Also, the extent of frequency over which phase coupling was observed was substantially wider
for the responses at higher SPL compared to the range of frequencies observed in the

Fig 11. Contour maps of bispectrum for a speech word (/use/): (A) for clean signal, and (B) for noisy
signal (additive white Gaussian noise) with an SNR of -5 dB.

doi:10.1371/journal.pone.0150415.g011

Fig 12. Effects of SPL on the bispectrum.Results are shown for a listener with normal hearing in response
to a speech signal (word: /use/) at 30 and 80 dB SPL. A: Bispectrum at 30 dB SPL using ENV responses. B:
Bispectrum at 80 dB SPL using ENV responses.

doi:10.1371/journal.pone.0150415.g012
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bispectrum of responses at lower SPL. This was due to the fact that the auditory filter becomes
broader at higher SPL than the bandwidth of the filter at lower SPLs. The more frequency com-
ponents passed into the filter for higher SPL, and thus more phase coupling occurred. How-
ever, the magnitude of phase coupling was not a simple linear function of audibility (compare
Figs 9A–12). Fig 9A shows the contour map of bispectrum at 65 dB SPL for exactly the same
conditions (except SPLs) for which the responses are shown in Fig 12, and it is obvious that the
highest magnitude of phase coupling occurred at 65 dB SPL (conversational speech level) com-
pared to the responses at a lower and higher SPLs. This behavior is consistent with the roll-
over effect observed even for the listeners with normal hearing at higher-than-normal levels
[50]. This indicates that the effects of auditory supra-threshold nonlinearities were also
reflected in the bispectrum, which has also been discussed in the following section. The effect
of SPL on the predicted score was shown and discussed in Fig 6.

Effects of Audibility on Phase Coupling
Fig 13 shows the contour map of bispectrum calculated from the ENV responses of a typical
speech (word: /use/ taken from NU6 database) to illustrate the effects of audibility on phase
coupling of neurogram bispectrum. The left panel (A) represents the bispectrum contour map
for a listener with normal hearing at 30 dB SPL, and the right panel (B) shows the contour map
for a listener with flat 70 dB hearing loss (moderate to profound) at 100 dB SPL.

The audibility of the signal at all frequencies for both cases was maintained at 30 dB above
threshold. It is obvious that the magnitude of phase coupling and the range of frequencies over
which phase coupling occurred were substantially higher and wider, respectively, for the lis-
tener with flat 70 dB hearing loss compared to those of a listener with normal hearing. The
effect (presence or deficit) of supra-threshold nonlinearities incorporated in the ANmodel was
successfully captured by the bispectrum features. This indicates that the predicted scores for
the listener with hearing loss not only reflect the effect of audibility of the signal but also takes
into account the effect of nonlinearities at higher presentation levels. It is to be noted that the
magnitude of features at 100 dB SPL for the listener with flat 70 dB hearing loss was lower than
the respective features at 65 dB SPL for a listener with normal hearing (Fig 9A), and thus the
predicted score for the listener with hearing loss never reached near 100% irrespective of the

Fig 13. Effects of audibility on the bispectrum. Results are presented for ENV responses of a typical
speech word (such as /use/). A: Bispectrum contour map for a listener with normal hearing at 30 dB SPL. B:
Bispectrum contour map for a listener with flat 70 dB hearing loss at 100 dB SPL.

doi:10.1371/journal.pone.0150415.g013
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sound presentation levels (Fig 7). This observation is also consistent with the behavioral
responses (for the similar condition) reported in the literature [50].

Distribution of Predicted Scores across Subjects and Phonemes
Typically, there is more variability in behavioral responses across subjects with hearing loss
than for subjects with normal hearing [61, 62]. However, the variability in recognition scores
could also be resulted from the test itself (e.g., test materials, test-forms, and test scores) [63].
Recently, few studies show that noise exposure and aging can cause a loss of significant propor-
tion of AN fibers without any substantial effect in detection thresholds [64, 65]. Moreover, this
kind of neuropathy appears to preferentially affect lower spontaneous rate (SR) AN fibers [66,
67]. In order to explore the variability in recognition scores across subjects with similar audio-
grams, the scores were predicted using the proposed method by considering the neural
responses from only high-SR fibers (i.e., cochlear neuropathy) as well as from all of the three
types (low, medium, and high) of SR fibers. Similarly, responses from a range of subjects (with
similar audiogram, but with different degree of cochlear neuropathy) can be simulated by
applying a range of weights to different types of AN fiber responses.

Fig 14 shows the histogram of predicted speech intelligibility scores for listeners with five
different hearing loss profiles. The scores were estimated using the proposed method in
response to affricates phonemes extracted from the TIMIT database. The distribution of scores
for ENV and TFS responses using three types of SR AN fibers is presented in the upper panels
(A, B), and the lower panels (C, D) show the distribution of scores using responses from only
high SR fibers. The scores for both cases were well-separated as a function of hearing loss.
However, the variability in the predicted scores observed in each panel for a particular hearing
loss profile represents the distribution of scores across phonemes for the same listener, whereas
for the same profile of hearing loss, the difference between panels A and C (and also B and D)
indicates the variation across subjects. The scores for listeners with a flat 10 dB hearing loss
were very close and comparable to the scores from listeners with normal hearing. In general, it
was observed that the magnitude of predicted speech intelligibility scores for listeners with
cochlear neuropathy shifted towards slightly higher values compared to the predicted scores
using all SR fiber responses. It is expected that predicted scores for other subjects with similar
audiograms (but with different degree of cochlear neuropathy) will fall in between the ranges
reported in panels A and C for ENV responses (and panels B and D for TFS responses).

Limitations of the proposed metric and potential future works
In general, it is assumed that any objective speech intelligibility measure having the same
dynamic range and a linear relationship with the subjective scores would indicate a plausible
strategy employed by the human auditory system to produce the behavioral responses. In this
regard, it is obvious that although the proposed metric had a linear relationship with the sub-
jective scores for listeners with hearing loss (Fig 7), the best fit between the subjective and pre-
dicted scores was obtained by a sigmoid function for a listener with normal hearing (Fig 8).
Few possibilities might contribute to the shortcomings of the proposed metric. The AN model
used in this study did not capture all of the nonlinearities available at the level of the auditory
periphery, i.e., the model is not perfect. Also, a more accurate model of the central auditory sys-
tem is needed. In this study, extracting bispectral features from the auditory neurogram was
assumed as a central mechanism to predict recognition scores; however, the physiological cor-
relate is not obvious from the literature.

Perceptual studies of speech generally use human subjects, and thus a specialized neural
mechanism is thought to be responsible for speech perception. However, the AN model used
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in this study was largely based on the physiological data from animal studies, especially from
cat. It is well-known that physiological properties of many neurons show strikingly similar
properties in unrelated species such as rodents, cats, and bats, suggesting a more general audi-
tory neural mechanism common to mammals including human. Thus, it is likely that although
the predicted scores are based on the simulated neural responses for nonhuman species, a great
deal can be learned about the neural processing of speech by human auditory system.

In order to model each audiogram, the values of two parameters, COHC and CIHC, were cho-
sen such that approximately two-thirds of the threshold shift measured in the audiogram can
be attributed to OHC impairment and one-third to the IHC impairment. However, there is
substantial variability across individuals [52]. As a future work, a number of different patterns
of pathology that would be consistent with the audiogram could be explored systematically in
order to account for the variability observed across listeners (from behavioral studies). For
example, a different combination of OHC and IHC impairment could be applied to produce
the same audiogram (i.e., the parameters will not be unique for a given threshold shift), and
thus the proposed metric would allow analyzing the effects of different pathology on estimated

Fig 14. Distribution of speech intelligibility scores. Scores were estimated using the proposedmethod for
affricate phonemes with five types of hearing loss profiles. (A, B): Using ENV and TFS responses of three
types (high, medium, and low spontaneous rates) of AN fibers; (C, D): Using ENV and TFS responses of only
high SR AN fibers.

doi:10.1371/journal.pone.0150415.g014
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scores. In addition, the pathology could also be modeled by a combination of different weights
for the responses of different SR AN fibers. In this study, only two extreme conditions (all
fibers vs. only high SR fibers) were considered (Fig 14). Overall, it is a great advantage of the
proposed metric over other traditional methods (which can show only the averaged behavior)
that this computational-model-based method can deal with the variability in the scores across
listeners as well as the input speech materials.

In the literature, the subjective speech intelligibility score is measured using phonemes,
words, or sentences [68]. However, the proposed metric was successful in predicting speech
intelligibility for phonemes and words only. The bispectral features for both phonemes and
words were relatively stable for two extreme conditions (Fig 4), whereas the H1, H2 and H3 esti-
mated from the neurogram of sentences varied substantially depending on the length of the
sentences (results not shown). Thus the proposed reference-free metric could not be extended
to predict intelligibility for sentences.

Conclusions
This study proposed a reference-free metric to predict speech intelligibility for people with
hearing loss and also for listeners with normal hearing in quiet and under noisy conditions.
For this, the responses of AN fibers were simulated to construct neurograms, and then bispec-
trum features were computed to estimate speech intelligibility. In this study, three features
from the bispectrum were identified whose magnitude was relatively constant (irrespective of
input speech signal) for a particular profile of hearing loss, and these features consistently
changed as a function of signal-to-noise ratio. Thus unlike other full reference-based metrics,
the responses to clean signals were not required to predict speech intelligibility using the pro-
posed method. The presence or deficit of supra-threshold nonlinearities captured in the neural
responses for listeners with normal hearing or hearing loss was also reflected in the phase cou-
pling information of the neurogram bispectrum. Although the dynamic range of feature values
for TFS responses was larger compared to the feature values from ENV responses, the normal-
ized score using ENV responses showed a relatively more gradual declination with hearing
loss. The performance of the proposed metric was compared to the subjective scores from a
behavioral study, and the results showed a good fit with a small error suggesting that the sub-
jective scores can be estimated reliably using the proposed neural-response-based metric.

Acknowledgments
The authors would like to thank Dr. Laurel H. Carney (University of Rochester, NY, USA) for
her valuable comments on the earlier version of the manuscript. The suggestions of two review-
ers were invaluable in improving this manuscript.

Author Contributions
Conceived and designed the experiments: MHMZ. Performed the experiments: MHWJ. Ana-
lyzed the data: MHWJ MZ. Contributed reagents/materials/analysis tools: MHWJ MZ. Wrote
the paper: MHMZ.

References
1. French N, Steinberg J. Factors governing the intelligibility of speech sounds. The Journal of the Acous-

tical Society of America. 1947; 19(1):90–119.

2. Institute ANS. American National Standard: Methods for Calculation of the Speech Intelligibility Index.
Acoustical Society of America; 1997.

Objective Speech Intelligibility Measure Using Higher-Order Statistics

PLOS ONE | DOI:10.1371/journal.pone.0150415 March 11, 2016 21 / 24



3. Steeneken HJ, Houtgast T. A physical method for measuring speech-transmission quality. The Journal
of the Acoustical Society of America. 1980; 67(1):318–26. PMID: 7354199

4. Yang L, Zhang J, Yan Y, editors. An improved STI method for evaluating Mandarin speech intelligibility.
Audio, Language and Image Processing, 2008. ICALIP 2008. International Conference on; 2008:
IEEE.

5. Jørgensen S, Ewert SD, Dau T. A multi-resolution envelope-power based model for speech intelligibil-
ity. The Journal of the Acoustical Society of America. 2013; 134(1):436–46. doi: 10.1121/1.4807563
PMID: 23862819

6. Taal CH, Hendriks RC, Heusdens R, Jensen J. An algorithm for intelligibility prediction of time–fre-
quency weighted noisy speech. Audio, Speech, and Language Processing, IEEE Transactions on.
2011; 19(7):2125–36.

7. Chi T, Gao Y, Guyton MC, Ru P, Shamma S. Spectro-temporal modulation transfer functions and
speech intelligibility. The Journal of the Acoustical Society of America. 1999; 106(5):2719–32. PMID:
10573888

8. Hines A, Harte N. Speech intelligibility from image processing. Speech Communication. 2010; 52
(9):736–52.

9. Hines A, Harte N. Speech intelligibility prediction using a neurogram similarity index measure. Speech
Communication. 2011; 54(2):306–20.

10. Falk TH, Zheng C, ChanW-Y. A non-intrusive quality and intelligibility measure of reverberant and
dereverberated speech. Audio, Speech, and Language Processing, IEEE Transactions on. 2010; 18
(7):1766–74.

11. Chua K, Chandran V, Acharya U, Lim C. Cardiac state diagnosis using higher order spectra of heart
rate variability. Journal of medical engineering & technology. 2008; 32(2):145–55.

12. Chua KC, Chandran V, Acharya UR, Lim CM. Application of higher order statistics/spectra in biomedi-
cal signals—A review. Medical engineering & physics. 2010; 32(7):679–89.

13. Helme B, Nikias CL. Improved spectrum performance via a data-adaptive weighted Burg technique.
Acoustics, Speech and Signal Processing, IEEE Transactions on. 1985; 33(4):903–10.

14. Shen C, Lemmin U. Ultrasonic intensity power spectrum estimation by using the bispectral reconstruc-
tion technique. Signal processing. 1997; 61(1):39–44.

15. Hsing-Hsing C, Nikias CL. Adaptive deconvolution and identification of nonminimum phase FIR sys-
tems based on cumulants. Automatic Control, IEEE Transactions on. 1990; 35(1):36–47.

16. Chow TW, Tan H-Z, Fei G. Third-order cumulant RLS algorithm for nonminimum ARMA systems identi-
fication. Signal processing. 1997; 61(1):23–38.

17. Chandran V, Elgar SL. Mean and variance of estimates of the bispectrum of a harmonic random pro-
cess-an analysis including leakage effects. Signal Processing, IEEE Transactions on. 1991; 39
(12):2640–51.

18. Chandran V, Carswell B, Boashash B, Elgar S. Pattern recognition using invariants defined from higher
order spectra: 2-D image inputs. Image Processing, IEEE Transactions on. 1997; 6(5):703–12.

19. Chandran V, Elgar S, Pezeshki C. Bispectral and trispectral characterization of transition to chaos in
the Duffing oscillator. International Journal of Bifurcation and Chaos. 1993; 3(03):551–7.

20. El-Khamy SE, Ali A, El-Ragal HM, editors. Fast blind equalization using higher-order-spectra channel-
estimation in the presence of severe ISI. Computers and Communications, 1995. Proceedings., IEEE
Symposium on; 1995: IEEE.

21. Khadra L, Al-Fahoum AS, Binajjaj S. A quantitative analysis approach for cardiac arrhythmia classifica-
tion using higher order spectral techniques. Biomedical Engineering, IEEE Transactions on. 2005; 52
(11):1840–5.

22. Muthuswamy J, Sherman DL, Thakor NV. Higher-order spectral analysis of burst patterns in EEG. Bio-
medical Engineering, IEEE Transactions on. 1999; 46(1):92–9.

23. Nikias CL, Raghuveer MR. Bispectrum estimation: A digital signal processing framework. Proceedings
of the IEEE. 1987; 75(7):869–91.

24. Zilany MS, Bruce IC, Nelson PC, Carney LH. A phenomenological model of the synapse between the
inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. The Journal of the
Acoustical Society of America. 2009; 126(5):2390–412. doi: 10.1121/1.3238250 PMID: 19894822

25. Zilany MS, Bruce IC, Carney LH. Updated parameters and expanded simulation options for a model of
the auditory periphery. The Journal of the Acoustical Society of America. 2014; 135(1):283–6. doi: 10.
1121/1.4837815 PMID: 24437768

26. Robles L, Ruggero MA. Mechanics of the mammalian cochlea. Physiological reviews. 2001; 81
(3):1305–52. PMID: 11427697

Objective Speech Intelligibility Measure Using Higher-Order Statistics

PLOS ONE | DOI:10.1371/journal.pone.0150415 March 11, 2016 22 / 24

http://www.ncbi.nlm.nih.gov/pubmed/7354199
http://dx.doi.org/10.1121/1.4807563
http://www.ncbi.nlm.nih.gov/pubmed/23862819
http://www.ncbi.nlm.nih.gov/pubmed/10573888
http://dx.doi.org/10.1121/1.3238250
http://www.ncbi.nlm.nih.gov/pubmed/19894822
http://dx.doi.org/10.1121/1.4837815
http://dx.doi.org/10.1121/1.4837815
http://www.ncbi.nlm.nih.gov/pubmed/24437768
http://www.ncbi.nlm.nih.gov/pubmed/11427697


27. Kiang NY-s. Curious oddments of auditory-nerve studies. Hearing research. 1990; 49(1):1–16.

28. Zilany MS, Bruce IC. Modeling auditory-nerve responses for high sound pressure levels in the normal
and impaired auditory periphery. The Journal of the Acoustical Society of America. 2006; 120(3):1446–
66. PMID: 17004468

29. Zilany MS, Bruce IC. Representation of the vowel/ε/in normal and impaired auditory nerve fibers: model
predictions of responses in cats. The Journal of the Acoustical Society of America. 2007; 122(1):402–
17. PMID: 17614499

30. Moore BC. The role of temporal fine structure processing in pitch perception, masking, and speech per-
ception for normal-hearing and hearing-impaired people. Journal of the Association for Research in
Otolaryngology. 2008; 9(4):399–406. doi: 10.1007/s10162-008-0143-x PMID: 18855069

31. Smith ZM, Delgutte B, Oxenham AJ. Chimaeric sounds reveal dichotomies in auditory perception.
Nature. 2002; 416(6876):87–90. PMID: 11882898

32. Kiang N-S, LibermanMC, Levine R. Auditory-nerve activity in cats exposed to ototoxic drugs and high-
intensity sounds. The Annals of otology, rhinology, and laryngology. 1975; 85(6 PT. 1):752–68.

33. LibermanMC. Auditory-nerve response from cats raised in a low-noise chamber. The Journal of the
Acoustical Society of America. 1978; 63(2):442–55. PMID: 670542

34. LibermanMC. The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known charac-
teristic frequency. The Journal of the Acoustical Society of America. 1982; 72(5):1441–9. PMID:
7175031

35. RhodeW. An investigation of post-mortem cochlear mechanics using the Mössbauer effect. Basic
mechanisms in hearing. Academic Press New York; 1973. p. 49–67.

36. Schmiedt R, Zwislocki J, Hamernik R. Effects of hair cell lesions on responses of cochlear nerve fibers.
I. Lesions, tuning curves, two-tone inhibition, and responses to trapezoidal-wave patterns. Journal of
neurophysiology. 1980; 43(5):1367–89. PMID: 7373368

37. Bruce IC, Sachs MB, Young ED. An auditory-periphery model of the effects of acoustic trauma on audi-
tory nerve responses. The Journal of the Acoustical Society of America. 2003; 113(1):369–88. PMID:
12558276

38. Miller RL, Schilling JR, Franck KR, Young ED. Effects of acoustic trauma on the representation of the
vowel/ε/in cat auditory nerve fibers. The Journal of the Acoustical Society of America. 1997; 101
(6):3602–16. PMID: 9193048

39. Oxenham AJ, Shera CA. Estimates of human cochlear tuning at low levels using forward and simulta-
neous masking. Journal of the Association for Research in Otolaryngology. 2003; 4(4):541–54. PMID:
14716510

40. Shera CA, Guinan JJ Jr, Oxenham AJ. Otoacoustic estimation of cochlear tuning: validation in the chin-
chilla. Journal of the Association for Research in Otolaryngology. 2010; 11(3):343–65. doi: 10.1007/
s10162-010-0217-4 PMID: 20440634

41. Ibrahim RA, Bruce IC. Effects of peripheral tuning on the auditory nerve’s representation of speech
envelope and temporal fine structure cues. The neurophysiological bases of auditory perception.
Springer; 2010. p. 429–38.

42. Bruce IC. Physiological assessment of contrast-enhancing frequency shaping and multiband compres-
sion in hearing aids. Physiological measurement. 2004; 25(4):945. PMID: 15382833

43. Heinz MG, Swaminathan J. Quantifying envelope and fine-structure coding in auditory nerve responses
to chimaeric speech. Journal of the Association for Research in Otolaryngology. 2009; 10(3):407–23.
doi: 10.1007/s10162-009-0169-8 PMID: 19365691

44. Raghuveer MR, Nikias CL. Bispectrum estimation: A parametric approach. Acoustics, Speech and Sig-
nal Processing, IEEE Transactions on. 1985; 33(5):1213–30.

45. Ng T-T, Chang S-F, Sun Q, editors. Blind detection of photomontage using higher order statistics. Cir-
cuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on; 2004:
IEEE.

46. Zhang J-W, Zheng C-X, Xie A. Bispectrum analysis of focal ischemic cerebral EEG signal using third-
order recursion method. Biomedical Engineering, IEEE Transactions on. 2000; 47(3):352–9.

47. Zhou S-M, Gan JQ, Sepulveda F. Classifying mental tasks based on features of higher-order statistics
from EEG signals in brain–computer interface. Information Sciences. 2008; 178(6):1629–40.

48. Garofolo JS, Consortium LD. TIMIT: acoustic-phonetic continuous speech corpus. Linguistic Data Con-
sortium; 1993.

49. Tillman TW, Carhart R. An expanded test for speech discrimination utilizing CNCmonosyllabic words:
Northwestern University Auditory Test No. 6: DTIC Document1966.

Objective Speech Intelligibility Measure Using Higher-Order Statistics

PLOS ONE | DOI:10.1371/journal.pone.0150415 March 11, 2016 23 / 24

http://www.ncbi.nlm.nih.gov/pubmed/17004468
http://www.ncbi.nlm.nih.gov/pubmed/17614499
http://dx.doi.org/10.1007/s10162-008-0143-x
http://www.ncbi.nlm.nih.gov/pubmed/18855069
http://www.ncbi.nlm.nih.gov/pubmed/11882898
http://www.ncbi.nlm.nih.gov/pubmed/670542
http://www.ncbi.nlm.nih.gov/pubmed/7175031
http://www.ncbi.nlm.nih.gov/pubmed/7373368
http://www.ncbi.nlm.nih.gov/pubmed/12558276
http://www.ncbi.nlm.nih.gov/pubmed/9193048
http://www.ncbi.nlm.nih.gov/pubmed/14716510
http://dx.doi.org/10.1007/s10162-010-0217-4
http://dx.doi.org/10.1007/s10162-010-0217-4
http://www.ncbi.nlm.nih.gov/pubmed/20440634
http://www.ncbi.nlm.nih.gov/pubmed/15382833
http://dx.doi.org/10.1007/s10162-009-0169-8
http://www.ncbi.nlm.nih.gov/pubmed/19365691


50. Studebaker GA, Sherbecoe RL, McDaniel DM, Gwaltney CA. Monosyllabic word recognition at higher-
than-normal speech and noise levels. The Journal of the Acoustical Society of America. 1999; 105
(4):2431–44. PMID: 10212424

51. Dillon H. Hearing aids. Thieme; 2001.

52. Plack CJ, Drga V, Lopez-Poveda EA. Inferred basilar-membrane response functions for listeners with
mild to moderate sensorineural hearing loss. The Journal of the Acoustical Society of America. 2004;
115(4):1684–95. PMID: 15101647

53. Swami A, Mendel C, Nikias C. Higher-order spectral analysis (hosa) toolbox. Version. 2000; 2(0):3.

54. Dubno JR, Dirks DD, Langhofer LR. Evaluation of hearing-impaired listeners using a nonsense-syllable
test II. Syllable recognition and consonant confusion patterns. Journal of Speech, Language, and Hear-
ing Research. 1982; 25(1):141–8.

55. Dubno JR, Horwitz AR, Ahlstrom JB. Word recognition in noise at higher-than-normal levels:
Decreases in scores and increases in masking. The Journal of the Acoustical Society of America.
2005; 118(2):914–22. PMID: 16158647

56. Hornsby BW, Trine TD, Ohde RN. The effects of high presentation levels on consonant feature trans-
missiona). The Journal of the Acoustical Society of America. 2005; 118(3):1719–29. PMID: 16240830

57. Bilger RC, Wang MD. Consonant confusions in patients with sensorineural hearing loss. Journal of
Speech, Language, and Hearing Research. 1976; 19(4):718–48.

58. Davies-Venn E, Souza P, Brennan M, Stecker GC. Effects of audibility and multichannel wide dynamic
range compression on consonant recognition for listeners with severe hearing loss. Ear and hearing.
2009; 30(5):494. doi: 10.1097/AUD.0b013e3181aec5bc PMID: 19633563

59. Studebaker GA, Sherbecoe RL. Intensity-importance functions for bandlimited monosyllabic words.
The Journal of the Acoustical Society of America. 2002; 111(3):1422–36. PMID: 11931319

60. Donohue K. Audio systems array processing toolbox. for MATLAB), Audio Systems Laboratory,
Department of Electrical and Computer Engineering, University of Kentucky,(Updated: 27-10-2009),
www.engr.uky.edu/~donohue/audio/Arrays/MAToolbox%20htm. 2009.

61. Durlach N, Thompson C, Colburn H. Binaural interaction in impaired listeners: A review of past
research. International Journal of Audiology. 1981; 20(3):181–211.

62. Gabriel KJ, Koehnke J, Colburn HS. Frequency dependence of binaural performance in listeners with
impaired binaural hearing. The Journal of the Acoustical Society of America. 1992; 91(1):336–47.
PMID: 1737882

63. Thornton AR, Raffin MJ. Speech-discrimination scores modeled as a binomial variable. Journal of
Speech, Language, and Hearing Research. 1978; 21(3):507–18.

64. Kujawa SG, LibermanMC. Adding insult to injury: cochlear nerve degeneration after “temporary” noise-
induced hearing loss. The Journal of Neuroscience. 2009; 29(45):14077–85. doi: 10.1523/
JNEUROSCI.2845-09.2009 PMID: 19906956

65. Maison SF, Usubuchi H, Liberman MC. Efferent feedback minimizes cochlear neuropathy frommoder-
ate noise exposure. The Journal of Neuroscience. 2013; 33(13):5542–52. doi: 10.1523/JNEUROSCI.
5027-12.2013 PMID: 23536069

66. Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with
low spontaneous rates. Journal of neurophysiology. 2013; 110(3):577–86. doi: 10.1152/jn.00164.2013
PMID: 23596328

67. Schmiedt R, Mills J, Boettcher F. Age-related loss of activity of auditory-nerve fibers. Journal of neuro-
physiology. 1996; 76(4):2799–803. PMID: 8899648

68. Bradley JS. Predictors of speech intelligibility in rooms. The Journal of the Acoustical Society of Amer-
ica. 1986; 80(3):837–45. PMID: 3760337

Objective Speech Intelligibility Measure Using Higher-Order Statistics

PLOS ONE | DOI:10.1371/journal.pone.0150415 March 11, 2016 24 / 24

http://www.ncbi.nlm.nih.gov/pubmed/10212424
http://www.ncbi.nlm.nih.gov/pubmed/15101647
http://www.ncbi.nlm.nih.gov/pubmed/16158647
http://www.ncbi.nlm.nih.gov/pubmed/16240830
http://dx.doi.org/10.1097/AUD.0b013e3181aec5bc
http://www.ncbi.nlm.nih.gov/pubmed/19633563
http://www.ncbi.nlm.nih.gov/pubmed/11931319
http://www.engr.uky.edu/~donohue/audio/Arrays/MAToolbox%20htm
http://www.ncbi.nlm.nih.gov/pubmed/1737882
http://dx.doi.org/10.1523/JNEUROSCI.2845-09.2009
http://dx.doi.org/10.1523/JNEUROSCI.2845-09.2009
http://www.ncbi.nlm.nih.gov/pubmed/19906956
http://dx.doi.org/10.1523/JNEUROSCI.5027-12.2013
http://dx.doi.org/10.1523/JNEUROSCI.5027-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23536069
http://dx.doi.org/10.1152/jn.00164.2013
http://www.ncbi.nlm.nih.gov/pubmed/23596328
http://www.ncbi.nlm.nih.gov/pubmed/8899648
http://www.ncbi.nlm.nih.gov/pubmed/3760337

